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Abstract— In this paper, we study two families of codes with
availability, namely, private information retrieval (PIR) codes and
batch codes. While the former requires that every information
symbol has k mutually disjoint recovering sets, the latter imposes
this property for each multiset request of k information symbols.
The main problem under this paradigm is to minimize the
number of redundancy symbols. We denote this value by rP (n, k)
and rB(n, k), for PIR codes and batch codes, respectively, where
n is the number of information symbols. Previous results showed
that for any constant k, rP (n, k) = �(

√
n) and rB(n, k) =

O(
√

n log(n)). In this paper, we study the asymptotic behavior
of these codes for non-constant k and specifically for k = �(n�).
We also study the largest value of k such that the rate of the codes
approaches 1 and show that for all � < 1, rP (n, n� ) = o(n) and
rB(n, n�) = o(n). Furthermore, several more results are proved
for the case of fixed k.

Index Terms— PIR codes, batch codes, availability codes, codes
with locality.

I. INTRODUCTION

D ISTRIBUTED and cloud storage systems today are
required to tolerate the failure or unavailability of some

of the nodes in the system. The simplest and most commonly
used method to accomplish this task is by replication, whereby
every node is replicated several times, usually three. This solu-
tion has clear advantages due to its simplicity, fast recovery,
and efficient availability. However, it entails a large storage
overhead which becomes costly in large storage systems.
Availability in particular plays an important role in supporting
high throughput of the system. Consider the case in which a
large number of files are stored in a distributed storage system
and user requests of the files are received. If each file has one
copy or can be recovered only once, and several users request
this file, then these requests will have to be served sequentially,
which will significantly slow down the system’s response
time.

In this paper we study two families of codes with avail-
ability for distributed storage. The first family of codes, called
private information retrieval (PIR) codes, requires that every
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information symbol has some k mutually disjoint recover-
ing sets. These codes were studied recently in [11] due to
their applicability for private information retrieval in a coded
storage system [8]. They are also very similar to one-step
majority-logic decodable codes that were studied a while
ago by Massey [19] and later by Lin and Costello [17] and
were prompted by applications of error-correction with low-
complexity. Since each symbol has several disjoint recovering
sets, it can be decoded with low complexity according to the
majority values given by all of its recovering sets. The only
difference between these two families of codes is that the latter
requires that every code symbol, i.e., both the information and
redundancy, has a large number of mutually disjoint recovering
sets.

The second family of codes, which is a generalization of the
first one, was first proposed in the last decade by Ishai et al.
under the framework of batch codes [13]. These codes were
originally motivated by different applications such as load-
balancing in storage and cryptographic protocols. Under this
setting, it is required that every multiset request of k symbols
can be recovered by k mutually disjoint recovering sets. Note
that every batch code is in particular a PIR code with the same
parameters. Here we restrict our definition of batch codes to
the so-called primitive batch codes, which is a family of coded
batch codes that was mostly studied in the literature. A special
case of these codes, called switch codes, was recently studied
for network applications [6], [9], [29]–[31].

Formally, we denote a k-PIR code by [N, n, k]P to be
a coding scheme which encodes n information bits to N
bits such that each information bit has k mutually disjoint
recovering sets. Similarly, a k-batch code will be denoted by
[N, n, k]B and the requirement of mutually disjoint recovering
sets is imposed for every multiset request of size k. The
main figure of merit when studying PIR and batch codes is the
value of N , given n and k. Thus, we denote by P(n, k), B(n, k)
the minimum value of N for which an [N, n, k]P , [N, n, k]B
code exists, respectively. Since it is known that for all fixed k,
limn→∞ B(n, k)/n = limn→∞ P(n, k)/n = 1, [13], we eval-
uate these codes by their redundancy and define rB(n, k) �
B(n, k)− n, rP (n, k) � P(n, k) − n.

It is easy to see that for k = 2, rB(n, 2) = rP (n, 2) = 1,
and for k ∈ {3, 4}, rB(n, k) = rP (n, k) = �(

√
n) [11], [21],

[27], [33]. Furthermore, for any other fixed k, rP (n, k) =
�(
√

n) [11], [21], [33] and rB(n, k) = O(
√

n log(n)) [27].
One of the problems we study in this paper studies the largest
value of k (as a function of n) for which one can still have
rP (n, k) = o(n) and rB(n, k) = o(n), so the rate of the
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TABLE I

BINARY PIR CODES SUMMARY

TABLE II

BINARY BATCH CODES SUMMARY

codes approaches one. Furthermore, in order to have a better
understanding of the asymptotic behavior of the redundancy,
we study the values rP (n, k) and rB(n, k) when k = �(n�).

The results achieved in this paper are based on two
constructions. The first one uses multiplicity codes which
generalize Reed-Muller codes and were first presented by
Kopparty et al. [15]. These codes were also used for the con-
struction of locally decodable codes. The second construction
we used is based on the subcube construction from [13]. This
basic construction can be used to construct both PIR and batch
codes. While the idea in the works in [11] and [13] was to use
multidimensional cubes in order to achieve large values of k,
here we take a different approach and position the information
bits in a two dimensional array and then form multiple parity
sets by taking different diagonals in the array. Based on these
two constructions and another connection we draw on the
existence of batch codes based upon PIR codes, we manage to
show that for all k = �(n�), where � < 1, rP (n, k) = o(n) and
rB(n, k) = o(n). Since rP (n, k), rB(n, k) � k, this result is
indeed optimal. The main results of this work are summarized
in Table I and Table II for PIR and batch codes, respectively.

The rest of the paper is organized as follows. In Section II,
we formally define the codes studied in this paper and review
previous results. In Section III, we review multiplicity codes.
Then, in Section IV we show how to use multiplicity codes
to construct PIR codes, and in Section V we carry the same
task for batch codes. In Section VI, we show how PIR codes
can be used to prove the existence of batch codes. Then,
in Sections VII and VIII, we present our array construction and
its results for PIR and batch codes, respectively. In Section IX,
we present another extension of the array construction that is
invoked to construct more batch codes. Section X studies the

case of k = 5 for batch codes and a special case of batch codes
in which every bit can be requested at most twice. Finally,
Section XI concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the codes we study in this
paper. Let Fq denote the field of size q , where q is a prime
power. A linear code of length N and dimension n over Fq

will be denoted by [N, n]q . For binary codes we will remove
the notation of the field. The set [n] denotes the set of integers
{1, 2, . . . , n}.

In this work we focus on two families of codes, namely
private information retrieval (PIR) codes that were defined
recently in [11] and batch codes that were first studied by
Ishai et al. [13]. In these two families of codes, n information
symbols are encoded to N symbols. While for PIR codes
it is required that every information symbol has k mutually
disjoint recovering sets, batch codes impose this property for
every multiset request of k symbols. Formally, these codes are
defined as follows.

Definition 1: Let C be an [N, n]q linear code over the
field Fq .

1) The code C will be called a k-PIR code, and will be
denoted by [N, n, k]Pq , if for every information sym-
bol xi , i ∈ [n], there exist k mutually disjoint sets
Ri,1, . . . , Ri,k ⊆ [N] such that for all j ∈ [k], xi is
a function of the symbols in Ri, j .

2) The code C will be called a k-batch code, and will be
denoted by [N, n, k]Bq , if for every multiset request of
symbols {i1, . . . , ik}, there exist k mutually disjoint sets
Ri1 , . . . , Rik ⊆ [N] such that for all j ∈ [k], xi j is a
function of the symbols in Ri j .

PIR codes are similar in their definition to locally repairable
codes (LRC) with availability [20], [22], [32], however PIR
codes do not impose any constraint on the size of the recover-
ing sets as done for LRCs. In fact, these codes have more
in common with one-step majority-logic decodable codes
that were studied a while ago by Massey [19] and later
by Lin and Costello [17] for applications of fast decoding.
The main difference is that one-step majority-logic decodable
codes require that each symbol (both information and redun-
dancy) will have multiple recovering sets.

We slightly modified here the definition of batch codes.
In their conventional definition, n symbols are encoded into
some m tuples of strings, called buckets, such that each batch
(i.e., request) of k information symbols can be decoded by
reading at most some t symbols from each bucket. In case
each bucket can store a single symbol, these codes are called
primitive batch codes, which is the setup we study here and
for simplicity call them batch codes. In this work we study
the binary and non-binary cases of these codes.

The main problem in studying PIR and batch codes is to
minimize the length N given the values of n and k. We denote
by P(n, k)q , B(n, k)q the value of the smallest N such that
there exists an [N, n, k]Pq , [N, n, k]Bq code, respectively. Since
every batch code is also a PIR code with the same parameters
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we get that B(n, k)q � P(n, k)q . For the binary case, we will
remove q from these and subsequent notations.

Example 2: In case k = 1, the code [n, n]q which sim-
ply stores all the information symbols is an [n, n, 1]Pq PIR
code and also an [n, n, 1]Bq batch code. Hence P(n, 1)q =
B(n, 1)q = n. Similarly, the simple parity check code [n +
1, n]q is an [n+ 1, n, 2]Pq PIR code and also an [n+ 1, n, 2]Bq
batch code, since every symbol has two recovering sets; the
symbol itself and all the remaining symbols. Therefore we get
that P(n, 2)q = B(n, 2)q = n + 1.

In [13], it was shown using the subcube construction that for
any fixed k there exists an asymptotically optimal construction
of [N, n, k]Bq batch code, and hence

lim
n→∞ B(n, k)q/n = lim

n→∞ P(n, k)q/n = 1.

Therefore, it is important to study how fast the rate of
these codes converges to one, and so the redundancy of PIR
and batch codes is studied. We define rB(n, k)q to be the
value rB(n, k)q � B(n, k)q − n and similarly, rP (n, k)q �
P(n, k)q − n. Hence, rB(n, 1)q = rP(n, 1)q = 0, rB(n, 2)q =
rP (n, 2)q = 1.

In [11], it was shown that for any fixed k � 3 it is possible
to construct [N, n, k] PIR codes where N = n + O(

√
n),

so rP (n, k) = O(
√

n) for any fixed k � 3, and in [21] and
[33] it was proved that rP(n, 3) = �(

√
n). Since it is known

that rB(n, k) � rP (n, k) � rP (n, 3) for any fixed k � 3, these
results assure also that for any fixed k � 3, rP (n, k) = �(

√
n)

and rB(n, k) = �(
√

n). In [27], it was proved that for k =
3, 4, B(n, k) = P(n, k) and hence rB(n, k) = �(

√
n), and

for any fixed k � 5, rB(n, k) = O(
√

n log(n)). In this paper,
we will mostly study the values of rP (n, k) and rB(n, k), when
k is a function of n, for example k = �(n�), for � > 0. One
of the problems we will also investigate is finding the largest
� for which rP

(
n, k = �(n�)

) = o(n), and similarly for batch
codes.

