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Abstract— Partial MDS (PMDS) codes are a class of erasure-
correcting array codes that combine local correction of the rows
with global correction of the array. An m × n array code is
called an (r; s) PMDS code if each row belongs to an [n, n − r,
r + 1] MDS code and the code can correct erasure patterns
consisting of r erasures in each row together with s more erasures
anywhere in the array. While a recent construction by Calis
and Koyluoglu generates (r; s) PMDS codes for all r and s, its
field size is exponentially large. In this paper, a family of PMDS
codes with field size O �

max{m, nr+s}s� is presented for the
case where r = O(1), s = O(1).

Index Terms— Partial MDS codes, sector-disk codes, locally
recoverable codes.

I. INTRODUCTION

ERASURE-CORRECTING array codes are a class of
codes mainly used to protect data in a Redundant Array

of Independent Disks (RAID) architecture against catastrophic
disk failures. Every column in the array corresponds to sectors
from the same disk, such that a disk failure is modeled by a
column erasure. Column failures are the widely studied model
in the literature and different solutions such as RAID 5 and
RAID 6 are designed specifically for this failure model. How-
ever, introducing solid state drives (SSDs) to the enterprise
industry has brought new challenges in the design of a RAID
architecture. Namely, existing solutions for RAID architectures
are no longer adequate since SSDs may experience both disk
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failures and hard errors. To overcome this problem, Partial
MDS (PMDS) codes were proposed in [1].

PMDS codes are designed to tolerate this mixed type of
failures. We say that a code consisting of m × n arrays is
an (r; s) PMDS code if each row in the codeword arrays
belongs to an [n, n − r, r + 1] MDS code, and furthermore,
it is possible to correct s more arbitrary erasures in the
array. The construction of PMDS codes for all r and s is
a challenging task. In [1] the problem was solved when either
s = 1 or r = 1. In [9], it was shown that it is possible to
construct codes with field size O((mn)s/2). However, this
construction only holds for the case where m = 2. In [2]
codes were constructed for s = 2 and arbitrary r and recently
in [3] a code construction was given for all r and s using
Gabidulin codes. However, this construction requires a field of
size O(nmn). We note that in addition to this ongoing work, a
generalization of PMDS codes was recently introduced in [8].

Our goal is constructing PMDS codes over fields of rela-
tively small size. In fact, [6] gives a construction of PMDS
codes over smaller fields for the case r = 1. In this paper,
we extend the work of [6] to the case where r > 1. Our
(r; s) PMDS codes have field size O (max{m, nr+s}s) when
r = O(1), s = O(1).

The rest of the paper is organized as follows. In Section II,
we formally define PMDS codes. In Section III, we present
a code, which we denote by C(Γ, β), using its parity check
matrix, and we state necessary and sufficient conditions for
C(Γ, β) to be a PMDS code. In Section IV we present a con-
struction of matrices satisfying these conditions while using
small fields. In Section V, we consider PMDS codes for certain
parameters that improve upon the more general construction
provided in Section IV. Lastly, Section VI concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

For a prime power q, Fq is the finite field of size q.
We assume in this paper that q is a power of two. A linear
code of length n and dimension k over Fq will be denoted by
[n, k]q or [n, k, d]q , where d denotes its minimum distance. For
an integer n � 1, the set {1, 2, . . . , n} will be denoted by [n].
We begin with the definition of PMDS codes and sector-disk
codes from [1] and [2].

Definition 1: Let C be a linear [mn, m(n−r)−s] code over
a field such that when codewords are taken row-wise as m×n
arrays, each row belongs to an [n, n − r, r + 1] MDS code.
Given (σ1, σ2, . . . , σt) such that for j ∈ [t], σj � 1, we say
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that C is an (r; σ1, σ2, . . . , σt)-erasure correcting code if, for
any 1 � i1 < i2 < · · · < it � m, C can correct up to σj + r
erasures in row ij of an array in C. We say that C is an (r; s)
partial-MDS (PMDS) code if, for every (σ1, σ2, . . . , σt) where∑t

j=1 σj = s, C is an (r; σ1, σ2, . . . , σt)-erasure correcting
code.

We will also be interested in sector-disk codes, which are
defined next. Sector-disk codes are a special type of PMDS
code, and they are designed to handle the case where many
erasures occur in the same set of r columns.

Definition 2: Let C be a linear [mn, m(n − r) − s] code
over a field such that when codewords are taken row-wise as
m × n arrays, each row belongs to an [n, n − r, r + 1] MDS
code. Then C is an (r; s) sector-disk (SD) code if, for any
�1, �2, . . . , �r such that 0 � �1 < �2 < · · · < �r � n − 1, for
any (σ1, σ2, . . . , σt) such that σj � 1 and

∑t
j=1 σj = s, and

for any i1, i2, . . . , it such that 0 � i1 < i2 < · · · < it � m,
C can correct up to σj + r erasures in row ij , 1 � j � t,
of an array in C provided that locations �1, . . . , �r in each of
the rows ij have been erased.

We note that PMDS codes are closely related to locally
recoverable codes (LRCs) [11] in that both LRC and PMDS
codes allow correcting errors locally by accessing a sub-
set of the symbols across a codeword. For example, since
by definition each row in an (r; s) PMDS code is in an
[n, n − r, r + 1] MDS code, if a row experiences at most r
erasures, then it is possible to recover the erased symbols by
only reading the symbols from that row. Hence, PMDS codes
can be viewed as a special case of LRC codes. LRC codes
that optimize the minimum distance were obtained in [11].
However, the requirement of Definition 1 is more stringent
than the optimization of the minimum distance, and the codes
from [11] are not PMDS in general.

We refer to a set E(r;s) ⊆ [m]× [n] as an (r; s)-erasure set
if it corresponds to an erasure pattern that can be corrected
by an (r; s) PMDS code. The next example illustrates a (2;2)
PMDS code and a corresponding erasure set.

Example 1: Assume m = 3, n = 5, r = 2, and s = 2. Then
we can interpret our codewords as arrays having the following
form:

x =

⎛

⎜
⎝

c1 c2 c3 p
(1)
1 p

(1)
2

c4 c5 c6 p
(1)
3 p

(1)
4

c7 p
(2)
1 p

(2)
2 p

(1)
5 p

(1)
6

⎞

⎟
⎠, (1)

where there are 7 information symbols and 8 parity symbols.
Given this setup, a PMDS code with these parameters is able to
correct at most 2 erasures in any row using only the symbols
from that row. Furthermore, it can correct 2 more erasures
occurring anywhere in the codeword matrix.

