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On the Uncertainty of Information Retrieval
in Associative Memories

Eitan Yaakobi , Senior Member, IEEE, and Jehoshua Bruck, Fellow, IEEE

Abstract— We (people) are memory machines. Our decision
processes, emotions, and interactions with the world around
us are based on and driven by associations to our memories.
This natural association paradigm will become critical in future
memory systems, namely, the key question will not be “How do
I store more information?” but rather “Do I have the relevant
information? How do I retrieve it?” The focus of this paper is
to make a first step in this direction. We define and solve a very
basic problem in associative retrieval. Given a word W , the words
in the memory, which are t-associated with W , are the words
in the ball of radius t around W . In general, given a set of
words, say W , X , and Y , the words that are t-associated with
{W, X, Y } are those in the memory that are within distance t
from all the three words. Our main goal is to study the maximum
size of the t-associated set as a function of the number of input
words and the minimum distance of the words in memory—
we call this value the uncertainty of an associative memory.
In this paper, we consider the Hamming distance and derive
the uncertainty of the associative memory that consists of all
the binary vectors with an arbitrary number of input words. In
addition, we study the retrieval problem, namely, how do we get
the t-associated set given the inputs? We note that this paradigm
is a generalization of the sequences reconstruction problem that
was proposed by Levenshtein (2001). In this model, a word is
transmitted over multiple channels. A decoder receives all the
channel outputs and decodes the transmitted word. Levenshtein
computed the minimum number of channels that guarantee a
successful decoder—this value happens to be the uncertainty of
an associative memory with two input words.

Index Terms— Associative memories, reconstruction of
sequences, list decoding, anticodes.

I. INTRODUCTION

ONE of the interpretations of the term association, espe-
cially in the context of psychology, is the connec-

tion between two or more concepts. Throughout our life,
we remember and store an enormous amount of informa-
tion. However, while we are not aware of the method this
information is stored, amazingly, it can be accessed and
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Fig. 1. Three example of associated words: (a) associated words with a
single word x, (b) associated words with two words x and y, (c) associated
words with the six words x1, . . . , x6.

retrieved with relative ease. The way we think and process
information is mainly performed by associations. Our mem-
ory content retrieval process is done by stimulating it with
external or internal inputs. That is, the knowledge of some
information gives rise to related information that was stored
earlier. Mathematically speaking, assume the memory is a set
of words M = {m1, . . . , mS}. Then, given an arbitrary word
x as an input to the memory M , its output is another word or a
set of words from the memory M , or from the space of all
words, that are related or close to the input word x. Here,
the term “close” can be interpreted as using any distance
metric between words, for example the Hamming distance,
which is the distance we consider in this work. A word is
associated with another word or words which again can be
associated with more words and so on, resulting in a sequence
of associations.1

From the information theory perspective, we say that the
words associated with an input word x are those in distance
at most t (a prescribed value) from x. This set comprises a
ball of radius t , see Fig. 1(a). We generalize this paradigm
and consider a set of words that are presented as an input

1Note that the model of associativity we study in this work is essentially
different than the one studied by Hopfield for neural networks [9], [26] and
is motivated by the association between words in a given memory.
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Fig. 2. Channel model of the sequences reconstruction problem.

to the memory. For example, for two input words x, y, their
set of associated words are the ones that their distance from
both x and y is at most t , see Fig. 1(b). Clearly, this set of
associations is likely to be smaller than the ball of radius t .
For more than two input words, the set of associated words is
usually getting even smaller, and in general, the larger the set
of input words is, the smaller the set of associated words is,
see Fig. 1(c). For example, assume the input word is “tall”,
then many words can be associated with it, such as “tree”,
“mountain”, “tower”, “ladder”, etc. But if the input words are
“tall” and “fruit”, then out of these four associated words, only
the word “tree” will be associated with “tall” and “fruit”.

Assume that the memory is the set of all binary vectors,
M = {0, 1}n . For any input word x, it is immediate to see
that if its set of associated words are the ones of distance
at most t , then there are

∑t
i=0

(n
i

)
such words. However,

for two input words, x, y, the problem of finding the set of
associated words of distance at most t from both x and y
becomes more complex. In fact, this problem was proposed
and solved by Levenshtein [21], [22]. The motivation came
from a completely different scenario in the context of the
sequences reconstruction problem. In this model, a codeword
x is transmitted through multiple channels. Then, a decoder
receives all channel outputs and generates an estimation on
the transmitted word, while it is guaranteed that all channel
outputs are different from each other, see Fig. 2. If x belongs
to a code C with minimum distance d and in every channel
there can be at most some t > � d−1

2 � errors, then Levenshtein
studied the minimum number of channels that guarantees the
existence of a successful decoder. This number has to be
greater than

N = max
x1,x2∈C,x1 �=x2

|Bt(x1) ∩ Bt (x2)|, (1)

where Bt (x) is the ball of radius t surrounding x. To see that,
notice that if the intersection of the radius-t balls of x1 and x2
contains N words and the channel outputs are these N words,
then a decoder cannot determine what the transmitted word
is. However, if the number of channel outputs is greater than
the maximum size of the intersection of two balls, then there
is only one codeword of distance at most t from all received
channel outputs.

The motivation to the model studied by Levenshtein came
from fields such as chemistry and biology, where the redun-
dancy in the codewords is not sufficient to construct a suc-
cessful decoder. Thus, the only way to combat errors is by

repeatedly transmitting the same codeword. Recently, this
model was shown to be also relevant in storage technolo-
gies [4], [5], [32]. Due to the high capacity and density of
today’s and future’s storage medium, it is no longer possible to
read individual memory elements, but, rather, only a multiple
of them at once. Hence, every memory element is read multiple
times, which is translated into multiple estimations of the same
information stored in the memory.

Finding the maximum intersection problem in (1) was
studied in [22] with respect to the Hamming distance and
other metric distances, such as the Johnson graph, asymmetric
errors, and more general metric distances. In [16]–[18], it was
analyzed over permutations, and in [24] and [25] for error
graphs. The case of permutations with the Kendall’s τ distance
was also investigated in [33] as well as the Grassmann graph
case. In [23], the equivalent problem for insertions and dele-
tions was studied. These results were later extended in [29] for
insertions and in [6] for deletions. Furthermore, reconstruction
algorithms for this model were given in [3], [14], and [30].
The case of only deletions was solved in [8] in the context
of trace reconstruction and in [27] and [28] an information-
theoretic study was carried for a special case of deletions
which is applied to DNA sequences. This problem was also
studied under a different context in [10] for the purpose of
asymptotically improving the Gilbert-Varshamov bound.