There are several constructions of PIR and batch codes,
studied first in [13] and recently in [16], [18], [23],
and [28]–[30]. We summarize here the relevant known results
for our problem:

1) rP (n, k) = �(
√

n) for fixed k, [11], [21], [33].
2) rP (n,

√
n) = O(n

log 3
2 ), [17].

3) rP (n, n�) = O(n0.5+�), [17].
4) rP (n, n0.25) = O(n0.714), [12].
5) rB(n, k) = O(

√
n log n) for fixed k, [27].

6) rB(n, n1/3) � n, [23].
7) rB(n, n�) � n7/8 for 7/32 � � � 1/4, [23].
8) rB(n, n�) � n4� for 1/5 < � � 7/32, [23].
9) B(n, n) � 2n1.5, [6].

Our goal in this work is to close on this gap and study new
constructions of PIR and batch codes. Lastly, we note that we
only focus on the case where n is large. The case of fixed
n or small n comparing to k was studied in [11], [16], and
[28] for PIR codes.

Yet another class of related codes is called combinatorial
batch codes. Here, it is required to have the same properties
of batch codes, however the symbols cannot be encoded and
thus these codes cannot be compared with the ones studied

in this paper. Several works have considered codes under this
setup; see e.g. [3], [5], [7], [25].

III. MUTLIPLICITY CODES

In this section we review the construction of multiplic-
ity codes. This family of codes was first presented by
Kopparty et al. [15] as a generalization of Reed-Muller codes
by calculating the derivatives of polynomials. These codes
inherit the local-decodability property of Reed-Muller codes,
and thus were used to construct locally decodable codes
in [15], but they can achieve higher rates at the same time.
We follow the definitions of these codes as were presented
in [15] and first start with the definition of the Hasse derivative.

A. Derivatives and Multiplicities

For a field F, let F[x1, x2, . . . , xs] = F[x] be the ring of
polynomials in the variables x1, x2, . . . , xs with coefficients in
F. For a vector i = (i1, i2, . . . , is) of non-negative integers,
its weight wt (i) equals

∑s
j=1 i j . For a vector of non-negative

integers i = (i1, i2, . . . , is), let xi denote the monomial∏s
j=1 x

i j
j . The total degree of this monomial equals wt (i).

For P(x) ∈ F[x], let the degree of P(x), deg(P), be the
maximum total degree over all monomials in P(x).

Definition 3: For a polynomial P(x) ∈ F[x] and a vector
i of non-negative integers, the i -th Hasse derivative of P(x),
denoted by P(i)(x), is the coefficient of zi in the polynomial
P �(x, z) = P(x + z) ∈ F[x, z].

It is clear from the definiton that

P(x + z) =
∑

i

P(i)(x)zi .

As for normal derivatives, it also holds that for P, Q ∈ F[x]
and λ ∈ F,

(λP)(i)(x) = λP(i)(x), (P + Q)(i)(x) = P(i)(x)+ Q(i)(x).

B. Multiplicity Codes

Definition 4: Let m, s be nonnegative integers, q be a prime
power, and i = (i1, . . . , is) be a vector of non-negative

integers. We define �(m, s, q) = F
|{i :wt (i)<m}|
q = F

(s+m−1
s )

q .
Definition 5: Let m, d, s be nonnegative integers, q be

a prime power, i = (i1, . . . , is) be a vector of non-
negative integers, and let � = �(m, s, q). For a polynomial
P(x1, . . . , xs) ∈ Fq [x1, . . . , xs], we define the order m evalu-
ation of P at w ∈ F

s
q , denoted by P(<m)(w), to be the vector

P(<m)(w) = (
P(i)(w)

)
i :wt (i)<m ∈ �.

Definition 6: Let m, d, s be nonnegative integers, q be a
prime power, and let � = �(m, s, q). The multiplicity code
CM (m, d, s, q) of order m evaluations of degree d polynomials
in s variables over Fq is defined as follows. The code is
over the alphabet �, and has length qs. The coordinates
are indexed by elements of F

s
q . For each polynomial P(x) ∈

Fq [x1, . . . , xs] with deg(P) � d, there is a codeword in CM

given by:

Encm,d,s,q(P) = (
P(<m)(w)

)
w∈Fs

q
∈ (�)qs

.
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That is,

CM (m, d, s, q)

=
{(

P(<m)(w)
)
w∈Fs

q
∈ �qs : P ∈ Fq [x], deg(P) � d

}
.

The following lemma, which calculates the rate and relative
distance of multiplicity codes, was proved in [15].

Lemma 7 [15, Lemma 9]: The multiplicity code
CM (m, d, s, q) has relative minimum distance at least

δ = 1− d
mq and rate (d+s

s )
(s+m−1

s )qs
.

Lastly, we note that since the multiplicity code
CM (m, d, s, q) is a linear code it can also be a systematic
code and thus for the rest of the paper we assume these codes
to be systematic; for more details see [34, Lemma 2.3]. For
the rest of the paper and unless stated otherwise, we assume
that m, d, s, q are positive integers.

The next example demonstrates the above definitions.
Example 8: Let q = s = 2, d = 3, and m = 4. Thus we

get that

CM (4, 3, 2, 2)

= {(P(<4)(w)
)
w∈F2

q
∈ �q2 : P ∈ F2[x], deg(P) � 3}.

If we take P(x1, x2) = x1x2 + x1x2
2 , then

P(x + z) = P(x1 + z1, x2 + z2)

= (x1 + z1)(x2 + z2)+ (x1 + z1)(x2 + z2)
2

= x1x2 + x1x2
2 + (x2 + x2

2 )z1 + x1z2 + z1z2

+ x1z2
2 + z1z2

2.

Therefore P(x) is encoded to
(
P(<4)(w)

)
w∈F2

2
where

(
P(<4)(w)

)

= (
P(0,0), P(1,0), P(0,1), P(2,0), P(1,1), P(0,2),

P(3,0), P(2,1), P(1,2), P(0,3)
)

= (
w1w2 + w1w

2
2, w2 +w2

2, w1, 0, 1, w1, 0, 0, 1, 0
)
.

IV. PIR CODES FROM MULTIPLICITY CODES

In [15], multiplicity codes were used to construct locally
decodable codes (LDC) in order to retrieve the value of
a single symbol from the information symbols with high
probability, given that at most a fixed fraction of the symbols
has errors. Since we are not concerned with errors, we modify
the recovering procedure so that each information symbol
has a large number of disjoint recovering sets. For this end,
we establish several properties on interpolation sets of poly-
nomials which will help us later to construct the recovering
sets, and thus PIR and batch codes.

A. Interpolation Sets of Polynomials

We start with the following definition of interpolating sets.
Definition 9: For P(x) ∈ Fq [x1, . . . , xs ] and R ⊆ F

s
q ,

we say that R is an interpolation set of P(x) if for every
polynomial Q(x) such that P(x) = Q(x) for every x ∈ R,
it holds that P(x) = Q(x) for every x ∈ F

s
q .

Next, we list several basic properties on the interpolation
sets of polynomials. For the completeness of the results in the
paper, we present these proofs in Appendix A.

Lemma 10: Let P(x) ∈ Fq [x1, . . . , xs ], with deg(P) � d.
Let A1, . . . , As be subsets of Fq such that |Ai | = d + 1. Then
the set A = A1 × · · · × As is an interpolation set of P(x).

According to Lemma 10, we can now generate a large num-
ber of disjoint interpolation sets for homogenous polynomials.

Lemma 11: Let P(x) ∈ Fq [x1, . . . , xs] be a homoge-
neous polynomial1 such that deg(P) = d. Let A1, . . . , As−1
be subsets of Fq such that |Ai | = d + 1. Then the set
A = A1 × · · · × As−1 × {1} is an interpolation set of P(x),
where 1 ∈ Fq is the unitary element of the field.

The following definition will be used in the construction of
recovering sets for multiplicity codes.

Definition 12: Let Fq be a field, and S1, S2 ⊆ F
s
q where s

is a positive integer. We say that the sets S1 and S2 are disjoint
under multiplication if for every x ∈ S1 and α ∈ Fq \ {0} it
holds that αx /∈ S2.

Lemma 13: Let P(x) ∈ Fq [x1, . . . , xs] be a homogeneous
polynomial such that deg(P) = d. Then there exist � q

d+1	s−1

interpolation sets of P(x), each of size (d + 1)s−1, which are
mutually disjoint under multiplication.

B. Construction of Recovering Sets

Now we are in a good position to present the recovering
procedure for multiplicity codes. First, we show a general
structure of the recovering sets, and then we argue that many
disjoint sets can be constructed this way.

Theorem 14: Let m, d, s, q be positive integers such that
d
m < q − 1, and CM (m, d, s, q) is the multiplicity code with

these parameters of length qs over the field F
(s+m−1

s )
q . Let

A ⊆ F
s
q be an interpolation set for homogeneous polynomials

of degree at most m − 1. Then, for every y = (yw)w∈Fs
q
∈

CM (m, d, s, q), and for every w0 ∈ F
s
q , the set of coordinates

indexed by the set

R = {w0} + Fq A � {w0 + λv : v ∈ A, λ ∈ Fq \ {0}}
is a recovering set for the symbol yw0 .

Proof: The proof follows similar ideas to the one
from [15]. Recall that every codeword y = (yw)w∈Fs

q
∈

CM (m, d, s, q) corresponds to a polynomial P(x) ∈ Fq [x],
of degree at most d , where for all w ∈ F

s
q , yw = P(<m)(w).

We now review the recovering procedure, which will even-
tually prove the theorem’s statement. Every vector v in the
interpolation set A is called a direction and will correspond to
a line containing w0 in the direction v. Reading the order m
evaluations of the polynomial P(x) at these lines will enable
us to recover the value of P(<m)(w0). This procedure consists
of two steps, described as follows.

Step 1: For every direction v ∈ A, define the following
univariate polynomial

pv(λ) = P(w0 + λv) ∈ Fq [x]. (1)

1We say that P(x) ∈ Fq [x1, . . . , xs ] is homogeneous if all the monomials
of P(x) have the same total degree.
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Since the values P(w0 + λv) for all λ ∈ Fq \ {0} are known,
and deg(pv) � d , one can prove, as in [15], that pv(λ) is
unique, and thus can be recovered.

For completeness, we prove that pv(λ) is indeed unique.
Assume in the contrary that there exist two different polyno-
mials p1(λ) and p2(λ), of degree at most d , such that

p1(λ) = p2(λ) = P(w0 + λv) for all λ ∈ Fq \ {0}.
According to the definition of Hasse derivative, we have that

P(w0 + (λ0 + λ)v) = pr(λ0 + λ) =
d∑

j=0

p( j )
r (λ0)(λ) j ,

and

P(w0 + (λ0 + λ)v) =
∑

i :wt (i)�d

P(i)(w0 + λ0v)(λv)i ,

for r ∈ {1, 2}. Therefore, for 0 � j � d ,

p( j )
r (λ0) =

∑

i :wt (i)= j

P(i)(w0 + λ0v)v i .