Suppose x was stored, where x belongs to a (2; 2) PMDS
code. Suppose, further that x experiences erasures resulting in
the vector y shown below (the symbols in bold correspond to
the erasures):

y =

⎛

⎜
⎝

c1 c2 c3 p
(1)
1 p

(1)
2

c4 c5 c6 p
(1)
3 p

(1)
4

c7 p
(2)
1 p

(2)
2 p

(1)
5 p

(1)
6

⎞

⎟
⎠.

The erasures in x can be described by the following
(2; 2)-erasure set:

E(2;2) = {(1, 1), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4),
(3, 2), (3, 4)}.

Let Fq be a field of size q and M be a positive integer. For
a given basis of FqM over Fq , every element v ∈ FqM can
also be represented as a length-M vector over Fq . A set of
elements v1, . . . , vN ∈ FqM is said to be linearly independent
over Fq if the length-M vectors representing these N elements
are linearly independent over Fq.

III. GENERAL CONSTRUCTION OF PMDS CODES

A PMDS code can be seen either as an m × n array
code or as a code of length mn. We will interchangeably use
these two options to represent the code. From the context,
it will be clear which option we are using. We assume that q
is a prime power such that q � n and FqM is an extension
field of Fq . Let β ∈ Fq be a primitive element, and let
Γ = (α1,1, α1,2, . . . , αm,n) ∈ (

FqM

)mn
be a sequence of mn

distinct elements. Let C(Γ, β) ⊆ (
FqM

)mn
be defined so that

x = (x1,1, . . . , xm,n) ∈ C(Γ, β) if and only if

0k−1 · xi,1 +
n∑

j=2

β(k−1)(j−1)xi,j = 0, for i ∈ [m], k ∈ [r]

(2)
m∑

i=1

n∑

j=1

αq�−1

i,j xi,j = 0, for � ∈ [s], (3)

where 00 = 1. For shorthand, let H(β) be the matrix

H(β) =

⎛

⎜
⎜
⎜
⎝

1 1 1 · · · 1
0 β β2 · · · βn−1

...
...

...
. . .

...
0 βr−1 β2(r−1) · · · β(r−1)(n−1)

⎞

⎟
⎟
⎟
⎠

∈ (Fq)
r×n

,

and note that 0k−1 · xi,1 +
∑n

j=2 β(k−1)(j−1)xi,j = 0 for all
k ∈ [r] is equivalent to H(β) · (xi,1, . . . , xi,n)T = 0. Our
main aim in this section is to consider necessary and sufficient
conditions for C(Γ, β) to be a PMDS code.

In the rest of this paper, we will refer to an (r; 0)-erasure
set with exactly r erasures in each row as an (r; 0)-erasure
vector S ∈ ([n]r)m and denote it by S = (s1, . . . , sm), where
for i ∈ [m], si = (si,1, . . . , si,r) ∈ [n]r, and si,1 < si,2 <
· · · < si,r. For example, suppose we store the vector x
from (1) and we receive

y =

⎛

⎜
⎝

c1 c2 c3 p
(1)
1 p

(1)
2

c4 c5 c6 p
(1)
3 p

(1)
4

c7 p
(2)
1 p

(2)
2 p

(1)
5 p

(1)
6

⎞

⎟
⎠,

so that a (2; 0)-erasure vector occurred, marked by the symbols
in bold. Then we represent this erasure pattern using the vector
S = (s1, s2, s3) =

(
(1, 2), (3, 4), (1, 5)

)
.

For a matrix A with n columns and a vector s =
(s1, . . . , sr) ∈ [n]r, where s1 < s2 < · · · < sr, let As be
the submatrix of A given by the columns indexed by the
set {s1, s2, . . . , sr}. Similarly, for a vector u of length n,
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us is the sub-vector of u given by the indices of the set
{s1, s2, . . . , sr}. By a slight abuse of notation, for a vector
s = (s1, . . . , sr) ∈ [n]r, we denote by s ∈ [n]n−r the vector

s = (s1, s2, . . . , sn−r), (4)

which contains, in increasing order, all the values in [n] that
do not appear in s. For example, if s = (1, 3, 7, 8) ∈ [9]4,
then s = (2, 4, 5, 6, 9).

Next, we state necessary and sufficient conditions for the
construction of the code C(Γ, β) to generate PMDS codes.
Here we use the notation x = (x1, . . . , xm) to represent our
codewords, where for i ∈ [m], xi is a length-n row vector.
We also assume that β and the sequence Γ are given so they
determine the code C(Γ, β). We start with the following claim.

Claim 1: If x = (x1, . . . , xm) ∈ C(Γ, β), then for any
(r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m, the
following equality holds for all i ∈ [m]:

(xi)T
si

= ((H(β)
si

)−1 · H(β)
si

) · (xi)T
si

.

Proof: Since H(β) is a parity check matrix of an [n, n − r]
MDS code, any r columns of H(β) are linearly independent,
and thus the matrix H

(β)
si ∈ F

r×r
q has an inverse matrix

(H(β)
si )−1. According to (2), we have

0T = H(β) · xT
i = H(β)

si
· (xi)T

si
+ H

(β)
si

· (xi)T
si

.

After multiplying both sides on the left by the matrix (H(β)
si )−1

we get

0T = (H(β)
si

)−1 · H(β)
si

· (xi)T
si

+ (H(β)
si

)−1 · H(β)
si

· (xi)T
si

= (xi)T
si

+ ((H(β)
si

)−1 · H(β)
si

) · (xi)T
si

which implies the statement in the claim.
Next, we recall the notion of t-wise independence [6].
Definition 3: Let F be a field. A multiset S ⊆ F is t-wise

independent over a subfield F
′ ⊆ F if for every T ⊆ S

such that |T | � t, the elements of T are linearly independent
over F

′.
For any (r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m,

let CS be the code obtained by puncturing C in the positions
corresponding to the erasure locations referenced by the vec-
tor S. The next claim is straightforward.

Claim 2: A code C is an (r; s) PMDS code if and only if CS

is an [m(n−r), m(n−r)−s] MDS code for any (r; 0)-erasure
vector S.

The following lemma is well known. For completeness,
we provide a proof in Appendix.