Returning to our original problem, the set of associated
words with x and y is Bt (x) ∩ Bt (y) and the maximum
intersection is the value N in (1). The generalized problem
of finding the maximum size of associated words of m � 2
input words with mutual distance at least d is expressed as

Nt (m, d) = max
x1,...,xm ,dH (xi ,x j )�d

{∣
∣∩m

i=1 Bt (xi )
∣
∣
}
. (2)

The value of Nt (m, d) will be referred in the paper as the
uncertainty of the memory, and the main goal in this paper
is to analyze the value of Nt (m, d) with respect to the
Hamming distance for different values of t, m, d . In particular,
we show that if A(D) is the size of a maximal anticode of
diameter D [2], that is, the largest set of words with maximum
distance D, then Nt (A(D), 1) = A(2t − D).

Extensions of the problem proposed in this work and in [31]
were studied later in [7], [11]–[13], [19], and [20]. Junnila and
Laihonen [11] studied conditions on the associative memory
to have small uncertainty and in particular uncertainty equals
1. They carried this task for the Hamming space as well
as the infinite square grid. This work was extended in [13]
to find conditions on the memory such that its uncertainty
equals 1 when the input clues belong to a ball of some
radius t . A similar model was studied in [12], where the
authors considered the setup of uncertainty 1 while the radius
for associations is 1 as well. Yet another model was studied
in [19] for the average number of input clues which guarantee
uncertainty 1. In [20], connections to the problem of list
decoding of the reconstruction problem by Levenshtein using
the majority voting decoder were investigated. Gripon and
Rabbat [7] studied associative memories which are built on
the maximum likelihood principle.
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The rest of the paper is organized as follows. In Section II,
we define the concept of associative memories, describe
the connection to the sequences reconstruction problem, and
review some results for m = 2. In Section III we extend these
results for m = 3. In Section IV, we solve the problem stated
in (2) for the case d = 1. Extensions for arbitrary d are given
in Section V. In Section VI, we give efficient decoders to
the reconstruction problem studied by Levenshtein. Finally,
Section VII concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this work, the words are binary vectors of length n. The
Hamming distance between two words x and y is denoted by
dH (x, y) and the Hamming weight of a word x is denoted by
wH (x). For a word x ∈ {0, 1}n , Bn

t (x) is its surrounding ball
of radius t , Bn

t (x) = {y ∈ {0, 1}n : dH (x, y) � t}. The size
of Bn

t (x), comprising of length-n words, is bt,n = ∑t
i=0

(n
i

)
.

If the length of the words is clear from the context, we use
the notation Bt (x). For 1 � i � n, ei is the unit vector where
only its i -th bit is one, and 0 is the all-zero vector. Two words
x, y ∈ {0, 1}n are called t-associated if dH (x, y) � t .

Definition: The t-associated set of the words x1, . . . , xm is
denoted by St ({x1, . . . , xm}) and is defined to be the set of all
words y that are t-associated with x1, . . . , xm,

St
({x1, . . . , xm})={y :dH (y, xi )� t, 1� i � m}=

m⋂

i=1

Bt (xi ).

Note that for a single word x, we have St
({x}) = Bt (x). Given

an associative memory M, we define the maximum size of a
t-associated set of any m words from the memory.

Definition: Let M be an associative memory and m, t
be two positive integers. The uncertainty of the associative
memory M for m and t, denoted by Nt (m,M), is the
maximum size of a t-associated set of m different input words
from M. That is,

Nt (m,M) = max
x1,...,xm∈M,xi �=x j

{∣
∣St

({x1, . . . , xm})∣∣} . (3)

In case the associative memory M is a code with minimum
Hamming distance d , we will use the notation Nt (m, d)
instead of Nt (m,M), where the former term refers to the
uncertainty value among all possible codes with minimum
Hamming distance d . That is, we will study the value

Nt (m, d) = max
x1,...,xm ,dH (xi ,x j )�d

{∣
∣St

({x1, . . . , xm})∣∣} . (4)

For example, Nt (m, 1) refers to Nt (m, {0, 1}n).
We now give the definitions that establish the connection

with the channel model by Levenshtein [22]. Assume a code-
word x is transmitted over N channels. The channel outputs,
denoted by y1, . . . , yN , are all different from each other and
belong to the ball Bt (x) (Fig. 2). A list decoder DL receives
the N channel outputs and returns a list of at most L words
x̂1, . . . , x̂�, where � � L. We call it an L-decoder DL. The
L-decoder DL is said to be successful if the transmitted word
x belongs to the decoded output list, i.e.,

x ∈ DL(y1, . . . , yN ) = {̂x1, . . . , x̂�}.

Note that here the model of list decoding is slightly different
than the traditional one in the sense that the decoder receives
and outputs a list of words, as opposed to the well-studied
model in which the decoder receives a single word. In fact,
the latter case of L = 1 is the model studied by Leven-
shtein [22]. In this case, if the word x belongs to a code C
with minimum distance d and t � (d −1)/2 then one channel
is sufficient to construct a successful L-decoder for all L � 1.
However, if t > (d − 1)/2 then more than one channel is
necessary.

The next theorem establishes the connection between the
value of Nt (m, d) and the decoding success of an L-decoder.

Theorem 1: Assume the transmitted word x belongs to a
code C of minimum distance d. Then, there exists a successful
L-decoder with N channels if and only if

N � Nt (L + 1, d) + 1.
Proof: Assume to the contrary that the number of channels

is Nt (L + 1, d) and let x1, . . . , xL+1 be L + 1 words such
that the set St ({x1, . . . , xL+1}) contains Nt (L + 1, d) words.
If one of these L + 1 words is the transmitted one and
the received channel outputs are the Nt (L + 1, d) words in
St ({x1, . . . , xL+1}), then any of the L+1 words x1, . . . , xL+1
could be the transmitted one and thus can belong to the
decoder’s output list. Hence, the transmitted word may not
belong to the output list.

On the other hand, if there are Nt (L + 1, d) + 1 channels,
then for any transmitted word x, there are at most L words
in C, all of distance at least d from each other, such that the
Nt (L+1, d)+1 channel outputs are located in the intersection
of their radius-t balls.

For L = 1, the value Nt (2, d) was studied by Leven-
shtein [22]. For the completeness of the results in the paper
and since we show a slightly different presentation of the value
Nt (2, d), we prove this result in the next lemma.