Thus, given the values of P(<m)(w0 + λv) we can calculate
the values of

p(<m)
r (λ) = (p(0)

r (λ), p(1)
r (λ), . . . , p(m−1)

r (λ)).

It follows that p(<m)
1 (λ) = p(<m)

2 (λ) for every λ ∈ Fq \ {0}.
Those two polynomials can be thought of as codewords of
CM (m, d, s = 1, q). From Lemma 7, we know that the distance
of the code CM (m, d, s = 1, q) is q(1 − d

mq ) = q − d
m > 1.

Therefore, the two polynomials p1, p2 are identical. Thus, one
can uniquely recover the polynomial, pv(λ), which we now
denote by

pv(λ) =
d∑

j=0

cv, j λ
i .

Step 2: From (1), one can get that

pv(λ) =
∑

i

P(i)(w0)v
iλwt (i) =

d∑

j=0

cv, j λ
j ,

and therefore we get for all 0 � j � d ,
∑

i :wt (i)= j

P(i)(w0)v
i = cv, j .

Considering only the first m of these equations, we get that
u i = P(i)(w0) is a solution for the following set of equations

∑

i :wt (i)= j

u iv
i = cv, j , 0 � j < m � d, v ∈ A. (2)

Now we prove that the equations system (2) has a unique
solution, and therefore the set R is a recovery set. Indeed, if we
denote Q j (x) =∑

i :wt (i)= j u i x i ∈ Fq [x1, . . . , xs ] where 0 �
j < m, we get that the equations in (2) are equivalent to

Q j (v) = cv, j

for every v ∈ A. But since for every j we know that Q j

is a homogeneous polynomial of degree j , and A is an

interpolation set for homogeneous polynomials of degree at
most m − 1, we get that the polynomial Q j (x) is unique.
Therefore, we can recover the value of P(<m)(w0) by solving
the equations system (2).

Example 15: Let q = 4, m = s = 2, d = 3. First,
we denote F = F4 = {0, 1, α, β = 1 + α}. Let us take
the codeword corresponding to the polynomial P(x1, x2) =
x1x2 + x1x2

2 inside the code CM (2, 3, 2, 4). According to
Example 8,

P(<2)(x1, x2) = (x1x2 + x1x2
2 , x2 + x2

2 , x1).

Therefore, the polynomial P(x1, x2) is encoded to the code-
word (w1w2+w1w

2
2, w2+w2

2, w1)w∈F2
4
. Now, assume we want

to recover the codeword entry at the point w = (1, 0) ∈ F
2
4,

i.e., we want to recover the value of

P(<2)(1, 0) = (
P(0,0)(1, 0), P(1,0)(1, 0), P(0,1)(1, 0)

)
.

First, we consider the line at direction v = (1, 0),

R = {(1, 0)+ λ(1, 0) : λ ∈ F \ {0}} = {(0, 0), (α, 0), (β, 0)}.
We define p(λ) = P(w + λv). From the given codeword,
we get that:

P(<2)(0, 0) = (0, 0, 0),

P(<2)(α, 0) = (0, 0, α),

P(<2)(β, 0) = (0, 0, β).

Therefore, p(1) = p(α) = p(β) = 0, and the unique
polynomial of degree at most 3 which satisfies this condition is
the zero polynomial, therefore p(λ) ≡ 0, and we can already
recover P(0,0)(1, 0) = p(0) = 0. Now, in order to recover
P(1,0)(1, 0), we notice that

p(λ) = P(w + λv) =
∑

i

P(i)(w)v iλwt (i).

Since p(λ) ≡ 0, we get that

P(1,0)(1, 0)v(1,0) + P(0,1)(1, 0)v(0,1) = 0,

therefore P(1,0)(1, 0) = 0 since v(0,1) = 0. In order to recover
P(0,1)(1, 0), we consider a new line in the direction v� =
(0, 1),

R� = {(1, 0)+ λ(0, 1) : λ ∈ F \ {0}} = {(1, 0), (1, α), (1, β)}.
Repeating the same steps as above for the new direction v�,
we can get that P(0,1)(1, 0) = 1. Thus, we have recovered that
P(<2)(1, 0) = (0, 0, 1).

The next theorem calculates the number of disjoint recov-
ering sets that can be constructed for every coordinate.

Theorem 16: Let y = (yw)w∈Fs
q
∈ CM (m, d, s, q) and

w0 ∈ F
s
q . Then, yw0 has � q

m 	s−1 mutually disjoint recovering
sets.

Proof: According to Theorem 14, every interpolation set
A for homogeneous polynomials of degree m − 1 defines a
recovering set, which consists of the lines containing w0 in
the directions of v for all v ∈ A. Therefore, in order to get
disjoint recovering sets, all we need to do is to pick different
lines. According to Lemma 13, there are � q

m 	s−1 interpolation
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sets for homogeneous polynomials of degree m− 1 which are
mutually disjoint under multiplication. This means that each
line cannot appear in two sets, thus the recovering sets defined
by these interpolation sets are disjoint.

Now we can conclude with the following corollary, which
follows directly from Theorem 16.

Corollary 17: For all m, d, s, q such that d
m < q − 1,

the code CM (m, d, s, q) is a k-PIR code [qs, n, k]PQ, where

n = (d+s
s )

(s+m−1
s )

, k = � q
m 	s−1, and Q = q(s+m−1

s ).

The next theorem summarizes the results in this section.
Theorem 18: For every positive integer s � 2, 0 < α < 1,

and n sufficiently large, there exists a k-PIR code [N, n, k]PQ ,
over the field FQ, of dimension n such that the redundancy,
r = N − n, the availability parameter, k, and the field size Q
satisfy

k = �(n(1− 1
s )(1−α)),

Q = n�(nα),

r = O(n1− α
s ).

In particular, for all 0 � � < 1, integer s > 1
1−� and n

sufficiently large, there exists a k-PIR code [N, n, k]PQ , where
k = n� and the redundancy satisfies N −n = O(δs(�)), where
δs(�) = O(1− 1

s + �
s−1 ). Moreover, for all 0 � � < 1,

rP
(
n, k = �(n�)

)
Q = O(

nδ(�)
)
,

where δ(�) = 1− 1
s∗ + �

s∗−1 , and s∗ = � 2
1−� 	.

Proof: Let q be a prime power such that, m = �qα	
and d = m(q − 2). We choose n such that according to
Corollary 17, the code CM (m, d, s, q) is a k-PIR code [N =
qs, n, k]PQ where n, k, Q satisfy

n =
(d+s

s

)

(s+m−1
s

) = �(N),

k = �(q(s−1)(1−α)) = �(N (1− 1
s )(1−α)) = �(n(1− 1

s )(1−α)),

Q = q(s+m−1
s ) = q�(qαs) = q�(nα) = n�(nα).

It remains to prove the claim about the redundancy. According
to Lemma 7, the redundancy of the code satisfies

r = qs −
(d+s

s

)

(s+m−1
s

) � qs − ds

(m + s)s

= (m + s)sqs − ms(q − 2)s

(m + s)s

� (m + s)sqs − ms(q − 2)s

ms

= O(
qs

m
) = O(qs−α)

= O(N1− α
s )

= O(n1− α
s ).

Now we prove the second part of the claim. We consider
a fixed s. According to the first part of the proof, for every
0 < α < 1, there exists a k-PIR code of dimension n and
redundancy r such that k = �(n(1− 1

s )(1−α)) and r = O(n1− α
s ).

Fig. 1. Asymptotic results for non-binary PIR codes.

For � < 1−1/s, we denote � = (1− 1
s )(1−α), or α = 1− �s

s−1 ,
and we get

r = O(n1− α
s ) = O(n1− 1

s+ �
s−1 ) = O(nδs (�)).

Thus, we deduce that δ(�) = mins:s> 1
1−�
{δs(�)}. Since δs(�)

are lines for every s, one can prove that for a given value of �,
the value of s∗ that minimizes the value of δ satisfies

s∗ − 2

s∗
� � <

s∗ − 1

s∗ + 1
,

that is s∗ = � 2
1−� 	.

Lastly, in case n is not of the form
(d+s

s

)
/
(s+m−1

s

)
we can

choose the parameters q, m, d such that
(d+s

s

)
/
(s+m−1

s

)
> n.

Then, we apply the construction while appending the infor-
mation symbols with the missing number of zero symbols but
without storing them since their values are known in advance
to be zero.

In Fig. 1 we plot the curves of δs(�) (which are defined in
Theorem 18) for various values of s for non-binary PIR codes.

C. PIR Codes Over the Binary Field

Now we use our last result in order to construct binary k-PIR
codes. The main idea is to convert every symbol of the field
FQ to log(Q) binary symbols. We say that f (n) = �(na−) if
for all τ > 0, f (n) = �(na−τ ). Similarly we define f (n) =
O(na+) if for all τ > 0, f (n) = O(na+τ ). The next theorem
is a direct result from Theorem 18 and for completeness, its
proof appears in Appendix B.

Theorem 19: For every positive integer 2 � s, 0 < α <
1, and n sufficiently large, there exists a binary k-PIR code
[N, n, k]P2 , of dimension n such that the redundancy, r = N−
n, and the availability parameter, k, satisfy

k = �
(
(n/ log(n))(1−

1
s ) 1−α

1+α
)
,

r = O(
n1− α

s(1+α) (log(n))
α

s(1+α)
)
.
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Fig. 2. Asymptotic results for binary PIR codes.

In particular, for 0 � � < 1, it holds that

rP
(
n, k = �(n�−)

) = O(
nδ(�)+),

where

δ(�) = min
s:s> 1

1−�

{δs(�)},

δs(�) = 1− s(1− �)− 1

2s(s − 1)
.

Fig. 2 shows the curves of δs(�) (which are defined in
Theorem 19) for various values of s, for binary PIR codes.
The following corollary follows from the last theorem.

Corollary 20: For all 0 � � < 1 and n sufficiently large,
there exists a binary k-PIR code [N, n, k]P2 , of dimension n
such that k = �(n�), and the redundancy is r = N−n = o(n)
(i.e., the rate converges to 1).

Proof: The claim follows immediately from the last
theorem by noticing that r = o(n) since δs(�) < 1.

The analysis so far dealt with constructing k-PIR when k =
�(n�) and 0 � � < 1. Now we show how to use these results
to construct k-PIR codes for � � 1. The idea is to concatenate
a sufficient copies of k �-PIR codes, when k � = O(n1−) such
that each bit will have k recovering sets. The following lemma
was proved in [11].

Lemma 21 [11, Lemma 12]: Let n k, and k � be positive
integers. Then, P(n, k + k �) � P(n, k)+ P(n, k �).

If follows that for any positive integers n, k, and k � such that
k � < k, P(n, k) � � k

k� P(n, k �). Thus we get the following
theorem.

Theorem 22: For all � � 1 and n sufficiently large, there
exists a binary k-PIR code [N, n, k]P , of dimension n such
that k = �(n�) and N = O(n�+).