Lemma 1 (cf. [7]): Let FqM be an extension field of Fq,
and G ∈ (

FqM

)s×s
be the following matrix

G =

⎛

⎜
⎜
⎜
⎝

α1 α2 · · · αs

αq
1 αq

2 · · · αq
s

...
...

. . .
...

αqs−1

1 αqs−1

2 · · · αqs−1

s

⎞

⎟
⎟
⎟
⎠

,

where α1, α2, . . . , αs ∈ FqM . Then G has rank s if and
only if the elements α1, α2, . . . , αs are linearly independent
over Fq.

Let S = (s1, . . . , sm) ∈ ([n]r)m be an (r; 0)-erasure vector.
For i ∈ [m], let A

(β)
si ∈ (Fq)

r×(n−r) be the matrix

A(β)
si

= (H(β)
si

)−1 · H(β)
si

.

Let αi be the vector αi = (αi,1, αi,2, . . . , αi,n), and denote
αsi

= (αi,si,1 , αi,si,2 , . . . , αi,si,r ), where si = (si,1, si,2,
. . . , si,r) ∈ [n]r, and αsi

= (αi,si,1 , αi,si,2 , . . . , αi,si,n−r),
where si = (si,1, si,2, . . . , si,n−r) is the vector defined
in (4). Lastly, for i ∈ [m] we denote by γsi

=
(γsi,1, γsi,2, . . . , γsi,n−r) ∈

(
FqM

)n−r
the vector

γsi
= αsi

· A(β)
si

+ αsi
. (5)

We are now ready to prove a necessary and sufficient
condition for C(Γ, β) to be a PMDS code.

Lemma 2: The code C(Γ, β) is an (r; s) PMDS code if and
only if for any (r; 0)-erasure vector S = (s1, . . . , sm) ∈
([n]r)m, the set T (S) = {γsi,j}i∈[m],j∈[n−r] is s-wise inde-
pendent over Fq .

Proof: According to Claim 2, the code C(Γ, β) is an (r; s)
PMDS code if and only if for any (r; 0)-erasure vector S =
(s1, . . . , sm) ∈ ([n]r)m, the code C(Γ, β)S is an [m(n − r),
m(n − r) − s] MDS code. Let S = (s1, . . . , sm) ∈ ([n]r)m

be an (r; 0)-erasure vector. From (3), we see that for � ∈ [s],
the global parity constraints imply

0 =
m∑

i=1

n∑

j=1

αq�−1

i,j xi,j =
m∑

i=1

αq�−1

i xT
i ,

where αq�−1

i = (αq�−1

i,1 , αq�−1

i,2 , . . . , αq�−1

i,n ) and xi = (xi,1,

. . . , xi,n) for i ∈ [m]. We also denote αq�−1

si
=(

αq�−1

i,si,1
, αq�−1

i,si,2
, . . . , αq�−1

i,si,r

)
and define αq�−1

si
similarly. From

Claim 1, we can write (xi)T
si

= A
(β)
si · (xi)T

si
and therefore

we have that

0 =
m∑

i=1

αq�−1

i xT
i

=
m∑

i=1

(
αq�−1

si
· (xi)

T
si

+ αq�−1

si
· (xi)

T
si

)

=
m∑

i=1

(
αq�−1

si
· A(β)

si
· (xi)

T
si

+ αq�−1

si
· (xi)

T
si

)

=
m∑

i=1

(
αq�−1

si
· A(β)

si
+ αq�−1

si

)
· (xi)

T
si

,

(a)
=

m∑

i=1

(
αsi

· A(β)
si

+ αsi

)q�−1

· (xi)
T
si

,

=
m∑

i=1

(
γsi

)q�−1

· (xi)
T
si

,

where equality (a) holds since the matrix A
(β)
si is over Fq.

We conclude that a parity check matrix for the code C(Γ, β)S

will be given by (6), as shown at the top of the next page.
Therefore, from Lemma 1, the code C(Γ, β)S is an MDS code
if and only if the set of m(n − r) elements given by the
entries of the vectors γsi

for i ∈ [m] is s-wise independent
over Fq.
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1
s1,1 γ1

s1,2 γ1
s1,3 · · · γ1

s1,n−r γ1
s2,1 γ1

s2,2 · · · γ1
s2,n−r · · · · · · · · · γ1

sm,1 · · · γ1
sm,n−r

γq
s1,1 γq

s1,2 γq
s1,3 · · · γq

s1,n−r γq
s2,1 γq

s2,2 · · · γq
s2,n−r · · · · · · · · · γq

sm,1 · · · γq
sm,n−r

γq2

s1,1 γq2

s1,2 γq2

s1,3 · · · γq2

s1,n−r γq2

s2,1 γq2

s2,2 · · · γq2

s2,n−r · · · · · · · · · γq2

sm,1 · · · γq2

sm,n−r
...

...
...

. . .
...

...
...

. . .
... · · · · · · · · · ...

. . .
...

γqs−1

s1,1 γqs−1

s1,2 γqs−1

s1,3 · · · γqs−1

s1,n−r γqs−1

s2,1 γqs−1

s2,2 · · · γqs−1

s2,n−r · · · · · · · · · γqs−1

sm,1 · · · γqs−1

sm,n−r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6)

Notice that for the case r = 1, we have the following
corollary which is similar to the result from [6].

Corollary 3: The code C(Γ, β) is a (1; s) PMDS code if and
only if for any (1; 0)-erasure vector S = (s1, . . . , sm) ∈ [n]m,
the set

T (S) =
{

αi,j + αi,si

}

i∈[m],j∈[n]\{si}

is s-wise independent over F2.
Proof: For the case r = 1, notice that the matrix H(β) is

simply a single row of n ones, that is H(β) = (1, 1, . . . , 1).
Let S = (s1, . . . , sm) ∈ [n]m be a (1; 0)-erasure vector. (Note
that each si, i ∈ [m] represents a single position.) Then, for
all i ∈ [m] the matrix A

(β)
si becomes a single row of n − 1

ones, and the vector γsi
= (γi,1, γi,2, . . . , γi,n−1) becomes

γsi
= αsi · A(β)

si
+ αsi

= αi,si · (1, 1, . . . , 1) + (αi,1, αi,2, . . . , αi,si−1,

αi,si+1, . . . , αi,n)
= (αi,1 + αi,si , . . . , αi,si−1 + αi,si , αi,si+1

+ αi,si , . . . , αi,n + αi,si).