Lemma 2: Let d, t be two positive integers such that t >
� d−1

2 �, then the value of Nt (2, d) satisfies

Nt (2, d) =
t−� d

2 �∑

i=0

(
n − d

i

) t−i∑

k=d−t+i

(
d

k

)

, (5)

and

Nt (2, d) =
min{d,t}∑

k=0

(
d

k

) t−max{k,d−k}∑

i=0

(
n − d

i

)

. (6)

Proof: Assume dH (x, y) = d and the goal is to find the
cardinality of the set

St ({x, y}) = {z ∈ {0, 1}n : dH (z, x), dH (z, y) � t}.
For any word z ∈ St ({x, y}), let S0,0, S0,1, S1,0, S1,1 be the
following four sets:

S0,0 = {i : yi = zi = xi }, S0,1 = {i : yi = xi , zi = xi },
S1,0 = {i : yi = xi , zi = xi}, S1,1 = {i : yi = zi = xi }.

Note that |S0,0|+ |S0,1| = n − d and |S1,0|+ |S1,1| = d . Since
dH (z, x) � t and dH (z, y) � t we get that

|S0,1| + |S1,1| � t, |S0,1| + |S1,0| � t,
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or

|S0,1| + |S1,1| � t, |S0,1| + d − |S1,1| � t .

Denote |S0,1| = i and |S1,1| = k so we get

i + k � t, i + d − k � t,

or

0 � i � t − �d/2�, i + d − t � k � t − i.

Therefore, the number of words in the intersection of these
two spheres is given by

|St ({x, y})| =
t−�d/2�∑

i=0

(
n − d

i

) t−i∑

k=i+d−t

(
d

k

)

,

where
(a

b

) = 0 if b < 0 or b > a. Note that if dH (x, y) > d
then the size of the set St ({x, y}) does not increase and thus

Nt (2, d) =
t−�d/2�∑

i=0

(
n − d

i

) t−i∑

k=i+d−t

(
d

k

)

.

Lastly, if we substitute the order of i, k in the last term, we get
0 � k � min{d, t}, 0 � i � t − max{k, d − k}, and

Nt (2, d) =
min{d,t}∑

k=0

(
d

k

) t−max{k,d−k}∑

i=0

(
n − d

i

)

.

The value of Nt (2, d) was given by Levenshtein according
to equation (5). However, we use the second presentation
of this term in equation (6) in order to prove the following
property. We will later use it in Section VI when we construct
explicit decoders for the reconstruction problem. The proof is
given in Appendix A.

Corollary 3: Let t, d be two positive integers such that d is
even, then

Nt (2, d) = Nt (2, d − 1).

III. LARGEST INTERSECTION OF THREE BALLS

In this section, we focus on the case where there are three
words, i.e. m = 3, and we find the value of Nt (3, d) for all t
and d . We show that in a similar fashion to the way Nt (2, d)
was calculated in [22] and was reviewed in Section II.

Let us first start with the case where d is even and we find
the size of the set St ({x, y, z}) where dH (x, y) = dH (x, z) =
dH (y, z) = d . This is proved in the next Lemma.

Lemma 4: Let x, y, z ∈ {0, 1}n be such that dH (x, y) =
dH (x, z) = dH (y, z) = d and d is even, then

|St ({x, y, z})| =
∑

i1,i2,i3,i4

(
n − 3d

2
i1

)( d
2
i2

)( d
2
i3

)( d
2
i4

)

,

where i1, i2, i3, i4 satisfy the following constraints:

1) 0 � i1 � t − d
2 ,

2) i1 + d
2 − t � i4 � t − d

2 − i1,
3) d − t + i1 � i3 � t − (i1 + i4),

4) max{i1 − i3 − i4 + 3d
2 − t, i1 + i3 + i4 + d

2 − t} � i2 �
t − (i1 + i4 + d

2 − i3).
Proof: We find the cardinality of the set

St ({x, y, z})={u ∈ {0, 1}n : dH (u, x), dH (u, y), dH (u, z) � t}.
Let us define the following eight sets:

Sb1,b2,b3 = {i : yi = xi + b1, zi = xi + b2, ui = xi + b3},
for b1, b2, b3 ∈ {0, 1}. Since dH (x, y) = dH (x, z) =
dH (y, z) = d we get the following equalities

|S1,0,0| + |S1,0,1| + |S1,1,0| + |S1,1,1| = d,

|S0,1,0| + |S0,1,1| + |S1,1,0| + |S1,1,1| = d,

|S0,1,0| + |S0,1,1| + |S1,0,0| + |S1,0,1| = d,

so we derive that

|S0,1,0| + |S0,1,1|=|S1,0,0| + |S1,0,1|=|S1,1,0| + |S1,1,1|= d

2
,

(7)

and

|S0,0,0| + |S0,0,1| = n − 3d

2
. (8)

Define

|S0,0,1| = i1, |S0,1,0| = i2, |S1,0,0| = i3, |S1,1,0| = i4,

and we also have the following inequalities:

dH (u, x) = i1 + d

2
− i2 + d

2
− i3 + d

2
− i4 � t,

dH (u, y) = i1 + d

2
− i2 + i3 + i4 � t,

dH (u, z) = i1 + i2 + d

2
− i3 + i4 � t,

where 0 � i2, i3, i4 � d
2 from (7) and 0 � i1 � n − 3d

2
from (8). Finally, the cardinality of the set St ({x, y, z}) is the
number of solutions to the above inequalities including the
choices of the coordinates we can choose for every selection
of i1, i2, i3, i4. That is,

∑

i1,i2,i3,i4

(
n − 3d

2
i1

)( d
2
i2

)( d
2
i3

)( d
2
i4

)

,

where i1, i2, i3, i4 satisfy the following constraints.
1) 0 � i1 � t − d

2 ,
2) i1 + d

2 − t � i4 � t − d
2 − i1,

3) d − t + i1 � i3 � t − (i1 + i4),
4) max{i1 − i3 − i4 + 3d

2 − t, i1 + i3 + i4 + d
2 − t} � i2 �

t − (i1 + i4 + d
2 − i3).

In case d is odd then the sum of all three distances
dH (x, y), dH (x, z), dH (y, z) has to be even. Therefore, one of
the three distances is d+1. We state the equivalent of Lemma 4
for d odd and its proof appears in Appendix B.

Lemma 5: Let x, y, z ∈ {0, 1}n such that dH (x, y) =
dH (x, z) = d, dH (y, z) = d + 1 and d is odd, then

|St ({x, y, z})| =
∑

i1,i2,i3,i4

(
n − 3d+1

2
i1

)( d+1
2
i2

)( d+1
2
i3

)( d−1
2
i4

)

,
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where i1, i2, i3, i4 satisfy the following constraints:

1) 0 � i1 � t − d+1
2 ,

2) i1 + d−1
2 − t � i4 � t − d+1

2 − i1,
3) d + 1 − t + i1 � i3 � t − (i1 + i4),
4) max{i1 − i3 − i4 + 3d+1

2 − t, i1 + i3 + i4 + d+1
2 − t} �

i2 � t − (i1 + i4 + d+1
2 − i3),

According to Lemma 4 and Lemma 5, we can show the
following theorem.