The length achieved by the PIR construction in Theorem 22
is nearly optimal. Recall that the redundancy of k-PIR codes
is �(k) since every non-trivial recovering set must contain at
least one redundancy bit.

Fig. 3. Asymptotic results for binary PIR codes.

Fig. 3 summarizes the results of binary PIR codes we
achieved in this section together with the previous results.
We denote rP

(
n, k = n�

) = O(
nδ(�)

)
and plot upper and lower

bounds for δ(�). We plot the curves δs(�) for s = 3, 5, 7, 20
from Theorem 19 as well as the results for � � 1 from
Theorem 22, which provide an upper bound for δ(�). Since
Reed-Muller codes have rate at most 1/2, their upper bounds
were not added to the figure, as they will always result with
δ = 1 for any � < 1. The lower bound on the redundancy is
given by �(max{k,

√
n}). Finally, we note that according to

this lower bound and Theorem 22, we get that � � δ(�) �
� + ρ when 1 � � for any ρ > 0.

V. BATCH CODES FROM MULTIPLICITY CODES

It turns out that multiplicity codes can be also an excellent
tool to construct batch codes. Unlike the PIR case, recovering
different entries in the codeword will cause intersection in
the corresponding lines, and thus intersecting recovering sets.
In order to overcome this obstacle, we reduce the degree d of
the polynomials such that a fewer number of points is needed
from every line. This will allow different lines to avoid points
which are used by other lines. That way, every recovering set
can “drop out” points which are used by other sets, resulting
in disjoint recovering sets.

Lemma 23: For all m, s, q, d, k such that d �
m(q − kms−1 − 2) and k � � q

m 	s−1, the code CM (m, d, s, q)

is a k-batch code [qs, n, k]BQ, where n = (d+s
s )

(s+m−1
s )

and

Q = q(s+m−1
s ).

Proof: The claim regarding the code dimension and field
size can be proven in a similar way to the PIR case. Now we
prove that every request of size k can be recovered. To this end,
we show that each recovery set can drop out the points which
are used by other sets. As we saw in the recovering procedure
for PIR codes, every recovering set contains ms−1 different
lines. Since different lines can intersect on at most one point,
and there are k recovering sets (we can assume that every line
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appears in at most one set), we get that every recovering set
has kms−1 points which are used by other sets. Therefore,
it suffices to prove that step 1 in the recovering procedure
can be completed even when kms−1 points on the line are not
used. However, according to Lemma 7, the minimum distance
of CM (m, d, s = 1, q) is d = q− d

m > kms−1+1, and therefore
it can be shown in a very similar way to PIR codes, that the
polynomial pv in step 1 can be uniquely recovered, and thus
also step 2 can be completed.

Unlike the PIR case, it turns out that only the value s = 2
is useful for batch codes. The reason is that large values of the
parameter s cause each recovering set to contain more lines,
and thus the number of intersecting points between different
sets will also increase. Therefore, as we reduce the degree d of
the polynomials to be able to ignore these points, the resulting
degree becomes substantially smaller, which results in codes
with low rate. The following theorem uses Lemma 23 with s =
2 to construct batch codes from multiplicity codes. We present
the proofs of Theorem 24 and Theorem 25 in Appendix C.

Theorem 24: For every 0 < α < 0.5 and n sufficiently
large, there exists a k-batch code [N, n, k]BQ over FQ of dimen-
sion n such that the redundancy, r = N − n, the availability
parameter, k, and the field size Q satisfy

k = �(n0.5−α),

r = O(n1− α
2 ),

Q = n�(nα).

In particular, for 0 < � < 0.5, it holds that

rB
(
n, k = �(n�)

)
Q = O(

nδ(�)
)
,

where δ(�) = 3
4 + �

2 .
As in the PIR case, the last result can be extended for binary

batch codes.
Theorem 25: For every 0 < α < 0.5 and n sufficiently

large, there exists a binary k-batch code [N, n, k]B of dimen-
sion n such that the redundancy, r = N − n, and the
availability parameter, k, satisfy

k = �
(
(n/ log(n))0.5−α

)
,

r = O(
n1− α

3 (log(n))
α
3
)
.

In particular, for 0 < � < 0.5, it holds that

rB
(
n, k = �(n�−)

) = O(
nδ(�)+),

where δ(�) = 5
6 + �

3 , and rB
(
n, k = �(n�)

) = o(n).
The following corollary follows from the last theorem.
Corollary 26: For all 0 � � < 0.5 and n sufficiently large,

there exists a binary k-batch code [N, n, k]B , of dimension n
such that k = �(n�) and the redundancy r = N − n = o(n)
(i.e., the rate converges to 1).

As in the PIR case, one can extend these batch codes to
the case where � � 0.5 and construct binary batch codes
[N, n, k]B such that k = �(n�) and N = O(n0.5+�+), for
� � 0.5. However, in the next section we show another method
to construct batch codes which achieve better results in the
case � � 0.5. In particular, we show that rB(n, k = n�) = o(n)
when 0 < � < 1, and rB(n, k = n�) = O(n�+) when 1 � �.

VI. CONSTRUCTION OF BATCH CODES FROM PIR CODES

In this section we present a method that shows how to
construct a batch code from a given PIR code. Then, using
the construction of PIR codes in section IV, we show a
construction of k = n� -batch codes of dimension n and
rate approaching 1 where � < 1, i.e., rB(n, n�) = o(n) for
� < 1. We present the results for the binary field, however the
extension to the non-binary case is trivial.

The techniques in this section use the notion of batch codes
(PIR codes) with restricted size for the recovering sets [35].
Formally, a k-PIR code, k-batch code, in which the size of
each recovering set is at most r will be called an (r, k)-PIR
code, (r, k)-batch code, respectively. First, we show how to
construct PIR codes with restricted size of recovery sets from
general PIR codes. Then we show how to construct batch
codes from PIR codes with restricted size of recovery sets.

Lemma 27: Let C be an [N, n, k]P PIR code. Then, C is
also an (r = 2N

k , k � = k
2 )-PIR code of dimension n and

length N.
Proof: We prove that for every bit there exist k � = k/2

disjoint recovery sets of size at most r = 2N
k . Since C is an

[N, n, k]P code, we get that every bit has k disjoint recovery
sets. Assume by contradiction that there exist k/2 recovery
sets of size more than r , thus since these sets are disjoint,
we get that there exist at least rk/2+1 = N +1 different bits
inside these sets, which is a contradiction.

The following lemma shows how to construct batch codes
from PIR codes with restricted size of recovery set.

Lemma 28: Let C be an (r, k)-PIR code of dimension n
and length N. Then, C is an [N, n, k �]B batch code, where
k � = �k/r	.

Proof: Let R = {i1, i2, . . . , ik� } be the multiset of
requested bits. Since C is an (r, k)-PIR code, we get that
for every j ∈ [k] there exist k disjoint recovery sets
S

i j
1 , S

i j
2 , . . . , S

i j
k for the bit i j , each of size at most r . Now

we show how to construct k � disjoint recovery sets for them.
For i1, we take the sets Si1

1 . Now, assume we have chosen
recovery sets for the first � − 1 < k � − 1 bits, and we show
how to construct a recovery set for i�. The number of bits
contained in the chosen sets is at most (�−1)r < k, therefore
there exists a recovery set of i� which does not intersect with
the chosen sets. We choose this set to be the recovery set
of i�.

From the last two lemmas we conclude the following
corollary.

Corollary 29: Let C be an [N, n, k]P PIR code. Then, C is
an [N, n, k �]B batch code, where k� = �k2/4N	.

The next theorem establishes the result on the redundancy
of batch codes.

Theorem 30: For 0 < � < 1, it holds that

rB(n, n�) � rP (n, n
�+1

2 ).

Proof: Denote �� = �+1
2 . Since �� < 1, we get that

rP (n, n��) = o(n), which means that there exist a binary PIR
code [N, n, k = n�� ]P such that N � 2n. Thus, by applying
Corollary 29 to that code we conclude that this code is also a
batch code [N, n, k � ]B where k � = �(n�).
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The following corollary follows immediately by using the
previous theorem, along with Theorem 19 from section IV.

Corollary 31: For 0 < � < 1, it holds that

rB
(
n, k = �(n�−)

) = O(
nδ( �+1

2 )+),

where

δ(�) = min
s:s> 1

1−�

{δs(�)},

δs(�) = 1− s(1− �)− 1

2s(s − 1)
.

As in the case of PIR codes, we can now use the previous
result to construct batch codes when � � 1. Then, the follow-
ing theorem follows immediately.

Theorem 32: For all � � 1 and n sufficiently large, there
exists a binary k-batch code [N, n, k]B , of dimension n such
that k = �(n�) and N = O(n�+).

VII. THE ARRAY CONSTRUCTION FOR PIR CODES

In this section we present a construction which constitutes
a family of PIR codes. Then, in the next section, we show
how to use this construction in order to construct good batch
codes. By a slight abuse of notation, in this section we let the
set [n] denote the set of integers {0, 1, . . . , n − 1}.

Our point of departure is the subcube construction from [13]
which was also used in [11] to construct PIR codes. The idea
of this construction is to position the information bits in a
two-dimensional array, and add a simple parity bit for each
row and each column. More specifically, given an input x of
length n = s2, it is represented as a two-dimensional array of
size s × s as follows

This array is encoded to the following (s + 1)× (s + 1) array

where ri , ci is the sum of the bits in the i th row, column,
respectively. It is easy to see that every bit has 3 recovering
sets; one is the bit itself, and another two recovering sets from
the row and column that contain that bit.

In this work we extend this construction by following the
approach which was described in [4] to correct multiple phased
burst errors and erasures. Similarly, our approach here is to
extend this construction by considering also the diagonals
of the array. As there are approximately s diagonals, this
will greatly increase the number of recovering sets. However,

we will have to guarantee that using the diagonals will still
result with disjoint recovering sets.

Before presenting the construction, which we will refer as
the Array Construction, we formally define the diagonal sets
that will be used in the array. We use the notation �x�m to
denote the value of (x mod m).

Definition 33: Let A be an r× p array, with indices (i, j) ∈
[r ] × [p]. For s ∈ [p] we define the following set of sets:

Ps(r, p) = {Ds,0, Ds,1, . . . , Ds,p−1},
where for t ∈ [p],
Ds,t = {(0, t), (1, �t + s�p), . . . , (r − 1, �t + (r − 1)s�p)}.

(3)

The idea behind Definition 33 is to fix a slope s ∈ [p]
and then define p diagonal sets which are determined by the
starting point on the first row and the slope. We use these
sets in order to construct array codes, where every diagonal
determines a parity bit for the bits on this diagonal.

Construction 34 (Array Construction): Let r, p, n, k
be positive integers such that k � p, n = r p, and
S ⊆ [p] a subset of size k. We define the encoder
Er,p,S, as a mapping Er,p,S : {0, 1}n → {0, 1}k·p
as follows. We denote S = {s0, s1, . . . , sk−1} where
0 � s0 < s1 < · · · < sk−1 � p − 1. The input vector
x ∈ {0, 1}n is represented as an r × p array, that is
x = (xi, j )(i, j )∈[r]×[p] and is encoded to the following kp
redundancy bits ρ�,t , for � ∈ [k], and t ∈ [p],

ρ�,t =
∑

(i, j )∈Ds�,t

xi, j .