Therefore, the set T (S) = {γsi,j}i∈[m],j∈[n−1] is given by

T (S) =
{
αi,j + αi,si

}

i∈[m],j∈[n]\{si}
.

The next corollary will be used in Section V-B2 to construct
(1; s)-SD codes.

Corollary 4: The code C(Γ, β) is a (1; s)-SD code if and
only if for any k ∈ [n], the set

T =
{
αi,j + αi,k

}

i∈[m],j∈[n]\{k}

is s-wise independent over F2.
According to (2) and (3), the code C(Γ, β) is determined

by the choice of β ∈ Fq , the primitive element in Fq, and
the sequence Γ = (α1,1, α1,2, . . . , αm,n) ∈ (

FqM

)mn
over

the extension field FqM . Hence, the necessary and sufficient
condition given in Lemma 2 for the code C(Γ, β) to be an
(r; s) PMDS code involves both β and Γ. However, in our
construction, β can be chosen to be any primitive element
in Fq. The next corollary exploits this fact to simplify the
task of finding a suitable set Γ defined over a small field.
It replaces the necessary and sufficient condition of Lemma 2
with a sufficient condition involving the s-wise independence
of sets of elements whose definition is independent of the
choice of β. In the next section we discuss how to choose
sequences Γ that satisfy this condition over small fields.

Corollary 5: The code C(Γ, β) is an (r; s) PMDS code if
for any (r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m and
any m full-rank matrices V1, . . . , Vm ∈ F

r×(n−r)
q , the set

T̂ (S) = {γ̂si,j}i∈[m],j∈[n−r],

is s-wise independent over Fq, where for i ∈ [m]

γ̂si
= (γ̂si,1, γ̂si,2, . . . , γ̂si,n−r) = αsi

· Vi + αsi
∈ F

n−r
q .

(7)

Proof: The proof follows immediately from Lemma 2 by
setting Vi = A

(β)
si .

IV. PMDS CODES OVER SMALL FIELDS

Note again that the condition in Corollary 5 is a condition
only on the sequence Γ. Thus we say that a sequence Γ is
an (r; s)-PMDS sequence of size m × n if it satisfies the
condition from Corollary 5. As mentioned above, our goal
is to find (r; s)-PMDS sequences of size m × n over a field
with the smallest possible size. We denote by φ(n, d, q) the
minimum redundancy of an [n, k, d]q code. In the following,
we assume that s = O(1), r = O(1). We will make use
of the following useful lemma, based upon BCH codes and
Reed-Solomon codes, in subsequent derivations.

Lemma 6 (cf. [10, Problem 8.9; Ch. 8, pp. 203]): Suppose
n = qμ − 1, and d � q�

μ
2 � + 1. Then there exists a BCH code

where φ(n, d, q) satisfies

φ(n, d, q) � min
{

1 +
⌈(

1 − 1
q

)

(d − 2)
⌉

· μ,

⌈(

1 − 1
q

)

(d − 1)
⌉

· μ
}

.

For the case where n � q there exists an (extended)
Reed-Solomon code where

φ(n, d, q) � d − 1.

A. First Construction of PMDS Sequences
Over Small Fields

Our first result on PMDS codes with small field size, which
is an extension of the work in [6] for the case where r > 1,
is stated in the next lemma. The purpose of this construction is
to illustrate one straightforward way to construct the sequence
Γ from C(Γ, β). The construction given in the next section
improves upon the construction in this section in many cases,
and it represents our main result.

Lemma 7: If the set of elements in the sequence Γ =
(α1,1, . . . , αm,n) is (r + 1)s-wise independent over Fq,
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then it is an (r; s)-PMDS sequence. Hence, there exists an
(r; s)-PMDS sequence over a field FqM , where

M = φ(mn, (r + 1)s + 1, q), (8)

and q � n is a prime power. In particular, there exists an (r; s)
PMDS code with field size at most n(2mn)(r+1)s−1 when q =
n and 2mn is a power of q.

Proof: The result follows by noting that, according to (7),
for any (r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m and
any m full-rank matrices V1, . . . , Vm ∈ F

r×(n−r)
q , each ele-

ment in the set T̂ (S) = {γ̂si,j}i∈[m],j∈[n−r], from Corollary 5
can be written as a linear combination over Fq of exactly r+1
elements from Γ. This follows since according to Corollary 5,
we can write

γ̂si
= (γ̂si,1, γ̂si,2, . . . , γ̂si,n−r) = αsi · Vi + αsi ∈ F

n−r
q .

for i ∈ [m]. Since si ∈ [n]r, it follows that γ̂si,j is the result of
linearly combining at most r + 1 elements from Γ. Therefore,
any s elements in T̂ (S) are linear combinations over Fq of at
most (r+1)s elements from Γ. Thus, if the set of elements in
the sequence Γ is (r+1)s-wise independent over Fq, it follows
that the set T̂ (S) is s-wise independent over Fq as well, and
hence Γ is an (r; s)-PMDS sequence.

A construction of such a sequence Γ whose elements are
(r + 1)s-wise independent over Fq is as follows. Let H be
a parity check matrix of an [mn, k, (r + 1)s + 1]q code C
with redundancy ρ = mn − k, where q is the smallest prime
power such that q � n. We set Γ to consist of the mn columns
of H , which are mn elements over the field Fqρ . Since the
minimum distance of the code C is (r+1)s+1, every (r+1)s
columns of H are linearly independent over Fq and so are
every (r + 1)s elements from the sequence Γ. By choosing a
code C where ρ = φ(mn, (r + 1)s + 1, q) we get the result
stated in (8). From the bound in Lemma 6, we get that there
exists a code of length 2mn−1, minimum distance (r+1)s+1,
and redundancy 1 + logq(2mn)((r + 1)s− 1). By shortening
the code, we arrive at a code of length mn with minimum
distance (r + 1)s + 1, which, since q = n, implies there is a
PMDS code with field size at most n(2mn)(r+1)s−1 for the
case where 2mn is a power of q.

According to Lemma 7, we already deduce that there exists
an (r; s) PMDS code over a field which is polynomial in mn,
in contrast to the exponential field size reported in [3]. We now
present a further improvement on the field size.