Theorem 6: Let t, d be such that t > � d−1
2 �, and n large

enough. The value of Nt (3, d) is given by

Nt (3, d) =
∑

i1,i2,i3,i4

(
n − � 3d

2 �
i1

)(� d
2 �
i2

)(� d
2 �
i3

)(� d
2 �
i4

)

,

where i1, i2, i3, i4 satisfy the following constraints:

1) 0 � i1 � t − � d
2 �,

2) i1 + � d
2 � − t � i4 � t − � d

2 � − i1,
3) 2� d

2 � − t + i1 � i3 � t − (i1 + i4),
4) max{i1 − i3 − i4 + � 3d

2 � − t, i1 + i3 + i4 + � d
2 � − t} �

i2 � t − (i1 + i4 + � d
2 � − i3).

Proof: We only need to show that Nt (3, d) cannot be
greater than the values specified in Lemma 4 for d even and
in Lemma 5 for d odd. Let us start with the case where d
is even. If there are two words of distance at least d + 1,
say dH (x, y) � d + 1, then according to the expression we
calculated in Lemma 2, the cardinality of the St ({x, y}) is
at most of order O(nt− d

2 −1), while the value we found in
Lemma 4 has order O(nt− d

2 ).
For d odd, if there are two words at distance d + 2 then

we prove as in the first case by the difference of the orders of
the two sets. Hence, all the distances are between d and d +1
and since the sum of the three distances is even we only need
to consider the case dH (x, y) = dH (x, y) = dH (x, y) = d + 1.
However, it is possible to verify that that the cardinality of the
set S({x, y, z}) in Lemma 4 for d + 1 is not greater than the
cardinality of the set S({x, y, z}) in Lemma 5 for d .

IV. INTERSECTION OF MULTIPLE BALLS

In this section, we analyze the value of Nt (m, d) for d = 1.
A first observation on the value of Nt (m, 1) is stated in the
next lemma.

Lemma 7: For m, t � 1, if Nt (m, 1) � � and Nt (m+1, 1) <
�, then Nt (�, 1) = m.

Proof: Since Nt (m, 1) � �, there exist m different words
x1, . . . , xm such that

|St ({x1, . . . , xm})| = |Bt(x1) ∩ · · · ∩ Bt (xm)| � �

and assume y1, . . . , y� are � words which belong to this
intersection. Therefore, dH (xi , y j ) � t for all 1 � i � m
and 1 � j � �, and thus

{x1, . . . , xm} ⊆ St ({y1, . . . , y�}) = Bt (y1) ∩ · · · ∩ Bt (y�),

and hence Nt (�, 1) � m.
Assume to the contrary that Nt (�, 1) � m + 1 and let

z1, . . . , z� be � words such that

|St ({z1, . . . , z�})| = |Bt(z1) ∩ · · · ∩ Bt(z�)| � m + 1.

As in the first part, we get that Nt (m + 1, 1) � �, which is a
contradiction. Hence, Nt (�, 1) = m.

In general, for a given set of words x1, . . . , xm , the closer
the words are, the larger the size of the set St ({x1, . . . , xm}) is,
however we also note that the size of this set can also remain
the same. In case d = 1, we look for a set of words that are all
close to each other, or equivalently - the maximum distance
between all pairs of words is minimized.

An anticode of diameter D is a set A ⊆ {0, 1}n of words
such that the maximum distance between every two words in
A is at most D. That is, for all x, y ∈ A, dH (x, y) � D. For
D � 1, A(D) is the size of the largest anticode of diameter
D. It was shown in [15] that the value of A(D) is given by

A(D) =
{

b D
2 ,n if D is even,

2b D−1
2 ,n−1 if D is odd.

Our next goal is to show that for all D � 1,

Nt (A(D), 1) = A(2t − D).

That is, the t-associated set of a maximum anticode of
diameter D is a maximum anticode of diameter 2t − D.

Lemma 8: For all 0 � D � 2t � n,

Nt (A(D), 1) � A(2t − D).

Proof: Assume that D is even. We take the A(D) words
in BD/2(0) and consider the set

St
(
BD/2(0)

) =
⋂

x∈BD/2(0)

Bt (x).

Then, Bt−D/2(0) ⊆ St
(
BD/2(0)

)
and hence Nt (A(D), 1) �

A(2t − D) for even D.
In case that D is odd, let i = (D − 1)/2. Let us start with

a maximal anticode of diameter 2i + 1. Let X be the set

X = Bi (0) ∪ Bi (e1) = {aw : a ∈ {0, 1}, w ∈ Bn−1
i (0)},

and let

Y = Bt−i−1(0) ∪ Bt−i−1(e1)={bu :b ∈ {0, 1}, u∈ Bn−1
t−i−1(0)}.

Then, for every x ∈ X, y ∈ Y , dH (x, y) � t . Therefore,
Nt (A(D), 1) � A(2t − D) for odd D as well.

The equivalent upper bound is proved in the next two
lemmas.

Lemma 9: For all 0 � D � 2t and n � (t − D
2 )(2D+1 + 1),

where D is even,

Nt (A(D) + 1, 1) < A(2t − D).

Proof: Let X = {x1, . . . , xA(D)+1} be a set of A(D) + 1
words. Since the largest anticode with diameter D has size
A(D), there exist two words, say x1, x2, where dH (x1, x2) �
D + 1. Hence, the size of St (X) is no greater than the size of
St ({x1, x2}), which, according to (5), is at most

M =
t−( D

2 +1)∑

j=0

(
n − D − 1

j

) t− j∑

k=D+1−t+ j

(
D + 1

k

)

.



2160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

Note that

M <

t−( D
2 +1)∑

j=0

(
n

j

)

2D+1.

For 0 � j � t − ( D
2 + 1) and (t − D

2 )(2D+1 + 1), we have(n
j

)
2D+1 �

( n
j+1

)
and hence,

M <

t−( D
2 +1)∑

j=0

(
n

j + 1

)

<

t− D
2∑

j=0

(
n

j

)

= A(2t − D).

An equivalent property for D odd is proved in the next lemma.
In this proof and the rest of the paper we let e j

i be the vector
where its �-th bit is one if and only if � ∈ {i, . . . , j}.

Lemma 10: For all 0 � D � 2t , where D is odd, and n
large enough,

Nt (A(D) + 1, 1) < A(2t − D).

Proof: Let D = 2i + 1. For every set X with A(D) +
1 words there are at least two words of distance at least
D + 1 = 2i + 2. We first note that |X | = �(ni ) and
|St (X)| = �(nt−i−1) and according to this observation the
following three claims follow from cardinality arguments and
using the previous results on the intersection of two or three
balls.