We denote

Er,p,S(x) = (ρ0,0, . . . , ρ0,p−1, . . . , ρk−1,0, . . . , ρk−1,p−1).

Lastly, the code CA(r, p, S) is defined to be

CA(r, p, S) = {(x, Er,p,S(x)) : x ∈ {0, 1}n}.
The following example demonstrates the Array

Construction.
Example 35: Let r = 3, p = 5, n = 15, and assume we

want k = 4 recovering sets. First, we arrange the input, x,
in a 3× 5 table

We consider diagonals corresponding for slops in the set
S = {0, 1, 2}. The diagonals corresponding to s = 0 are the
columns, and so we get the following set of five sets:

P0 = {{x0,0, x1,0, x2,0}, {x0,1, x1,1, x2,1}, {x0,2, x1,2, x2,2},
{x0,3, x1,3, x2,3}, {x0,4, x1,4, x2,4}}.

Accordingly, we get the following parity bits

ρ0,0 = x0,0 + x1,0 + x2,0 ρ0,1 = x0,1 + x1,1 + x2,1

ρ0,2 = x0,2 + x1,2 + x2,2 ρ0,3 = x0,3 + x1,3 + x2,3

ρ0,4 = x0,4 + x1,4 + x2,4
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For s = 1, the following table shows the corresponding
diagonals.

Thus we get the following set of five sets:

P1 = {{x0,0, x1,1, x2,2}, {x0,1, x1,2, x2,3}, {x0,2, x1,3, x2,4},
{x0,3, x1,4, x2,0}, {x0,4, x1,0, x2,1}},

and the corresponding parity bits are

ρ1,0 = x0,0 + x1,1 + x2,2 ρ1,1 = x0,1 + x1,2 + x2,3

ρ1,2 = x0,2 + x1,3 + x2,4 ρ1,3 = x0,3 + x1,4 + x2,0

ρ1,4 = x0,4 + x1,0 + x2,1

Lastly, for s = 2, the following table shows the corresponding
diagonals.

Their parity bits are the following

ρ2,0 = x0,0 + x1,2 + x2,4 ρ2,1 = x0,1 + x1,3 + x2,0

ρ2,2 = x0,2 + x1,4 + x2,1 ρ2,3 = x0,3 + x1,0 + x2,2

ρ2,4 = x0,4 + x1,1 + x2,3

Therefore, x is encoded to

One can notice that every bit has 4 disjoint recovering sets.
For example, the bit x0,0 can be recovered by

{x0,0}, {ρ0,0, x1,0, x2,0}, {ρ1,0, x1,1, x2,2}, {ρ2,0, x1,2, x2,4}.
We first present two useful properties, whose proofs can be

found in Appendix D.
Lemma 36: For all r, p, and s ∈ [p] the set Ps(r, p) is a

partition of [r ] × [p].
The following lemma shows that sets from different parti-

tions can intersect on at most one element.
Lemma 37: For all r � p and S ⊆ [p], if one of the

following two conditions holds

1) p is prime,
2) maxs∈S{s} · (r − 1) < p,

then for all s1 �= s2 ∈ S and t1, t2 ∈ [p], |Ds1,t1 ∩ Ds2,t2| � 1.
Now we are ready to prove that the Array Construction can

result in k-PIR codes.

Theorem 38: For all r � p and S ⊆ [p], such that |S| =
k − 1 � p. If one of the following two conditions holds

1) p is prime,
2) maxs∈S{s} · (r − 1) < p,

then the code CA(r, p, S) is an [r p+(k−1)p, r p, k]P PIR code
with rate of r

r+k−1 . Furthermore, the size of each recovering
set is at most r .

Proof: Let x = (xi, j )(i, j )∈[r]×[p] and Er,p,S(x) =
(ρ�,t )(�,t)∈[k−1]×[p], and assume that the set S =
{s0, s1, . . . , sk−2} is given in an increasing order. Let
(i, j) ∈ [r ] × [p]. We show how to construct k recovering
sets for xi, j . According to Lemma 36, for every � ∈ [k − 1],
the partition set Ps� (r, p) has a set that contains the entry
(i, j). Thus, there exist k−1 sets Ds0,t0, Ds1,t1, . . . , Dsk−2,tk−2

that each contains the entry (i, j). Furthermore, according
to Lemma 37, these sets intersect only on the entry (i, j).
Therefore, we conclude that the following k − 1 sets

R� = {ρ�,t�} ∪ {xi �, j � : (i �, j �) ∈ Ds�,t� \ {(i, j)}},
for � ∈ [k − 1], are k − 1 mutually disjoint recovering
sets for xi, j . The last recovery set is {xi, j }, which does not
intersect with any of the other previously chosen sets. It is also
straightforward to verify that the size of each set is at most r ,
and that the code rate is r

r+k−1 .
Note that the Array Construction results also with binary

LRCs with availability, i.e., (r, k)-PIR codes, however it does
not necessarily improve upon previous results, and anyway
our focus here is only for PIR codes. Furthermore, since PIR
codes do not require recovering sets of bounded size, we can
use the previous construction with large value of r in order to
minimize the redundancy.

Corollary 39: Let n = p2, where p is a prime number, and
k � √n. The code CA(r = p, p, S = [k− 1]) is a k-PIR code
with redundancy (k − 1)

√
n. In particular, for all k �

√
n,

rP (n, k) = O(k
√

n).
It can be shown using the DTI codes from [17] that the result

rP (n, k) = O(k
√

n) holds for all k = n� , where 0 < � < 1.
However, to the best of our knowledge, the redundancy of k

√
n

was not achieved when k is any other arbitrary function of n,
for example k = log(n), and hence this construction closes on
this gap as well.

Remark 40: It shall be noted that the partition Ps(p, p)
generates a latin square (see [14], Chapter 1). A latin
square is a square matrix with p2 entries using p dif-
ferent elements, none of them occurring twice within
any row or column of the matrix. Moreover, the parti-
tions P0(p, p), P1(p, p), . . . , Pp−1(p, p) are in fact mutually
orthogonal latin squares (see [14, Ch. 5]). Finally, since latin
squares have the attributes required by the array construction,
the array construction can be defined based on general latin
squares rather than those specified in this paper, and a set of
mutually orthogonal latin squares can result in PIR codes.

VIII. THE ARRAY CONSTRUCTION FOR BATCH CODES

In this section, we will study how to apply the Array Con-
struction for batch codes. In the previous section, we noticed



ASI AND YAAKOBI: NEARLY OPTIMAL CONSTRUCTIONS OF PIR AND BATCH CODES 957

that even though the Array Construction can result in construc-
tions of LRCs with availability, it does not necessary result
with higher rates than existing ones when r is a constant [20],
[22], [32]. However, this construction can result with good
batch codes as well as batch codes with restricted size for the
recovering sets.

A. A Framework to Construct Batch Codes From the
Array Construction

In this section, we show how to construct batch codes using
the Array Construction. The idea here is to choose the set
S in a way that for every bit, each of its recovering sets
intersects with at most one recovering set of any other bit.
This property for constructing batch codes from PIR codes
was proved in [23] and is stated below.

Lemma 41 [23]: Let C be an (r, k)-PIR code. Assume
that for every two distinct indices i, j ∈ [n], it holds that
each recovering set of the i th bit intersects with at most one
recovering set of the j th bit. Then, the code C is an (r, k)-batch
code.

From the above lemma, it is readily verified that the code
CA(2, n/2, S = [k]) is an (r = 2, k)-batch code with rate 2

2+k .
Next we show how to construct (r, k)-batch codes for arbitrary
r > 2. The main challenge is to find sets S that will generate
recovering sets which satisfy the condition in Lemma 41. For
that, we use the following definition.

Definition 42: Let r be a positive integer, and S be a set of
non-negative integers. We say that the set S does not contain
an r -weighted arithmetic progression if there do not exist
s1, s2, s3 ∈ S and 0 < x, y < r − 1, where x + y < r , such
that

xs1 + ys2 = (x + y)s3 (4)

We say that the set S does not contain an r -weighted arith-
metic progression modulo p if equation (4) does not hold
modulo p.

Given this definition, we prove the following theorem.
Theorem 43: Let CA(r, p, S) be a code from the Array

Construction, where r � p and S ⊆ [p], |S| = k � p. If one
of the following two conditions holds

• p is prime, and S does not contain an r-weighted
arithmetic progression modulo p,

• maxs∈S{s}·(r−1) < p, S does not contain an r-weighted
arithmetic progression,

then the code CA(r, p, S) is an (r, k)-batch code of dimension
r p and redundancy kp.

Proof: Assume that the set S = {s0, s1, . . . , sk−1} is
in an increasing order. According to Theorem 38, the code
CA(r, p, S) is an (r, k + 1)-PIR code. Therefore, it remains
to prove that the code CA(r, p, S) satisfies the condition of
Lemma 41 with respect to the first k recovery sets of every bit.
Every bit in position (i, j) ∈ [r ]× [p] has k mutually disjoint
recovering sets whose structure is described in the proof of
Theorem 38. In particular, for � ∈ [k], the �th recovering set
of (i, j) is

R(i, j )
� = {ρ�,t�} ∪ {xi �, j � : (i �, j �) ∈ Ds�,t� \ {(i, j)}},

for some t� ∈ [p], and we denote D(R(i, j )
� ) = Ds�,t� .

Assume in the contrary that there exist two bits in positions
(i, j), (i �, j �) ∈ [r ]×[p] such the bit (i, j) has a recovering set
R(i, j )

�1
that intersects with two recovering sets R(i �, j �)

��1
, R(i � , j �)

��2
of (i �, j �). Assume that b1 ∈ R(i, j )

�1
∩ R(i �, j �)

��1
and b2 ∈

R(i, j )
�1
∩ R(i �, j �)

��2
where b1, b2 are codeword entries. Assume

that

D(R(i, j )
�1

) = Ds �1,t1

D(R(i � , j �)
��1

) = Ds �2,t2

D(R(i � , j �)
��2

) = Ds �3,t3

for some s�1, s�2, s�3 ∈ S and t1, t2, t3 ∈ [p]. Since (i �, j �) ∈
Ds �2,t2 ∩ Ds �3,t3 , we deduce by Lemma 37 that Ds �2,t2 ∩Ds �3,t3 ={(i �, j �)}. If b1 corresponds to a parity bit, then Ds �1,t1 =
Ds �2,t2 , and then s�1 = s�2 which cannot happen since

(
Ds �2,t2 \{(i, j)}) ∩ (

Ds �3,t3 \ {(i �, j �)}) = ∅. Therefore, we assume that
b1 = xi1, j1, b2 = xi2, j2 , for some (i1, j1), (i2, j2) ∈ [r ] × [p].
Thus we get that

(i1, j1), (i2, j2) ∈ Ds �1,t1,

(i1, j1), (i
�, j �) ∈ Ds �2,t2,

(i2, j2), (i
�, j �) ∈ Ds �3,t3 .