B. Second Construction of PMDS Sequences
Over Small Fields

In this section, we give a construction of (r; s)-PMDS
sequences with a smaller field size than that achieved in
Lemma 7 for many cases. Recall from the previous subsection
that we designed our sequence Γ (used in C(Γ, β)) so that each
element in Γ is (r+1)s-wise independent over Fq . As we will
discuss in more detail, it turns out that this condition in many
cases is too strong since each element in the set T̂ (S) from
Corollary 5 can be written as a linear combination of at most
r + 1 elements that are contained in the same row as each
other (when we interpret our codewords as m × n arrays).

The construction discussed in this section exploits this fact
and results in codebooks with small field sizes.

Our construction uses tensor product codes, which were
introduced in [12]. Our approach will be to use the columns
of the parity check matrix of a tensor product code as the
elements of the sequence Γ. As we will soon discuss, tensor
product codes have the special property that they can cor-
rect structured errors, which implies that certain (structured)
subsets of columns in a parity check matrix of the code are
linearly independent. In the following, we detail how to use
this property to design the sequence Γ.

Let us first review the definition of tensor product codes,
focusing on the case of erasure correction. A code C ⊆
(Fq)

m×n is called an [m, n; t1, t2] erasure-correcting code if it
can correct any erasure pattern of the form E = (E1, . . . , Em),
where Ei ⊆ [n], for all i ∈ [m], and

1) |{i : Ei �= ∅}| � t1,
2) |Ei| � t2, for all i ∈ [m].

In other words, such a code is required to correct era-
sures in at most t1 rows, while in each row there are at
most t2 erasures. Such an erasure pattern will be called a
(t1; t2)-erasure pattern.

The following theorem draws a connection between
[m, n; t1, t2] erasure-correcting codes and (r; s)-PMDS
sequences and gives the main result of this section. In Corol-
lary 10, we give an upper bound on the field size of an (r; s)-
PMDS code which is a consequence of the theorem below.

Theorem 8: Let CTP be an [m, n; s, r + s]
erasure-correcting code over Fq with redundancy ρ and
parity check matrix HTP = (α1,1, . . . , αm,n) ∈ (Fqρ)mn.
Then, the sequence ΓTP = (α1,1, . . . , αm,n) is an (r; s)-
PMDS sequence of size m × n.

Proof: Assume S = (s1, . . . , sm) ∈ ([n]r)m is an (r; 0)-
erasure vector and V1, . . . , Vm ∈ F

r×(n−r)
q are m full-rank

matrices which determine the set T̂ (S) = {γ̂si,j}i∈[m],j∈[n−r]

as specified in (7). We will show that T̂ (S) is s-wise inde-
pendent over Fq. Any s elements from the set T̂ (S) can
be expressed as a linear combination of elements from the
sequence ΓTP . For i ∈ [m], we denote by Ei ⊆ [n] the
locations of elements which belong to this linear combina-
tion from the i-th row of ΓTP , that is, from the elements
αi,1, . . . , αi,n. Consider the vector E = (E1, . . . , Em) and
note that it is an (s; r+s)-erasure pattern. Since the code CTP

is an [m, n; s, r + s] erasure-correcting code, every collection
of columns from the parity matrix HTP which correspond
to an (s; r+s)-erasure pattern is linearly independent. Hence,
the set of elements from ΓTP at locations in ∪m

i=1Ei is linearly
independent over Fq and, therefore, so is every set of s

elements from T̂ (S).
According to Theorem 8, the task of finding (r; s)-PMDS

sequences can now be translated to the construction of
[m, n; s, r + s] erasure-correcting codes over Fq with small
redundancy ρ. We review the construction of such codes as
presented in [12]. Specifically, the parity check matrix for an
[m, n; s, r + s] erasure-correcting code CTP over Fq (where
q = n) is given as follows:
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1) Assume that H ′ ∈ F
(r+s)×n
q is a parity check matrix for

an [n, n − r − s]q MDS code.
2) Assume that H ′′ ∈ F

R×m
qr+s is a parity check matrix for

an [m, m − R, s + 1]qr+s code.
3) Representing every column in H ′ as an element in

Fqr+s , we let CTP be a code over Fq with the parity
check matrix H ′′ ⊗ H ′ formed by taking the tensor
product of H ′′ and H ′.

The existence of an [n, n−r−s]q MDS code in 1) where q = n
follows from the second statement regarding the existence of
extended Reed-Solomon codes in Lemma 6.

Theorem 9 (cf. [12]): The code CTP is an [m, n; s, r + s]
erasure-correcting code over Fq with redundancy
ρ = (r + s)R.

We are now ready to provide an upper bound on the field
size for (r; s) PMDS codes by providing an upper bound on
R using the bound on the redundancy of BCH codes from
Lemma 6.

Corollary 10: There exists an (r; s) PMDS code
with field size q(r+s)φ(m,s+1,qr+s), which is at most
O

(
max{m, nr+s}s

)
when q = n and m + 1 is a power

of qr+s.
Proof: According to Theorem 8 and Theorem 9, the field

size of the constructed (r; s)-PMDS sequence and thus the
(r; s) PMDS code is qR(r+s), where R was defined above
and q � n. Choosing R = φ(m, s + 1, qr+s), we get an (r; s)
PMDS code with field size q(r+s)φ(m,s+1,qr+s). If m � qr+s

then R = s and the field size becomes qs(r+s) = ns(r+s).
Otherwise if m > qr+s and m + 1 is a power of qr+s, then
according to the bound in Lemma 6, we have that R � 1 +⌈(

1 − 1
qr+s

)
(s − 1)

⌉
· logqr+s(m + 1) and thus the field size

becomes

q
(r+s)

�
1+

��
1− 1

qr+s

�
(s−1)

�
·logqr+s (m+1)

�

= qr+s(m + 1)s−1 = O(ms).

In conclusion, it follows that there exists a family of codes
which has field size at most O

(
max{m, nr+s}s

)
.

Corollary 10 states our best result for the field size of PMDS
codes for arbitrary fixed r and s. Next, we turn to an example
that illustrates our code construction. We note that the purpose
of the following example is not to identify a code with small
field size but to show an illustration and highlight the ideas.

Example 2: Consider a code with the following parameters:

1) m = 3, n = 8
2) s = 2, r = 2.