Claim 1: There are no two words x, y ∈ X , such that
dH (x, y) � 2i + 3.

Claim 2: There are no three words x, y, z ∈ X , such that
dH (x, y) = dH (x, z) = dH (y, z) = 2i + 2.

Claim 3: There are no three words x, y, z in X such that
dH (x, y) = 2i + 2, dH (x, z) = dH (y, z) = 2i + 1.

Let x, y ∈ X be two words such that dH (x, y) = 2i + 2.
Without loss of generality we can assume that x = ei+1

1 , and
y = e2i+2

i+2 . Let I �
0 = {1, . . . , i + 1}, I �

1 = {i + 2, . . . , 2i + 2},
I1 = I �

0 ∪ I �
1 and I2 = {1, . . . , n} \ I1. For a vector x and a

set I = {i1, . . . , i�}, such that i1 < · · · < i�, the vector xI is
defined by xI = (xi1 , . . . , xi� ).

We start with some simple observations on the weight of
words from X on the set I2. There is no word z ∈ X such that
wH (zI2 ) � i +2. Otherwise, max{dH (z, x), dH (z, y)} � 2i +3
in contradiction to Claim 1. Similarly, there is no word z ∈ X
such that wH (zI2 ) = i + 1. Otherwise, dH (z, x) = dH (z, y) =
2i+2 in contradiction to Claim 2 or max{dH (z, x), dH (z, y)} �
2i + 3 in contradiction to Claim 1.

If there is no word z ∈ X such that wH (zI2) = i , then there
are at most 22i+2 · bi−1,n−2(i+1) words in X , which is in the
order of �(ni−1), while the size of X has order �(ni ). Thus,
there are words in z ∈ X such that wH (zI2 ) = i .

Let z ∈ X be such that wH (zI2 ) = i . Then,

dH (z, x) + dH (z, y) = 4i + 2.

From Claim 1 we have that dH (z, x), dH (z, y) � 2i + 2, and
thus there are only three options for the values of dH (z, x)
and dH (z, y). In case dH (z, x) = dH (z, y) = 2i + 1, we get a
contradiction to Claim 3. Hence, every such a word z satisfies
dH (z, x) = 2i and dH (z, y) = 2i + 2 or dH (z, x) = 2i + 2
and dH (z, y) = 2i . Let X1, X2 be the set of words z ∈ X such

that wH (zI2) = i and they satisfy the first, second condition,
respectively, and assume without loss of generality that |X1| �
|X2|. From cardinality arguments we also conclude that |X1| =
�(ni ).

For every word z ∈ X1, from the condition dH (z, x) = 2i
and dH (z, y) = 2i + 2, we have that wH (zI �

0
) = wH (zI �

1
) + 1.

In particular, the weight of z on I1 is odd. Next, we partition
the set X1 into disjoint sets according to their projection on
the first 2i + 2 positions of the set I1. That is, for all vectors
a ∈ {0, 1}2i+2 of odd weight we define

Xa = {z ∈ X1 : zI1 = a}.
We claim that there exists only one value of a for which
|Xa| = �(ni ). If there are no such sets then we get a
contradiction to |X1| = �(ni ). Now assume that there exist
a1, a2 for which Xa1 and Xa2 have order �(ni ). Then,
we can find two words z1 ∈ Xa1 and z2 ∈ Xa2 such that
dH ((z1)I2 , (z2)I2 ) = 2i and since a1 �= a2 and they have
odd weight we also get dH ((z1)I1 , (z2)I1 ) � 2. Together we
conclude that dH (z1, z2) � 2i + 2 and since dH (y, z1) =
dH (y, z2) = 2i + 2 we get a contradiction to Claim 2.

Now, we can conclude that the number of vectors in the set
X is at most

2|X1| + �(ni−1) � 2bi,n−2i−2 + �(ni−1) < |X |,
for n large enough, in contradiction.

We summarize this result in the following corollary.
Corollary 11: For all 0 � D � 2t and n large enough,

Nt (A(D), 1) = A(2t − D).

Proof: From Lemma 8 we get that Nt (A(D), 1) �
A(2t − D) and from Lemma 9 and Lemma 10 Nt (A(D) +
1, 1) < A(2t − D). The conditions of Lemma 7 hold and thus
Nt (A(2t − D), 1) = A(D), or Nt (A(D), 1) = A(2t − D).

We note that the result shown by Levenshtein for d = 1 is
a special case of Corollary 11 for D = 1.

V. INTERSECTIONS OF MULTIPLE BALLS WITH

DISTANCE BETWEEN THEIR CENTERS

Our goal in this section is to use the results found in
Section IV in order to derive bounds on Nt (m, d) for arbi-
trary d . That is, here we require to have a minimum distance
d between the centers of the balls.

We first start with the case where the number of balls m is
constant. In this case, the order of the largest intersection size
remains the same as the one for two balls. This property is
proved in the next theorem.

Theorem 12: For any fixed m, t, d and n large enough, such
that m � 3 and t � � d

2 �, Nt (m, d) = �(nt−� d
2 �).

Proof: Since Nt (m, d) � Nt (2, d) and Nt (2, d) =
�(nt−� d

2 �), then Nt (m, d) is at most O(nt−� d
2 �).

To show the other direction of this equality, we show an
example of a set X such that the cardinality of St (X) is
O(nt−� d

2 �). For 1 � i � m, let i0 = (i − 1)� d
2 � + 1 and

i1 = i� d
2 �, and xi = ei1

i0
. Then, for all i �= j , dH (xi , x j ) =

2� d
2 � � 2d . For any vector y of weight at most t − � d

2 �, such
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that its first m� d
2 � bits are zero, we have that y ∈ St (X). Since

there are
∑t−� d

2 �
�=0

(n−m� d
2 �

�

)
such vectors we get that for n large

enough, Nt (m, d) is at least O(nt−� d
2 �). Together we conclude

that Nt (m, d) = �(nt−� d
2 �).

Next we move to the case where m is not a constant. We will
use the result we derived in the previous section on Nt (m, 1)
in order to show a lower bound in this case on Nt (m, d) for
some values of m. First, we state a useful Theorem from [1].

Theorem 13 [1]: Let C ⊆ {0, 1}n be a code with distances
from D = {d1, . . . , ds} ⊆ {1, . . . , n}. Further let LD(B) be
a maximal code in B ⊆ {0, 1}n with distances from D. Then,
the following inequality holds

|C|
2n

� |LD(B)|
|B| .

For all 1 � d � n, we denote by ρd,n the maximal ratio of
the size of a code C with minimum distance d and length n,
that is,

ρd,n = max
C,dmin(C)�d

{ |C|
2n

}

.