We know that s�1 �= s�2 �= s�3 since these sets intersect.
In addition, since these elements appear together in sets of
some partition, we deduce that i � �= i1 �= i2. Assume w.l.o.g.
i1 < i2 < i �. It follows that:

j1 = �t1 + i1s�1�p j2 = �t1 + i2s�1�p
j1 = �t2 + i1s�2�p j � = �t2 + i �s�2�p
j2 = �t3 + i2s�3�p j � = �t3 + i �s�3�p

This implies that

� j2 − j1�p = �(i2 − i1)s
�
1�p

� j � − j1�p = �(i � − i1)s
�
2�p

� j � − j2�p = �(i � − i2)s
�
3�p

and therefore

�(i2 − i1)s
�
1 + (i � − i2)s

�
3�p = �(i � − i1)s

�
2�p.

Denote x = i2 − i1, y = i � − i2. We get

�xs�1 + ys�2�p = �(x + y)s�3�p, (5)

where s�1, s�2, s�3 ∈ S and 0 < x, y < r − 1, 0 < x + y < r .
If the first condition holds, then we get a contradiction to the
fact that the set S does not contain an r -weighted arithmetic
progression modulo p. If the second condition holds, then
(x + y)s�3 < p and xs�1 + ys�2 � maxs∈S{s} · (r − 1) <
p, therefore xs�1 + ys�2 = (x + y)s�3, which contradicts
the fact that S does not contain an r -weighted arithmetic
progression.

In order to complete the construction of batch codes, we are
left with the problem of finding large sets S which satisfy one
of the two conditions in Theorem 43. That is, given r and p,



958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 2, FEBRUARY 2019

our goal is to find the largest such a set S. For example, one
can verify that the set S = {20, 2�, 22�, . . . , 2(k−1)�} where � =
�log(r)+1 and k � log(p/r)

� +1 satisfies the second condition
and does not contain an r -weighted arithmetic progression.
However, the achievable value of k using this set will be too
small. In the next subsection we will find sets that satisfy the
first condition in Theorem 43 when r is not necessarily fixed,
and thus they will generate constructions of k-batch codes.
Then, in the following subsection, we will study sets that
satisfy the second condition for fixed r in order to construct
(r, k)-batch codes.

B. Construction of k-Batch Codes

In this section we present an algorithm, called the Greedy
Algorithm, that generates sets S that satisfy the first condition
in Theorem 43 for any values of r and p. Given r and p,
the set S is constructed by adding non-negative integers as
long as they do not cause an r -weighted arithmetic progression
modulo p. The algorithm terminates when it is no longer
possible to add numbers to the set S, and then we denote
its output by the set S = {s0, s1, . . . , sk−1}.

Algorithm 1 The Greedy Algorithm
1: Initialize:

S← {0, 1}, i ← 2, num ← 2
2: while num < p do
3: if S ∪ {num} does not contain an r -weighted arithmetic

progression modulo p then
4: S← S ∪ {num}
5: i ← i + 1
6: num ← num + 1
7: return S

The correctness and the properties of the algorithms are
proved in the next theorem.

Theorem 44: Let r, p be positive integers, such that p is
prime. Then the output of the Greedy Algorithm is a set S
of size at least k, where k is the largest integer such that
p > 2k2r2.

Proof: We prove that if |S| < k then the algorithm can
add more elements to S. Assume that S = {s0, s1, . . . , si−1}
where i < k. A number s� cannot be added to S if there exist
0 < x, y < r −1 such that x+ y < r , and s�1, s�2 ∈ S such that

�xs�1 + ys�2�p = �(x + y)s��p or �xs� + ys�2�p = �(x + y)s�1�p.
This means that the number of bad elements (elements which
cannot be added to S) is at most 2i2r2 < 2k2r2, thus proving
the claim.

The following theorem follows from these observations.
Theorem 45: For every r, k, let n = r p, where p is the

smallest prime number such that 2k2r2 < p. Then, there
exists an (r, k)-batch code of dimension n and rate r

r+k .
In particular, the redundancy of the code equals kp.

According to Theorem 45 we are now at a point to construct
k-batch codes with good redundancy when k is a function
of n.

Corollary 46: For any n and k such that k = o(
√

n),
there exists a k-batch code of dimension n and redundancy
O(n

2
3 k

5
3 ). In particular, for 0 < � < 1/2, it holds that

rB(n, n�) = O(n2/3+5�/3).

Proof: For n and k, let us choose r = �n 1
3 /k

2
3 , and

p is the smallest prime number such that 2k2r2 < p. Then,
according to Theorem 45, there exists an (r, k)-batch code of
dimension pr > n and redundancy kp. That is, the redundancy
satisfies

kp = �(k3r2) = �(n
2
3 k

5
3 ).

The second statement in the corollary is established for k = n�

in the last equation.

C. Construction of (r, k)-Batch Codes

In this part we construct sets that satisfy the second condi-
tion in Theorem 43 for fixed values of r . That is, we construct
(r, k)-batch codes using sets S of size k that do not contain
r -weighted arithmetic progressions. As before, in order to
achieve large value of k, we seek to minimize the maximum
number in the set S.

For the specific case of r = 3, it holds that containing a
3-weighted arithmetic progression is equivalent to the problem
of containing 3-term arithmetic progression, which was well
studied in the literature. Erdös and Turan [10] initiated the
study of sequences that do not contain three terms in arith-
metical progression,2 i.e., a sequence a0, a1, . . . , ak−1 such
that for any i �= j �= � ∈ [k] the equation ai + a j = 2a� does
not hold. Behrend [2] shows that for every 0 < α < 1, and
sufficiently large p, there exists a set S ⊆ [p] of size �(pα)
such that S does not contain a 3-term arithmetic progression.
We generalize the construction of Behrend for any fixed value
of r . In particular, we show in Theorem 60 in Appendix E
that for any fixed r there exists a set R ⊆ [p] that does
not contain an r -weighted arithmetic progression such that
|R| = �(pα). Using these sets to construct batch codes results
with the following theorem, which is proved in Appendix E.

Theorem 47: For every 0 < α < 1, k = O(nα), and fixed
r � 3, there exists an (r, k)-batch code of dimension n and
rate r

r+k .

IX. IMPROVED CONSTRUCTION OF BATCH CODES FROM

THE ARRAY CONSTRUCTION

In this section, we provide a generalization for the array
construction, which results in the construction of non-binary
k-batch codes of redundancy �(

√
n) for any fixed k. In the

original array construction, every diagonal was encoded by
adding a parity bit which equals the sum of all the bits in the
diagonal. In other words, every diagonal was encoded using
the simple parity code of minimum distance two. Furthermore,
we had to pick the set of diagonals carefully so that the code
will be a batch code. Here we show that by using codes of
distance d = k to encode the diagonals, we can use all the

2in fact, they called them A sequences but subsequent papers used the term
without 3-term arithmetic progression.
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diagonals in the array and the resulting code will still be a
batch code.

Construction 48 (Generalized Array Construction): Let F

be a finite field of size q, and let r, p, n, k be positive
integers such that k � p, n = r p, and S ⊆ [p] be a
subset of size k. We denote S = {s0, s1, . . . , sk−1} where
0 � s0 < s1 < · · · < sk−1 � p − 1. Let ε : F

r → F
r+m

be the systematic encoder of an [r + m, r ]q code, i.e., of
dimension r and redundancy m over F, so we can write
ε(x1, x2, . . . , xr ) = (x1, x2, . . . , xr , ρ1, ρ2, . . . , ρm) and for
simplicity we consider only the redundancy part of the encoder,
so ε(x1, x2, . . . , xr ) = (ρ1, ρ2, . . . , ρm). We define the encoder
Er,p,S,ε, as a mapping Er,p,S,ε : F

n → F
k·p·m as follows.

The input vector x ∈ F
n is represented as an r × p array,

that is x = (xi, j )(i, j )∈[r]×[p] and is encoded to the following
k · p redundancy words ρ�,t ∈ F

m of size m, for � ∈ [k], and
t ∈ [p],

ρ�,t = ε(x�,t ), where x�,t = (xi, j )(i, j )∈Ds�,t .

Let Er,p,S,ε(x) = (ρ0,0, . . . , ρ0,p−1, . . . , ρk−1,0, . . . ,
ρk−1,p−1), and the code CG(r, p, S, ε) is defined to be

CG(r, p, S, ε) = {(x, Er,p,S,ε(x)) : x ∈ F
n}.

In the next lemma we show how to use codes with minimum
distance k in the Generalized Array Construction in order to
construct k-batch codes.

Lemma 49: Let F be a finite field, r, p, k be positive inte-
gers and S ⊆ [p] be a set of size k − 1 � p. Let ε be
a systematic encoder of a code of dimension r , minimum
distance k and redundancy m over F. If p is a prime number
then the code C = CG(r, p, S, ε) is a k-batch code of
dimension n = r p and redundancy (k − 1)pm over F.

Proof: Denote S = {s0, s1, . . . , sk−2} and let R =
{(i0, j0), (i1, j1), . . . , (ik−1, jk−1)} ⊆ [r ]× [p] be the multiset
of k requested symbols. We assume w.l.o.g. that the last z
symbols in R are different, and all the other k − z symbols
are repetitions of these symbols. Denote w = k − z, U =
{(iw, jw), . . . , (ik−1, jk−1)}, and P = R \ U . Now we show
how to construct k disjoint recovering sets for these symbols.
First, for symbols in U , we simply recover them by the trivial
recovery sets, i.e., the symbol itself. For symbols inside P ,
we use properties of the original array construction. According
to Lemma 36, for every � ∈ [w], the partition set Ps�(r, p)
has a set that contains the entry (i�, j�). Thus, there exist w
sets Ds0,t0, Ds1,t1, . . . , Dsw−1,tw−1 such that (i�, j�) ∈ Ds�,t� for
every � ∈ [w].

For � ∈ [w], let I� denote the set of all the symbols that
are contained in Ds�,t� and another set Ds�� ,t�� for �� �= � ∈
[w] or U . Formally,

I� = {(i, j) ∈ Ds�,t� : ∃�� �= � ∈ [w], (i, j) ∈ Ds�� ,t�� ∪U}.
According to Lemma 37, |Ds�1 ,t�1

∩Ds�2 ,t�2
| � 1 for any �1 �=

�2 ∈ [k − 1], and |U | = k − w, therefore it follows that
|I�| � |U |+w−1 = k−1 for any � ∈ [w]. Now, for � ∈ [w],
we define

R� = {ρ�,t�} ∪ {xi, j : (i, j) ∈ Ds�,t� \ I�}.