Our construction will be described through the parity check
matrix for a (2; 2) PMDS code C2;2, which we denote as H2;2.
Under this setup, our codewords can be interpreted as 3 × 8
arrays with 8 parity symbols and 16 information symbols. The
parity check matrix has the following form:

H2;2 =

⎛

⎜
⎜
⎜
⎜
⎝

H 0 0
0 H 0
0 0 H
v1 . . . v24

v8
1 . . . v8

24

⎞

⎟
⎟
⎟
⎟
⎠

. (9)

Suppose ζ is a primitive element in F8. Then H =(
1 1 1 . . . 1
0 ζ ζ2 · · · ζ7

)

∈ F
2×8
8 , which is a parity check matrix

for an [8, 8−2]8 extended Reed-Solomon code. From (9), it is
straightforward to see that C2;2 can correct any (2; 0)-erasure
set. In addition, we see from (9) that the first 3 · 2 rows of
H2;2 correspond to constraints that allow us to locally recover
from errors. The remaining two rows in H2;2 correspond to
the global constraints that allow us to correct an additional 2
erasures.

In Lemma 2, we showed that if certain linear combinations
of the elements from the set {v1, v2, . . . , v24} are linearly
independent over F8, then C2;2 is indeed a (2; 2) PMDS code.
To guarantee the condition in Lemma 2 is satisfied, we make
use of the following matrices H ′ and H ′′. Let

H ′ =

⎛

⎜
⎜
⎝

1 1 1 1 · · · 1
0 ζ ζ2 ζ3 · · · ζ7

0 ζ2 ζ4 ζ6 · · · ζ14

0 ζ3 ζ6 ζ9 · · · ζ21

⎞

⎟
⎟
⎠ ∈ F

4×8
8 ,

and let η ∈ F84

H ′′ =
(

1 1 1
η η2 η3

)

∈ F
2×3
84 .

Since every column in H ′ has dimension 4 over F8, we can
uniquely represent each column in H ′ with an element from
F4096. In particular, suppose we can write H ′ as

H ′ =

⎛

⎜
⎜
⎝

1 1 1 · · · 1
0 ζ ζ2 · · · ζ7

0 ζ2 ζ4 · · · ζ14

0 ζ3 ζ6 · · · ζ21

⎞

⎟
⎟
⎠

=
(
ηi1 ηi2 · · · ηi8

) ∈ F
1×8
84 .

Then, taking the tensor product of H ′′ and H ′ (where H ′ is
assumed to be over F84), denoted H ′′ ⊗ H ′, we get:

H ′′ ⊗ H ′

=
(

1 · H ′ 1 · H ′ 1 · H ′

η · H ′ η2 · H ′ η3 · H ′

)

∈ F
2×24
84

=
(

ηi1 · · · ηi8 ηi1 · · · ηi8 ηi1 · · · ηi8

ηi1+1 · · · ηi8+1 ηi1+2 · · · ηi8+2 ηi1+3 · · · ηi8+3

)

Since η ∈ F84 , we can represent each column of the matrix
H ′′ ⊗ H ′ as an element from F88 . Suppose we can write

H ′′ ⊗ H ′ = (ω1, ω2, . . . , ω24) ∈ F
24
88 .

Then, by setting {v1, v2, . . . , v24} = {ω1, ω2, . . . , ω24} results
in a (2; 2)-partial MDS code according to Theorem 8. Notice
that we have constructed a code C2;2 of length 24 over F88

where clearly 88 = n(r+s)s since r = s = 2 and n = 8.
In the next section, we consider the field sizes of PMDS

codes for some special cases.

V. CODES FOR SPECIAL CASES

This section is organized as follows. In Section V-A,
we show that our general result for the field size using
the second construction from Section IV-B can be improved
for the case where r = 1 and 2 � s � 4. In Section V-B,
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we present new constructions of PMDS codes that give small
field sizes for small m, and we give a construction for
(1; s)-SD codes with field size O

(
n

s+1
2 ms−2

)
when s is odd.

A. Special Cases of the Second Construction

In the following, we show that improvements are possible
on the bound from Corollary 10 for the case of r = 1 and
s ∈ {2, 3, 4}.

1) r = 1: Recall from Corollary 3 that for r = 1 the
set T (S) needs to be s-wise independent only over F2.
Consequently, repeating the same ideas as in Theorem 8,
we have the following construction for the case r = 1.

Corollary 11: Let CTP be an [m, n; s, s + 1]
erasure-correcting code over F2 with redundancy ρ and
parity check matrix HTP = (α1,1, . . . , αm,n) ∈ F

mn
2ρ .

Then, the sequence ΓTP = (α1,1, . . . , αm,n) ∈ F
mn
2ρ is a

(1; s)-PMDS sequence of size m × n.
The next corollary bounds the field size for the case

r = 1. Similar to before, we first give the construction of
an [m, n; s, s + 1] erasure-correcting code using techniques
from [12]:

1) Suppose H ′ ∈ F
�×n
2 is a parity check matrix for an

[n, n − �, s + 2]2 code.
2) Suppose H ′′ ∈ F

R×m
2� is a parity check matrix for an

[m, m − R, s + 1]2� code.
3) Representing every column in H ′ as an element in F2� ,

we let CTP be a code over F2 with the parity check
matrix H ′′⊗H ′ formed by taking the tensor product of
H ′′ and H ′. Note that CTP has redundancy �R.

Note that the primary difference between the construction
presented here and the one from [6] is that we use binary
BCH codes to form the matrices H ′ and, as will be discussed
after Corollary 12, this results in a reduction in the required
field size of the resulting PMDS code in certain cases.

Using Corollary 11, we get the following analog of
Corollary 10 for the case r = 1.

Corollary 12: There exists a (1; s) PMDS code with field
size at most (n + 1)�

s+1
2 �(m + 1)s−1 provided n+1 is a power

of 2 and m + 1 is a power of 2�.
Proof: According to Lemma 6, we see that � �

� s+1
2 	log2(n + 1) provided n+1 is a power of two. As before,

we can choose R = φ(m, s+1, 2�), and thus assuming m+1
is a power of 2�, the code redundancy is given by

� · φ(m, s+1, 2�)

= � ·
(

1 +
⌈(

1− 1
2�

)

(s − 1)
⌉

· log2�(m + 1)
)

� � · (1 + (s − 1) · log2�(m + 1)).

Note that 2� � (n + 1)�
s+1
2 �, and so the field size is at most

2�·(1+(s−1)·log2� (m)) � 2� · 2�·(s−1)·log2� (m+1)

� (n + 1)�
s+1
2 �(m + 1)s−1.