Theorem 13 will serve us to prove the next lemma.
Lemma 14: Let B ⊆ {0, 1}n be a set and let L(B) be a

maximal code in B with minimum distance d, then

ρd,n · |B| � |L(B)|.
Proof: We take the code C in Theorem 13 to be a code

with minimum distance d and maximal ratio ρd,n , which has
at least the same set of distance of B . Then, we get

ρd,n = |C|
2n

� |L(B)|
|B| .

Now, we are ready to derive a connection between the values
of Nt (m, d) and Nt (m, 1).

Theorem 15: For all m, t, d and n large enough,

Nt (�ρd,nm�, d) � Nt (m, 1).

Proof: Assume that X is a set of m words such that
St (X) has size Nt (m, 1). Using Lemma 14, we let L(X) be
a code in X of minimum distance d and size �ρd,nm�. Then,
St (X) ⊆ St (L(X)) and thus Nt (�ρd,nm�, d) � Nt (m, 1).

The result of Theorem 15 claims that in order to study the
value of Nt (m, d) one needs to consider the case of d = 1
and then derive a corresponding lower bound on Nt (m, d).

VI. SEQUENCES RECONSTRUCTION DECODERS

The main goal in [22] was to find the necessary and
sufficient number of channels in order to have a success-
ful decoder for a code with minimum distance d , while t ,
the maximum number of errors in every channel, is greater
than �(d − 1)/2�. This number was studied for different
error models in [16]–[18] and [21]–[25], however the only
decoder constructions, which we are aware of, were given
in [3] and [14] for channels with insertion and deletions, and
in [8] for deletions only, all for the probabilistic model. In this
section, we show how to construct decoders for substitution

errors, where the decoder has to output the transmitted word
(and not a list of words).

The case d = 1 was solved in [22] where the majority
algorithm on each bit successfully decodes the transmitted
word. The majority algorithm receives the estimations on each
bit from every channel and simply decodes the bit according to
a majority vote among all the channel estimations. According
to Corollary 3, this algorithm works for d = 2 as well since
the number of channels has to be the same. However, if d is
greater than two, then the majority algorithm on each bit does
not necessarily work. Furthermore, even decoding the output
of the majority decoder using a decoder of the code which
can correct at most �(d − 1)/2� errors will not work in the
worst case. The next example demonstrates this undesirable
property.

Example 1: Assume that the transmitted word belongs to
the Hamming code of length 7, there are at most two errors
in every channel, and the zero word is the transmitted word c.
According to (5), there are N2(2, 3) + 1 = 7 channels,
and assume that the channel outputs are the following seven
words:

y1 = (1, 0, 1, 0, 0, 0, 0)

y2 = (1, 0, 0, 1, 0, 0, 0)

y3 = (1, 0, 0, 0, 1, 0, 0)

y4 = (1, 1, 0, 0, 0, 0, 0)

y5 = (0, 1, 1, 0, 0, 0, 0)

y6 = (0, 1, 0, 1, 0, 0, 0)

y7 = (0, 1, 0, 0, 1, 0, 0)

Then, the output of the majority decoder on these sever
words is the word (1, 1, 0, 0, 0, 0, 0). Thus, even this word
suffers two errors with respect to the transmitted code-
word and therefore the Hamming decoder would fail in its
decoding.

In general, according to Corollary 3, if d is even then the
number of channels for a code with minimum distance d or
d − 1 is the same. Hence, we only need to solve here the case
of odd minimum distance.

For the rest of this section, we assume that the transmitted
word c belongs to a code C with odd minimum distance d ,
there are at most t errors in every channel, where t > d−1

2 , and
the number of channels is N = Nt (2, d) + 1. We also assume
that n is relatively large enough with respect to d and t . The N
channel outputs are denoted by y1, . . . , yN and are assumed to
be different. Furthermore, the code C has a decoder DC , which
can successfully correct at most d−1

2 errors. We assume that
this decoder is complete in the sense that for every input,
it outputs a decoded word, while we only know that if the
number of errors is at most d−1

2 , then the decoded word is the
transmitted one.

A first observation in constructing a decoder is that we
can always detect whether the output word is the transmitted
one. This can simply be done by checking if the distance
between the output word and every channel output is at most t .
We prove that in the next lemma.
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Lemma 16: If c is the transmitted word, then for any ĉ ∈ C,
ĉ = c if and only if

max
1�i�N

{dH (̂c, yi )} � t .

Proof: If ĉ = c then every channel suffers at most t
errors and thus max1�i�N {dH (̂c, yi )} � t . In case ĉ �= c, let
us assume to the contrary that max1�i�N {dH (̂c, yi )} � t . Then
the set St ({̂c, c}) contains at least N = Nt (2, d) + 1 words in
contradiction to the definition of Nt (2, d).

A naive algorithm can choose any of the channel outputs
and add all error vectors of weight at most t − d−1

2 . For at
least one of these error vectors we will get a word with at
most d−1

2 errors which can be decoded by the decoder of
the code C and can be verified to be the correct transmitted
word according to Lemma 16. The main drawback of this
algorithm is its complexity. The number of vectors of weight
at most t − d−1

2 is of order �
(
nt−(d−1)/2

)
. The number of

channels N is of order �
(
nt−(d+1)/2

)
and thus the verifying

step in Lemma 16 has complexity �
(
nt−(d+1)/2+1

)
. Hence, all

together the complexity of this decoder is �
(
n2t−d+2 · D(n)

)
,

where D(n) is the decoding complexity of the decoder DC .
We will show how to modify and improve the complexity

of this algorithm. Assume for example that t = d−1
2 +1. Then,

there are two channel outputs, say y1 and y2, that are different
in at least one bit location. If we flip this bit in both y1 and
y2, then in exactly one of them the number of errors reduces
by one and thus is at most d−1

2 , which can be decoded by DC .
We show how to generalize this idea for arbitrary t . We let
ρ = t − d−1

2 , which corresponds to the number of additional
errors on top of the error-correction capability. First, we prove
the following Lemma.

Lemma 17: There exist two channel outputs yi , y j such that
dH (yi , y j ) � 2ρ − 1.

Proof: Assume to the contrary that there are no such
words. Then, the words y1, y2, . . . , yN form an anticode of
diameter 2ρ−2. According to [15], the maximum size of such
an anticode is bρ−1,n = ∑ρ−1

i=0

(n
i

)
, while according to (5) the

value of N satisfies

N > Nt (2, d) =
t− d+1

2∑

i=0

(
n − d

i

) t−i∑

k=d−t+i

(
d

k

)

=
ρ−1∑

i=0

(
n − d

i

) t−i∑

k=d−t+i

(
d

k

)

>

ρ−1∑

i=0

(
n

i

)

= bρ−1,n.