These w sets (together with the previously chosen k − w
trivial sets) are disjoint since the intersection between them
was removed by removing the symbols in I� from every set.
It remains to prove that R� is a recovery set for (i�, j�) when
� ∈ [w]. To this end, notice that the vector c = (v, ρ�,t�),
where v = (xi, j : (i, j) ∈ Ds�,t�), is a codeword of a code
with minimum distance k. Reading the symbols of R� means
we are able to construct the vector ce = (ve, ρ�,t� ), where
ve = (xi, j : (i, j) ∈ R�). Since |I�| � k − 1, it follows
that ce can be received from c by erasing at most k − 1
entries, and therefore c can be recovered from ce. Finally,
since (i�, j�) ∈ Ds�,t� , we have also recovered the symbol at
position (i�, j�).

Next, we show an explicit result for a construction of batch
codes.

Theorem 50: Let n, p, q be positive integers such that
n = p2, p is a prime number and p + k − 1 < q. Then for
k � p + 1, there exists a k-batch code over Fq of dimension
n and redundancy (k − 1)2 p.

Proof: The proof follows directly from Lemma 49 by
using an MDS code over Fq of dimension p, minimum
distance k, and redundancy k − 1.

The following corollary follows directly from the last the-
orem.

Corollary 51: For sufficiently large n, and fixed value of k,
there exists a k-batch code of dimension n with redundancy
�(
√

n) over Fq , where q satisfies q >
√

n + k − 1.
The next theorem will establish the result for binary batch

codes.
Theorem 52: Let n, p be positive integers such that

n = p2 and p is a prime number. Then, for k < p/ log p, there
exists a binary k-batch code of dimension n and redundancy
O((k − 1)2√n log(n)).

Proof: According to Lemma 49, it suffices to find a binary
code C of dimension p, minimum distance k, and redundancy
O((k − 1) log(p)). To accomplish this task for k < p/ log p,
we use BCH codes (see [24, Ch. 8.4]), and therefore the
theorem is proved.

The following corollary follows directly from the last the-
orem.

Corollary 53: For k � √n/ log n, it holds that

rB(n, k) = O((k − 1)2√n log(n)).

In particular, for 0 < � � 0.25, it holds that

rB(n, k = n�) = O(n0.5+2�+),

and rB(n, k) = O(
√

n log(n)) for fixed k.
It should be noted that [27] constructed binary k-batch

codes with redundancy O(
√

n log(n)) for fixed k. However,
the constant multiplying

√
n log(n) in their work was signif-

icantly larger than our constant. More precisely, we get that
rB(n, k) = O(k2√n log(n)) while [27] get that rB(n, k) =
O(k2 ek/2√n log(n)) for fixed k.

Let us denote

rB(k = n�) = O(nδ(�)).

In Fig. 4 we plot upper and lower bounds on the asymptotic
behavior of the redundancy of batch codes, i.e. δ(�). The lower
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Fig. 4. Asymptotic results for binary batch codes.

bound is the same as PIR codes, while the upper bounds are
received from Theorem 25 from Section V, and Corollary 46
from Section VIII, and Corollary 53 from Section IX, and
Corollary 31 and Theorem 32 from Section VI. Moreover,
note that Reed-Muller codes can be used to construct batch
codes for � < 1 using the techniques described in section V.
However, since Reed-Muller codes have rate at most 1/2, their
upper bounds were not added to the figure, as they will result
with δ = 1 for all � < 1.

X. OTHER RESULTS

In this section we prove two more results on batch codes.
First we show that for k = 5, there exists a batch code
with redundancy θ(

√
n), thereby improving a previous result

from [27]. Then, we show a similar order of redundancy can
be achieved for any fixed k if at the multiset request every bit
can be requested at most twice.

We show how to use Construction 34 in order to construct
5-batch codes with optimal order of redundancy. The proofs
of Theorem 54 and Theorem 55 are deferred to Appendix F.

Theorem 54: Let n = p2 where p is a prime number. The
code C, that extends CA(r = p, p, S = [4]) by adding one all-
parity bit, is a 5-batch code with redundancy 4 p+1 = θ(

√
n).

Next we show how to construct k-batch codes with multi-
plicity 2 in the request set. That is, every bit can be requested
at most twice.

Theorem 55: Let n = p2 where p is prime, and let 5 � k be
a positive integer. Assume that (k−2)(k−3)

2 < p. Then, the code
C = CA(r = p, p, S = [ (k−2)(k−3)

2 + 1] is a k-batch code
under the constraint that each bit is requested at most twice.

XI. CONCLUSION

In this work we studied constructions of PIR and batch
codes when k = n� or when the value of k is a fixed constant.
For k = o(n), we show that there exist asymptotically optimal
k-PIR and k-batch codes with rate approaching one. Fig. 3
summarizes the results for the PIR case when k = n� ,

while Fig. 4 shows the results for batch codes. When k is
fixed, the best constructions for PIR codes achieve redundancy
O(k
√

n). More precisely, PIR codes based on Steiner systems
from [11] result in

√
(k − 1)(k − 2)n, while Type-1 DTI codes

from [17] achieve redundancy of (k−2)
√

n, only when k is of
the form k = 2� + 2. Our PIR codes in this paper, which are
based on the array construction, have redundancy of (k−1)

√
n.

For the case of batch codes, we improve upon the previous
results for fixed k and construct binary k-batch codes with
redundancy of O((k − 1)2√n log n), and non-binary k-batch
codes with redundancy O((k − 1)2√n), when the field size is
at least

√
n + k − 1.

Even though this work does not introduce new results
for the lower bound of the codes studied in this paper,
we strongly believe that it can be significantly improved.
Currently, the best lower bound for k-PIR codes or k-batch
codes is �(max{k,

√
n}), which implies that, asymptotically,

the lower bound for k = 3 is the same as for k = √n. Fur-
thermore, despite the fact that batch codes impose a stronger
requirement than PIR codes, they still have the same lower
bound as PIR codes.

APPENDIX A

A. Proof of Lemma 10

Assume in the contrary that there exist two different poly-
nomials P1, P2 ∈ Fq [x1, . . . , xs] of degree at most d that
have equal values on the interpolation set A. That is, for
a ∈ A, P1(a) = P2(a). We prove that for every point x =
(x1, . . . , xs) ∈ F

s
q , P1(x) = P2(x). The proof is by induction

on the number of coordinates xi of x such that xi /∈ Ai .
Formally, the induction is on n(x) = |{i ∈ [s] : xi /∈ Ai }|.
The base is trivial since for x, such that n(x) = 0, x ∈ A
and this holds according to our assumption. Next, we assume
that the induction assumption holds, i.e., for all x ∈ Fs

q such
that n(x) < k, P1(x) = P2(x), and prove the claim for all
x such that n(x) = k. Let x = (x1, . . . , xs) be such that
n(x) = k > 0. Assume without loss of generality (w.l.o.g)
that x1 /∈ A1. We define the following univariate polynomials

p�1(y) = p1(y, x2, . . . , xs),

p�2(y) = p2(y, x2, . . . , xs).

By the induction assumption, we know that p�1(y) = p�2(y)
for every y ∈ A1. Since deg(p�1), deg(p�2) � d , we get that
p�1(y) = p�2(y) fer every y and thus p�1(x1) = p�2(x1) which
completes the proof. �

B. Proof of Lemma 11

One can show that the polynomial P(x)/xd
s is a polynomial

Q in the variables x1
xs

, x2
xs

, . . . , xs−1
xs

with degree at most d .
Therefore, according to Lemma 10, the set A is an interpola-
tion set for Q and thus for P . �

C. Proof of Lemma 13

Let r = � q
d+1	, and let A1, . . . , Ar be r mutually disjoint

sets, each of size d+1, that partition the first (d+1)r elements
of Fq . For every i = (i1, . . . , is−1) ∈ [r ]s−1, we denote by Ri
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the set Ri = Ai1 ×· · ·× Ais−1 ×{1}. According to Lemma 11,
Ri is an interpolation set for every i . It remains to prove that
Ri and Ri � are disjoint under multiplication for all i �= i �.
Let x = (x1, . . . , xs−1, 1) ∈ Ri and α ∈ Fq \ {0}. If α �= 1
then clearly αx /∈ Ri � . Thus, we need to prove that x /∈ Ri � .
Let j be the first index such that i j �= i �j . Then Ai j ∩ Ai �j =∅ and hence for every x ∈ Ri , x j ∈ Ai j and x j /∈ Ai �j ,

so x /∈ Ri � . �

APPENDIX B

A. Proof of Theorem 19

According to Theorem 18, there exists a non-binary k �-PIR
code C � of length N � over the field FQ with dimension n� and
redundancy r � such that

k � = �((n�)(1−
1
s )(1−α)),

Q = (n�)�((n�)α),

r � = O((n�)1− α
s ).

We construct a binary PIR code C from C � by converting every
symbol of FQ to log(Q) = �((n�)α log(n�)) bits. Note that
this does not change the value of k since every bit has the
corresponding recovering sets of the symbol in FQ that it
belongs to. We show that the code C is an [N, n, k]P PIR
code with redundancy r = N −n and these parameters satisfy
the following properties, where we also use that n� = θ(N �),

n = n� log(Q) = �((n�)1+α log(n�)),
N = N � log(Q) = �((n�)1+α log(n�)) = �(n),

k = k � = �((n�)(1−
1
s )(1−α)),

r = r � log(Q) = �(r �(n�)α log(n�)) = �((n�)1− α
s +α log(n�)).

Therefore, we get that n� = �
(
(n/ log(n))

1
1+α

)
and

k = �
(
(n/ log(n))(1−

1
s ) 1−α

1+α
)
,

r = O(
n1− α

s(1+α) (log(n))
α

s(1+α)
)
.

The second part of the claim can be verified by placing
� = (1− 1

s ) 1−α
1+α , which implies that α = s−1−�s

s−1+�s . �

APPENDIX C

A. Proof of Theorem 24

Let s = 2, m = �qα	, k = �q1−2α	, and d = m(q −
km − 2). Since km = o(q), we get according to Lemma 23
that CM (m, d, s, q) is a k-batch code [q2, n, k]BQ , where n =
(d+2

2 )
(2+m−1

2 )
and Q = q(2+m−1

2 ). Since the code length is N = q2,

we get

n =
(d+2

2

)

(m+1
2

) = �(N),

k = �(n0.5−α),

Q = q(m+1
2 ) = q�(q2α) = q�(nα) = n�(nα).

The redundancy of this code is

r = q2 −
(d+2

2

)

(m+2−1
2

) = q2 − (d + 1)(d + 2)

m(m + 1)

� q2 − d2

m(m + 1)
= q2 − m2(q − km − 2)2

m(m + 1)

= (m + 1)q2 − m(q2 − 4q + 4− 2(q − 2)km + k2m2)

m + 1

= q2 + 2(q − 2)km2

m + 1
+ 4mq − 4m − k2m3

m + 1

= O(
q2

m
+ qkm) = O(q2−α) = O(n1− α

2 ).