Thus, it can be seen that when s � 5, n is large enough, and
m and n satisfy the conditions stated in Corollary 12, the result
improves upon the bound in [6], where the authors showed an
achievable field size of O((mn)(s−1)·(1− 1

2n )). In addition, note

that for the case where s = 2, the previous corollary results
in a (1; 2) PMDS code with linear field size.

2) PMDS Codes for 2 � s � 4: For s = 2, the proof
of Corollary 10 shows that there exists an (r; 2) PMDS code
with field size q(r+2)φ(m,3,qr+2), where q is smallest prime
power where q � n. If m � qr+2, then φ(m, 3, qr+2) = 2
and the required field size is at least n2(r+2); otherwise
φ(m, 3, qr+2) = �logqr+2(m(qr+2 − 1) + 1)	, and the size
of the field is at least mnr+2. In either case, the construction
from [2] requires a smaller field size, given by r((m+1)(n−
m−1)+1). However, that construction works only for s = 2.

For s = 3, s = 4, we have the following results, obtained by
combining the tensor product construction with the non-binary
codes from [4] which were also used in [6].

Corollary 13: There exists an (r; 3) PMDS code with field
size nr+3m1.5 if m > nr+3, and n3(r+3) otherwise.

Proof: Following the ideas from the proof of Corollary 10,
we deduce that the field size of the constructed (r; 3) PMDS
code is given by

q(r+3)φ(m,4,qr+3).

Here we use the result from [4], which states that
φ(m, 4, qr+3) = 1.5 logqr+3(m) + 1 for m > qr+3, and
φ(m, 4, qr+3) = 3, otherwise. Assuming that n is a prime
we can set q = n, and, in the former case, we see that

q(r+3)φ(m,4,qr+3) = q(r+3)(1.5 logqr+3 (m)+1) = qr+3m1.5

= nr+3m1.5.

A similar claim can be proved for the case s = 4.
Corollary 14: There exists an (r; 4) PMDS code with field

size n3(r+4)m
7
3 if m > nr+4, and n4(r+4) otherwise.

Proof: From Corollary 10, the field size of the (r; 4)
PMDS code is

q(r+4)φ(m,5,qr+4).

From [4], we can set φ(m, 5, qr+4) = 7
3 logqr+4(m) + 3 for

m > qr+4, and φ(m, 5, qr+4) = 4 otherwise. Assuming that
n is a prime, we can set q = n, which gives

q(r+4)φ(m,5,qr+4) = q(r+4)( 7
3 logqr+4 (m)+3) = q3(r+4)m

7
3

= n3(r+4)m
7
3 .

The second statement follows simply by setting
φ(m, 5, qr+4) = 4.

B. New Constructions of PMDS and SD Codes

1) PMDS Codes for Small m: In this section, we construct
PMDS codes for small m. The constructions from Section IV-
B can be used to construct codes with field sizes at most
O

(
max{m, nr+s}s

)
. Here, we show it is possible to con-

struct PMDS codes with field sizes at most O (
ns(r+log2 s)

)

when m � n − 1, and s � 10.
We present a construction of a code Cm<n ⊆ F

mn
q that is

an [m, n; s, r + s] erasure-correcting code, which according
to Theorem 8, implies the existence of an (r; s)-PMDS code.
We begin by introducing some useful notation. For � ∈ [s], let
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H(�) ∈ F
(r+�)×n
q be a parity check matrix for an [n, n − r −

�, r + � + 1] MDS code (where q � n). Let

Hm<n =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H(s) · · · H(s)

β · H(� s
2 �) · · · βm · H(� s

2 �)
β2 · H(� s

3 �) · · · βm·2 · H(� s
3 �)

...
. . .

...
βr+s−1 · H(1) · · · βm·(r+s−1) · H(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

be a parity check matrix for Cm<n where β has order at least
m + 1. The next corollary follows from Corollary 3 using the
same ideas as in the proof of Theorem 8.

Corollary 15: Let CP be a code over Fq with redun-
dancy ρ and parity check matrix HP = (α1,1, . . . , αm,n) ∈
(Fqρ)mn that is able to correct any (r; s)-erasure set. Then,
the sequence ΓP = (α1,1, . . . , αm,n) is an (r; s)-PMDS
sequence of size m × n.

We have the following theorem.
Theorem 16: The code Cm<n ⊆ F

mn
q can correct any (r; s)

erasure set E = (E1, E2, . . . , Em).
Proof: Let � = |{i : Ei �= ∅}|. Notice that since E is an

(r; s) erasure set, then there exists a row which has at most r+

 s

� � erasures. Furthermore, notice that for every k � j where
j, k ∈ [s], H(� s

k �) (from Hm<n) is equal to the first r + 
 s
k�

rows of H(� s
j �). Let e ∈ F

mn
q be a vector that has non-zero

entries in positions in E. Then, we need to show Hm<n·e �= 0,
which implies that the columns of Hm<n corresponding to
the non-zero entries in e are linearly independent. Suppose
e = (e1, e2, . . . , em). Given �, we know that there exists an
index k where

H(� s
ε �) · ek �= 0,

since there exists a row that has at most r + 
 s
� � erasures.

Thus, 1 � |{j : H(� s
ε �) · ej �= 0}| � �. Therefore, we have

that
⎛

⎜
⎜
⎜
⎝

H(1) · · · H(1)

β · H(� s
ε �) · · · βm · H(� s

ε �)
...

. . .
...

β� · H(� s
ε �) · · · βm� · H(� s

ε �)

⎞

⎟
⎟
⎟
⎠

· e �= 0

which implies Hm<n · e �= 0 as desired.
Since the dimension of H(�) is r+ � over Fq, it follows that

the dimension of the matrix Hm<n over Fq is at most
s∑

j=1

r +
⌊s

j

⌋
� rs + s

s∑

j=1

1
j

� rs + s(ln s + 1)
� s(r + log2 s),

for s � 10.
2) (1;s)-SD Codes With Small Field Sizes: Using our frame-

work, we show that there exists a (1; s)-SD code with field

size O
(
n

s+1
2 ms−2

)
when s is odd. To satisfy the condition

in Corollary 4, we construct a matrix H1;s = (h1,1, . . . , hm,n)
such that the set

T (H1;s) = {hi,j + hi,k}i∈[m],j∈[n]\{k}, (10)

is s-wise independent.