We are now ready to present the algorithm.
Algorithm 18: The input to the decoder is the set of all N

channel outputs y1, . . . , yN and it returns an estimation ĉ on c.

Step 1. Find two words yi , y j such dH (yi , y j ) � 2ρ − 1, and
let I = {i1, i2, . . . , i2ρ−1} be a set of 2ρ − 1 different
indices that the two vectors are different from each
other.

Step 2. For all vectors e of weight ρ on the 2ρ − 1 indices of
the set I ,

a) D(yi + e) = ĉ1, D(y j + e) = ĉ2.

b) If max1�i�N {dH (̂c1, yi )} � t , ĉ = ĉ1.
c) If max1�i�N {dH (̂c2, yi )} � t , ĉ = ĉ2.

Theorem 19: The output of Algorithm 18 satisfies ĉ = c.
Proof: The success of Step 1 is guaranteed according to

Lemma 17. For every index i j , 1 � j � 2ρ − 1, exactly one
of the channel outputs y1 or y2 has an error. Therefore, either
y1 or y2 has at least ρ errors on these indices. Without loss
of generality assume it is y1 and let I ⊆ {i1, . . . , i2ρ−1} be
a subset of its error locations, where |I | = ρ. In Step 2 we
exhaustively search over all error vectors e of weight ρ on
these 2ρ − 1 indices. For every error vector e let Ie = {i :
ei = 1}. Therefore, there exists an error vector e1 such that its
the set of indices with value one is covered by the set I , i.e.
Ie1 ⊆ I . Hence, dH (c, y1 + e1) � d−1

2 , so the decoder in Step
2.b succeeds. Hence the algorithm succeeds and ĉ = c.

A naive implementation of Step 1 results with complexity
�

(
N2n

) = �
(
n2t−d

)
. The number of vectors e in Step 2 is

constant since ρ is constant as well, and thus the complexity
of this step is � (Nn), since we assume that the complexity
of the decoder DC is less than the order of channel outputs N .
Together, we deduce that the complexity order of Algorithm 18
is �

(
n2t−d

)
, which improves upon the decoding complexity

of the naive algorithm.
We see that the complexity of Algorithm 18 is significantly

better than the naive approach. However, the larger the value
of ρ is, the larger the algorithm’s complexity is. Let us finish
this section by showing an example of how to improve the
complexity of Algorithm 18 for d = 3 and arbitrary t � 3.

According to (6), the number of channels in this case is

N = Nt (2, 3) + 1 = 2
t−3∑

i=0

(
n − 3

i

)

+ 6
t−2∑

i=0

(
n − 3

i

)

+ 1.

Given the N channel outputs y1, . . . , yN , a word y ∈ {0, 1, ?}n

will be generated as follows. For all 1 � i � n, let ni,0, ni,1
be the number of times the i -th bit is zero, one, respectively.
That is,

ni,0 = {� : 1 � � � N, y�,i = 0},
ni,1 = {� : 1 � � � N, y�,i = 1}.

Note that ni,0 and ni,1 can also be seen as the type of the vector
(y1,i , y2,i , . . . , yN,i ). By saying that we decode the symbol yi

according to the majority algorithm with threshold τ , we mean
that if |ni,0 − ni,1| � τ then yi =?. Otherwise, if ni,0 > ni,1
then yi = 0 and if ni,1 > ni,0 then yi = 1. Assume that yi

is decoded according to the majority algorithm with threshold
τ , and the i -th bit is in error ei times. Then, yi =? if N−τ

2 �
ei � N+τ

2 , and yi is in error if ei > τ+N
2 . Let Y = ∑t−2

i=0

(n−2
i

)

and we set the two threshold values τ1, τ2 to be τ1 = Y, τ2 =
3Y . We are now ready to present the decoder algorithm for
d = 3. We assume that DH is a decoder algorithm for a
Hamming code, which the transmitted codeword c belongs to.
This decoder can correct a single error or two erasures.

Algorithm 20: The input to the decoder is the set of all N
words y1, . . . , yN and it returns an estimation ĉ on c.
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Step 1. For 1 � i � n, let

ni,0 = {� : 1 � � � N, y�,i = 0},
ni,1 = {� : 1 � � � N, y�,i = 1}.

Step 2. Set the word y ∈ {0, 1, ?}n as follows
a) If there exists j such that |n j,0 − n j,1| � τ1, then

decode all symbols yi according to the majority
algorithm with threshold τ2.

b) Otherwise, for all i |ni,0 − ni,1| > τ1, then decode
all symbols yi according to the majority algorithm
with threshold τ1.

Step 3. If y has no ? then decode the word y by the Hamming
decoder, that is ĉ = DH (y). Otherwise, for any
possible codeword which matches on the ?’s in y,
check if it satisfies the condition in Lemma 16 and
output the correct one.

The complexity of Algorithm 20 is O(Nn) = O(nt−1), and
the next theorem proves its correctness.

Theorem 21: The word y in Algorithm 20 has either one
error or at most 8t erasures and thus the output of the
algorithm ĉ is c.

Proof: For all 1 � i � n, let 0 � ei � N be the number
of times the i -th bit is in error. Assume first that there exists
j such that |n j,0 − n j,1| � τ1, so all symbols yi are decoded
according to the majority algorithm with threshold τ2. We first
notice that y j =?. First we show that there does not exist
a different index i such that the i -th symbol yi is in error.
Assume in the contrary that yi is erroneous, then for the j -
th and i -th symbols we get that e j � N−τ1

2 and ei > N+τ2
2 .

Since all channel outputs are different, the number of channel
outputs where both the j -th and the i -th bit are in error is
at most Y = ∑t−2

i=0

(n−2
i

)
. Now we get that the number of

channel outputs has to be greater than

N − τ1

2
+ N + τ2

2
− Y = N + τ2 − τ1

2
− Y = N,

which is a contradiction. Therefore, the vector y cannot have
an error.

Now we show that in this case the number of erasures is
at most 8t . The total number of errors in the N channels is
no greater than t N . If the i -th symbol of y is decoded with a
?, then there are at least N−τ2

2 errors of this symbol. Hence,
the total number of erasures in y is at most

t N
N−τ2

2

= 2t
N

N − τ2
� 8t,

since for n large enough τ2 < 3N/4.
Next, we assume that for all i , |ni,0 − ni,1| > τ1, so every

symbol yi is decoded according to the majority algorithm with
threshold τ1 and note that there are no erasures in this case.
We show that there exists at most one error. Assume to the
contrary that there are two errors, then the number of channels
has to be greater than

N + τ1

2
+ N + τ1

2
− Y = N,

which is again a contradiction. This proves the correctness of
the last step of the algorithm and that the decoded word ĉ
equals c.