The second part of the claim can be verified by denoting
α = 0.5− �. Lastly, in case n is not of the form

(d+s
s

)
/
(s+m−1

s

)

then we can use the same technique used for PIR codes. �

B. Proof of Theorem 25

Let 0 < α� < 0.5. According to Theorem 24, there exists a
k �-batch code, C �, over the field FQ of length N �, dimension
n�, redundancy r � such that

k � = �((n�)0.5−α�)

r � = O((n�)1− α�
2 )

Q = (n�)�((n�)α� )

As for PIR codes, we construct binary batch code from C � by
converting every symbol of FQ to log(Q) = �((n�)α� log(n�))
bits. Let us now calculate the parameters of the new code.
Denote the length, dimension of the binary code by N, n,
respectively. The redundancy of the code will be r = N − n
and k is the availability parameter of the new code. Since
n� = θ(N �) it follows that

N = N � log(Q) = �((n�)1+α� log(n�)),
n = n� log(Q) = �((n�)1+α� log(n�)),
k = k � = �((n�)0.5−α�),

r = r � log(Q) = �(r �(n�)α� log(n�)) = �((n�)1+ α�
2 log(n�)).

Therefore, we get that n� = �
(
(n/ log(n))

1
1+α�

)
and

k = �
(
(n/ log(n))

0.5−α�
1+α�

) = �
(
(n/ log(n))

0.5− 3α�
2(1+α�)

)

r = O(
n

1− α�
2(1+α�) (log(n))

α�
2(1+α�)

)

Denote α = 3α�
2(1+α�) . Then we get that 0 < α � 0.5 and

k = �
(
(n/ log(n))0.5−α

)

r = O(
n1− α

3 (log(n))
α
3
)

The second part of the claim can be verified by denoting
α = 0.5− �. �
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APPENDIX D

A. Proof of Lemma 36

Since the set Ps(r, p) contains p sets, each of size r ,
it suffices to prove that all the sets in Ps(r, p) are mutually
disjoint. Assume in the contrary that there exists 0 � t1 <
t2 � p − 1 such that Ds,t1 ∩ Ds,t2 �= ∅. Hence there exist
0 � i1, i2 � r − 1 such that

(i1, �t1 + i1s�p) = (i2, �t2 + i2s�p),
which implies that i1 = i2 and t1 = t2, in contradiction. �

B. Proof of Lemma 37

Let s1 �= s2 ∈ S and t1, t2 ∈ [p], and assume in the contrary
that there exist two entries a, b ∈ [r ]× [p], a �= b that appear
in the sets Ds1,t1 and Ds2,t2 . Let a = (i1, j1), b = (i2, j2)
where i1, i2 ∈ [r ] and j1, j2 ∈ [p]. It is clear that i1 �= i2,
otherwise a and b cannot appear in the same set. Assume
w.l.o.g. that i1 < i2. Since a, b ∈ Ds1,t1 , we get

j1 = �t1 + i1s1�p, j2 = �t1 + i2s1�p.
Similarly a, b ∈ Ds2,t2 , therefore

j1 = �t2 + i1s2�p, j2 = �t2 + i2s2�p.
Thus, we get that

�(i2 − i1)s1�p = �(i2 − i1)s2�p.
If the first condition holds, then p is prime and then we get
that s1 = s2, in contradiction. If the second condition holds
then (i2 − i1)s1, (i2 − i1)s2 < p, and again we get s1 = s2 in
contradiction.

APPENDIX E

In this appendix we prove Theorem 57. First, we state the
result of Behrend for r = 3, and then we show how to extend it
for any fixed r . The following theorem was proved by Behrend
in [2].

Theorem 56: For every 0 < α < 1, and sufficiently large
p, there exists a set S ⊆ [p] of size �(pα) such that S does
not contain a 3-term arithmetic progression.

The following corollary follows directly from Theorem 43
and Theorem 56.

Corollary 57: For every 0 < α < 1 and k = O(nα),
there exists a (3, k)-batch code of dimension n and rate

3
3+k .

The technique of Behrend can be extended for any constant
value of r . This will guarantee that for every 0 < α < 1,
and for sufficiently large p, there exists a set S ⊆ [p] of size
�(pα) such that S does not contain an r -weighted arithmetic
progression. First, we define vr (p) to be the size of the largest
subset of [p] which does not contain an r -weighted arithmetic
progression.

Definition 58: For any integers r , d � 2, n � 2, k � n(d−
1)2, we define the set

Rr,k(n, d) = {a1 + a2(rd − 1)+ · · · + an(rd − 1)n−1 :
0 � ai < d, a2

1 + a2
2 + · · · + a2

n = k}.

Lemma 59: The set R=Rr,k(n, d) does not contain an
r-weighted arithmetic progression.

Proof: Assume in the contrary that there exist three
elements A1 �= A2 �= A3 ∈ R and 0 < x, y < r where
x+y < r such that x A1+y A2 = (x+y)A3. For a nonnegative
integer A < (rd−1)n, we define u(A) to be the unique vector
(a1, a2, . . . , an) such that A = a1+a2(rd−1)+· · ·+an(rd−
1)n−1 and 0 � ai < rd−1 for 1 � i � n. We define norm(A)
to be the Euclidean norm of u(A), i.e., norm(A) = ||u(A)|| =√

a2
1 + a2

2 + · · · + a2
n . Then,

norm(x A1 + y A2) = norm((x+y)A3) = (x + y)
√

k,

norm(x A1)+ norm(y A2) = (x + y)
√

k.

Since A1, A2 ∈ R and 0 < x + y < r we get according to the
triangle inequality that

norm(x A1 + y A2) = ||u(x A1 + y A2)||
= ||xu(A1)+ yu(A2)||
� ||xu(A1)|| + ||yu(A2)||
= norm(x A1)+ norm(y A2).

Equality holds if and only if xu(A1) and yu(A2) are propor-
tional, which means u(A1) and u(A2) are proportional, and
therefore also A1 and A2. Since the norms of A1 and A2 are
equal, this means that A1 = A2 which is a contradiction.

We are now ready to prove the main result of this section
for a lower bound on the value of vr (p).

Theorem 60: Let r be a positive integer and 0 < α <
1. Then for all � > 0 and sufficiently large p, vr (p) >

p
1− 3 log r+�√

log p . In particular, for any fixed r there exists a set
R ⊆ [p] that does not contain an r-weighted arithmetic
progression such that |R| = �(pα).

Proof: There are dn different vectors (a1, a2, . . . , an)
that satisfy 0 � ai < d , and there are n(d − 1)2 + 1
different values of k in the definition of Rr,k(n, d). Therefore,
there exists a value of k such that Rr,k(n, d) contains at
least dn/(n(d − 1)2 + 1). Since all the terms in Rr,k(n, d) are
smaller than (rd − 1)n , we get that

vr ((rd − 1)n) � dn

n(d − 1)2 + 1
>

dn−2

n
.

Let p be given. Choose n =
⌊√

log(p)
log(r)

⌋
, and d such that

(rd − 1)n � p < (rd + r − 1)n.

Then,

vr (p) � vr ((rd − 1)n) >
dn−2

n
>

(p1/n − (r − 1))n−2

nrn−2

= p1−2/n

nrn−2 (1− (r − 1)p−1/n)n−2.

Since (1 − (r − 1)p−1/n)n−2 p→∞−−−→ 1, it follows that for
sufficiently large p

vr (p) >
p1−2/n

nrn−1 = p1− 2 n− log n
log p− (n−1) log r

log p > p
1− 3 log r+�√

log p ,

for any � > 0.
Thus, Theorem 57 follows directly from Theorem 43 and

Theorem 60.
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APPENDIX F

A. Proof of Theorem 54

Let x = (xi, j )(i, j )∈[p]×[p] be the information bits, which are
systematically encoded to y = (x, ρ1, . . . , ρ4p+1). We denote
the requested bits by R = {(i0, j0), (i1, j1), . . . , (i4, j4)}.
According to Theorem 38, the code C is a 5-PIR code and
thus every bit has 5 recovering sets. We divide the proof to
the following cases.

Case 1: Only a single bit is requested more than once. This
case can be easily solved according to Lemma 3 from [27].

Case 2: R = {(i0, j0), (i0, j0), (i1, j1), (i1, j1), (i2, j2)}.
This case follows immediately from Theorem 55.

Case 3: R = {(i0, j0), (i0, j0), (i0, j0), (i1, j1), (i1, j1)}.
Since C is a 5-PIR code, every bit has 5 disjoint recovering
sets. Let S0, S1, S2, S3, S4 be the recovering sets of (i0, j0).
Since these sets are mutually disjoint, it follows that at least 4
of them do not contain the bit in location (i1, j1). Denote
w.l.o.g. these sets by S1, S2, S3, S4. Thus, we take S1, S2, S3 as
recovering sets for (i0, j0). As for (i1, j1), the first recovery set
is {xi1, j1}. Let T be the set of all the entries of the codeword y.
Denote U = T \ {S1 ∪ S2 ∪ S3 ∪ S4 ∪ {xi1, j1}}. Now we prove
that U is a recovery set for (i1, j1). Notice that

∑
x∈T x = 0

because of the global parity bit. Moreover, since S1, S2, S3, S4
are recovery sets of (i0, j0), we get that

∑4
t=1

∑
x∈St

x = 0.
Therefore, if follows that

∑
x∈U x = xi1, j1 . Finally, it is clear

that all the chosen recovery sets are disjoint, and therefore the
claim is proved. �

B. Proof of Theorem 55

Let x = (xi, j )(i, j )∈[p]×[p] be the information symbols. Since
for 5 � k it holds that (k−2)(k−3)

2 + 2 � k, the code C
is a k-PIR code according to Theorem 38, and therefore if
at most one bit is requested twice then this can be easily
solved according to Lemma 3 from [27]. Otherwise, let R =
{(i0, j0), (i1, j1), . . . , (ir−1, jr−1)} be the requested bits, r �
k − 2, where some of these bits are requested twice. According
to Construction 34 and the proof of Theorem 38, the code has
� = (k−2)(k−3)

2 + 1 partitions of [p] × [p], P0, P1, . . . , P�−1,
where every partition corresponds to a different slop in S.
We say that a partition P is bad if there exist two elements
in R which appear in the same set in P . Since the number
of pairs of elements in R is r(r−1)

2 < �, and every such pair
appears in at most one set according to Lemma 37, we can
find a partition, w.l.o.g. P0, that is not bad, i.e., each bit in
R appears in different set in P0. Therefore, there exist sets
D0,t0, D0,t1 , . . . , D0,tr−1 ∈ P0, such that (is, js) ∈ D0,ts for
every s ∈ [r ]. Furthermore, according to Lemma 36, these sets
do not intersect. Therefore, we conclude that the following 2r
sets

R�1 = {ρ0,t�} ∪ {xi �, j � : (i �, j �) ∈ D0,t� \ {(i, j)}}
R�2 = {xi�, j�}

for � ∈ [r ], are mutually disjoint recovering sets for the
requested bits. �
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