The construction of the matrix H1;s is a simple modification
of our construction for (1; s)-PMDS codes. We show here
that it is possible to reduce the minimum distance of the
code whose parity check matrix is H ′′ (described below).
The resulting construction shows the existence of (1; s)-SD

codes whose field size is O
(
n

s+1
2 ms−2

)
when s is odd.

For smaller s, the non-binary codes from [4] can be used to
provide improvements in the same manner as Section V-A2.
Suppose s � 3 is an odd number. We begin by stating the
construction for (1; s)-SD codes.

1) Suppose H ′ ∈ F
�×n
2 is a parity check matrix for an

[n, n − �, s + 2]2 code.
2) Suppose H ′′ ∈ F

R×m
2� is a parity check matrix for an

[m, m − R, s]2� code whose top row is all-ones.
3) Representing every column in H ′ as an element in F2� ,

we let H1;s be the sequence H ′′⊗H ′ formed by taking
the tensor product of H ′′ and H ′, with dimension �R
over F2.

We note that there are many possible choices for H ′′

that satisfy the second condition, such as a normalized
Reed-Solomon code.

Lemma 17: For odd s, T (H1;s) is s-wise independent.
Proof: Let e ∈ F

mn
2 = (e1, e2, . . . , em) =

(e1,1, . . . , em,n) be such that ei,j = 1 if and only if hi,j

appears as an addend in one of the terms from the set T (H1;s).
We prove the result by showing H1;s · eT �= 0 unless e = 0.

Suppose first that |{i : ei �= 0| � s − 1. In this case we
cannot have H1;s·eT = 0 since H1;s is the parity check matrix
for an [m, n; s − 1, s + 1] code over F2 and e is correctable
by an [m, n; s − 1, s + 1] erasure-correcting code. Suppose
then that |{i : ei �= 0| = s. In this case, we have that for
any ei �= 0, |{j : ei,j �= 0}| = 2 and ei,k = 1. Let H ′ =
(h′

1, h
′
2, . . . , h

′
n) and let i1, . . . , is denote the indices of the

non-zero rows in e. Since the top row of H ′′ is all-ones and
s is odd, then

(
H ′ H ′ H ′ · · · H ′) · eT =

s∑

�=1

h′
i�,k + h′

i�,j�

= h′
i1,k +

s∑

�=1

h′
i�,j�

.

Since H ′ is a parity check matrix for a code with minimum
distance s + 2, h′

i1,k +
∑s

�=1 h′
i�,j�

�= 0, and the result
follows.

Using the same ideas as in the proof of Corollary 12,
we have the following result.

Corollary 18: There exists an (1; s)-SD code with field size
at most n

s+1
2 ms−2 when s is odd provided n + 1 is a power

of 2 and m + 1 is a power of 2�.
Proof: According to Lemma 6, we see that � �

( s+1
2 )log2(n + 1) provided n+1 is a power of two. As before,

we can choose R = φ(m, s, 2�), and thus if m + 1 is a power
of 2�, the code redundancy is given by

� · φ(m, s, 2�) = � ·
(

1+
⌈(

1 − 1
2�

)

(s − 2)
⌉

· log2�(m + 1)
)

� � · (1 + (s − 2) · log2�(m + 1)).
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Note that 2� � (n + 1)
s+1
2 , and so the field size is at most

2�·(1+(s−2)·log2� (m)) � (n + 1)
s+1
2 · 2�·(s−2)·log2� (m+1)

� (n + 1)
s+1
2 (m + 1)s−2,

which implies the desired result.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a family of PMDS codes which
achieve field size O (max{m, nr+s}s). Although this work
shows that it is possible to explicitly construct PMDS codes
with polynomial field sizes for r > 1, many important
problems remain. In particular, it remains an open problem
whether there exist families of PMDS codes with smaller field
sizes.

APPENDIX

PROOF OF LEMMA 1

Proof of Lemma 1: Recall that G ∈ F
s×s
qm . We prove the

statement in the lemma by induction on s. For the case where
s = 1, the lemma clearly holds.

For the inductive step, assume the lemma holds for all
s � t − 1. Now suppose that s = t. Consider the following
variable matrix:

G(x) =

⎛

⎜
⎜
⎜
⎝

x α2 · · · αt

xq αq
2 · · · αq

t
...

...
. . .

...

xqt−1
αqt−1

2 · · · αqt−1

t

⎞

⎟
⎟
⎟
⎠

.

Clearly, the set of roots of the polynomial det(G(x)) contains
the elements α2, α3, . . . , αt, and since det(G(x)) is a lin-
earized polynomial, any linear combination of α2, α3, . . . , αt

over the field Fq is also a root of det(G(x)). Note that these
are all the roots of det(G(x)) since it is a polynomial of degree
qt−1. Thus, letting α = (α2, α3, . . . , αt), we can write

det(G(x)) = C ·
∏

u∈F
t−1
q

(x − u · αT ) (11)

where C ∈ Fqm is a constant. Setting x = α1, we get

det(G) = C ·
∏

u∈F
t−1
q

(α1 − u · αT ). (12)

Now, if G has full rank, then det(G) �= 0. From (12),
we conclude that C �= 0 and

∏
u∈F

t−1
q

(α1 − u · αT ) �= 0.

The constant C is equal to the coefficient of the term xqt−1

in the expression for the determinant in (11). Thus,

C = det

⎛

⎜
⎜
⎜
⎝

α2 α3 · · · αt

αq
2 αq

3 · · · αq
t

...
...

. . .
...

αqt−2

2 αqt−2

3 · · · αqt−2

t

⎞

⎟
⎟
⎟
⎠

. (13)

The condition C �= 0 implies that the argument of the determi-
nant in (13) is a full rank matrix. Therefore, by the induction
hypothesis, the elements of α are linearly independent over
Fq. The condition

∏
u∈F

t−1
q

(α1−u·αT ) �= 0 implies that α1 is

not an Fq-linear combination of elements in α. It follows that
the set {α1, α2, α3, . . . , αs} is linearly independent over Fq.

Conversely, if the set {α1, α2, α3, . . . , αs} is linearly inde-
pendent over Fq , each of the factors of the form (α1−u ·αT )
in (12) is nonzero, and, by the induction hypothesis, C is also
nonzero. Therefore, det(G) �= 0, implying that G is full rank.
This completes the induction.
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