While Algorithm 20 provides an efficient decoder for codes
with minimum Hamming distance three, it is not clear how
to extend it in order to support larger distances. We believe
that similar approach of majority decoders with thresholds can
work, but this part is left for future work.

VII. CONCLUSION

This paper proposed a model of an associative memory:
Two words are associated if their Hamming distance is no
greater than some prescribed value t . Our main goal was to
study the maximum size of the associative memory output as
a function of the number of input words and their minimum
distance. We observed that this problem is a generalization
of the sequences reconstruction problem that was proposed by
Levenshtein. Finally, we presented decoding algorithms for the
sequences reconstruction problem.

APPENDIX A
PROOF OF COROLLARY 3

In this section we give the proof of Corollary 3
Proof: According to (6) we have

Nt (2, d) =
min{d,t}∑

k=0

(
d

k

) t−max{k,d−k}∑

i=0

(
n − d

i

)

.

We use the identity
(a−1

b−1

) + (a−1
b

) = (a
b

)
to get

(
d

k

)

=
(

d − 1

k − 1

)

+
(

d − 1

k

)

,

and thus,

Nt (2, d)

=
min{d,t}∑

k=0

((
d − 1

k − 1

)

+
(

d − 1

k

)) t−max{k,d−k}∑

i=0

(
n − d

i

)

=
min{d,t}−1∑

k=0

(
d − 1

k

) t−max{k+1,d−1−k}∑

i=0

(
n − d

i

)

+
min{d,t}−1∑

k=0

(
d − 1

k

) t−max{k,d−k}∑

i=0

(
n − d

i

)

+
(

d − 1

min{d, t}
)

=
min{d,t}−1∑

k=0

(
d − 1

k

)
⎛

⎝
t−max{k+1,d−1−k}∑

i=0

(
n − d

i

)

+
t−max{k,d−k}∑

i=0

(
n − d

i

)
⎞

⎠ +
(

d − 1

min{d, t}
)

=
d
2 −1∑

k=0

(
d − 1

k

)
⎛

⎝
t−(d−1−k)∑

i=0

(
n − d

i

)

+
t−(d−k)∑

i=0

(
n − d

i

)
⎞

⎠

+
min{d,t}−1∑

k= d
2

(
d − 1

k

)
⎛

⎝
t−(k+1)∑

i=0

(
n − d

i

)

+
t−k∑

i=0

(
n − d

i

)
⎞

⎠

+
(

d − 1

min{d, t}
)
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Next, we use the following identity:

t∑

i=0

(
n

i

)

+
t+1∑

i=0

(
n

i

)

=
t+1∑

i=0

(
n

i − 1

)

+
t+1∑

i=0

(
n

i

)

=
t+1∑

i=0

(
n + 1

i

)

,

to get

Nt (2, d)

=
d
2 −1∑

k=0

(
d − 1

k

) t−(d−1−k)∑

i=0

(
n − (d − 1)

i

)

+
min{d,t}−1∑

k= d
2

(
d − 1

k

) t−k∑

i=0

(
n − (d − 1)

i

)

+
(

d − 1

min{d, t}
)

=
min{d,t}−1∑

k=0

(
d − 1

k

) t−max{k,d−1−k}∑

i=0

(
n − (d − 1)

i

)

+
(

d − 1

min{d, t}
)

.

If t � d then min{d, t} − 1 = min{d − 1, t} and
( d−1

min{d,t}
) = 0

so we get

Nd (2, d) =
min{d−1,t}∑

k=0

(
d − 1

k

) t−max{k,d−1−k}∑

i=0

(
n − (d − 1)

i

)

= Nd (2, d − 1).

Otherwise, t � d − 1, so min{d, t} = min{d − 1, t} = t and
we get

Nt (2, d) =
min{d−1,t}−1∑

k=0

(
d − 1

k

) t−max{k,d−1−k}∑

i=0

(
n − (d−1)

i

)

+
(

d − 1

min{d − 1, t}
)

=
min{d−1,t}∑

k=0

(
d − 1

k

) t−max{k,d−1−k}∑

i=0

(
n − (d − 1)

i

)

= Nt (2, d − 1).

APPENDIX B
PROOF OF LEMMA 5

In this section we give the proof of Lemma 5.
Proof: As in the proof of Lemma 4, we find the cardinality

of the set

St ({x, y, z})={u ∈ {0, 1}n : dH (u, x), dH (u, y), dH (u, z) � t}.
We define the following eight sets:

Sb1,b2,b3 = {i : yi = xi + b1, zi = xi + b2, ui = xi + b3},
for b1, b2, b3 ∈ {0, 1}.

Since dH (x, y) = dH (x, z) = d and dH (y, z) = d + 1 we
get the following equalities

|S1,0,0| + |S1,0,1| + |S1,1,0| + |S1,1,1| = d,

|S0,1,0| + |S0,1,1| + |S1,1,0| + |S1,1,1| = d,

|S0,1,0| + |S0,1,1| + |S1,0,0| + |S1,0,1| = d + 1,

so we derive that

|S0,1,0| + |S0,1,1| = |S1,0,0| + |S1,0,1| = d + 1

2
,

|S1,1,0| + |S1,1,1| = d − 1

2
,

|S0,0,0| + |S0,0,1| = n − 3d + 1

2
.

Let us define

|S0,0,1| = i1, |S0,1,0| = i2, |S1,0,0| = i3, |S1,1,0| = i4.

We also have the following inequalities:

dH (u, x) = i1 + d + 1

2
− i2 + d + 1

2
− i3 + d − 1

2
− i4 � t,

dH (u, y) = i1 + d + 1

2
− i2 + i3 + i4 � t,

dH (u, z) = i1 + i2 + d + 1

2
− i3 + i4 � t,

where 0 � i1 � n − 3d+1
2 , 0 � i2, i3 � d+1

2 , 0 � i4 �
d−1

2 . Finally, the size of the intersection is the number of
solutions to the above inequalities including the choices of
the coordinates we can choose for every choice of i1, i2, i3, i4.
That is,

∑

i1,i2,i3,i4

(
n − 3d+1

2
i1

)( d+1
2
i2

)( d+1
2
i3

)( d−1
2
i4

)

,

where i1, i2, i3, i4 satisfy the following constraints.

1) 0 � i1 � t − d+1
2 ,

2) i1 + d−1
2 − t � i4 � t − d+1

2 − i1,
3) d + 1 − t + i1 � i3 � t − (i1 + i4),
4) max{i1 − i3 − i4 + 3d+1

2 − t, i1 + i3 + i4 + d+1
2 − t} �

i2 � t − (i1 + i4 + d+1
2 − i3).
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