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Abstract— The sequence reconstruction problem, first proposed
by Levenshtein, models the setup in which a sequence from
some set is transmitted over several channels, and the decoder
receives the outputs from every channel. The channels are almost
independent as it is only required that all outputs are different
from each other. The main problem of interest is to determine
the minimum number of channels required to reconstruct the
transmitted sequence. In the combinatorial context, the problem
is equivalent to finding the maximum intersection between two
balls of radius t , where the distance between their centers is
at least d . The setup of this problem was studied before for
several error metrics such as the Hamming metric, the Kendall-
tau metric, and the Johnson metric. In this paper, we extend
the study initiated by Levenshtein for reconstructing sequences
over the deletion channel. While he solved the case where the
transmitted sequence can be arbitrary, we study the setup, where
the transmitted sequence belongs to a single-deletion-correcting
code and there are t deletions in every channel. Under this
paradigm, we study the minimum number of different channel
outputs in order to construct a successful decoder.

Index Terms— Reconstruction of sequences, deletion and inser-
tion correcting codes.

I. INTRODUCTION

THE sequence reconstruction problem was first introduced
by Levenshtein in [13] and [14]. Under this paradigm, he

studied the minimum number of different (noisy) channels that
are required in order to reconstruct a transmitted sequence,
given that the same sequence is transmitted through every
channel, each channel output is distinct, and a decoder receives
all the outputs. For a sequence x, the error ball of x is the
set of possible sequences given that x is transmitted through
some noisy channel. In [13], Levenshtein showed that the
number of channels required to recover such a sequence has
to be greater than the maximum intersection between the error
balls of any two transmitted sequences. This problem was first
motivated by the fields of biology and chemistry, however it
is also relevant for applications in wireless sensor networks
where a collection of nodes, each with partial information
about the operating environment, are trying to form a common
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operational picture (COP). In this case, each of the received
subsequences could represent the information available to that
node [18].

Mathematically speaking, let C be a code over a space V
with a distance metric ρ : V × V → N. Assume that its
minimum distance is d and there are at most t errors in every
channel, where t > (d −1)/2. Then the problem of calculating
the value of

max
x1,x2∈C,ρ(x1,x2)�d

{|Bt(x1) ∩ Bt (x2)|}, (1)

where Bt (x) = { y ∈ V | ρ(x, y) � t} is the ball of radius
t surrounding x, is referred to as the sequence reconstruction
problem.

Solving the reconstruction problem stated in (1) was studied
in [13] with respect to several channels such as the Hamming
distance, Johnson graphs and other metric distances. In [9]–
[11], it was analyzed for permutations, and in [15], [16] for
other general error graphs. The problem was studied in [24] for
permutations with the Kendall’s ς distance and the Grassmann
graph, and in [21] for insertions. Recently, this problem was
extended in the context of associative memories [23]. Under
this setup, the largest intersection of multiple balls was studied,
where the distance between the centers of every two of
them is at least some prescribed value. In the reconstruction
model, this problem is equivalent to the required number of
sequences in order to output a list of some L sequences
which contains the transmitted sequence. This problem was
also studied in [7] for the purpose of asymptotically improving
the Gilbert-Varshamov bound.

Solving the reconstruction problem for the deletion channel
has received a significant attention in the literature. In fact,
one of the first models Levenshtein studied in [14] was for
insertions and deletions along with reconstruction algorithms.
The design of such algorithms for the probabilistic model of
the reconstruction problem was also studied in [1], [8], and
[22] and only for deletions in [5] and [6]. In In [19] and [20]
an information- an information-theoretic study was carried for
a special case of deletions in the context of DNA sequences.

In this work, we consider the combinatorial reconstruction
problem for the deletion channel. While Levenshtein assumed
in [13] and [14] that the transmitted sequences are arbitrary,
we assume here that their Levenshtein distance is at least two
and study the minimum number channel outputs needed in
order to correct t deletions in every channel. Here we refer to
the deletion ball of a sequence x with radius t to be the set
of all sequences obtainable from t deletions in x. Our main
result is showing that for t < n

2 and n � 8, this value is
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given by

N(n, t) � 2D(n − 4, t − 2) + 2D(n − 5, t − 2)

+2D(n − 7, t − 2) + D(n − 6, t − 3) + D(n − 7, t − 3),

where D(m, s) is the largest size of a deletion ball for
sequences of length m with s deletions. For example, we get
that N(n, 2) = 6. That is, if the transmitted sequence belongs
to a single-deletion-correcting code and two deletions occurred
in every channel, then 7 channels are sufficient to construct a
successful decoder.

We believe the case where the transmitted sequences belong
to a single-deletion-correcting code is interesting for several
reasons. First, we believe this result may shed light on the
more general setup where the transmitted sequence belongs
to a multiple-deletion-correcting code. This is discussed later
in Section V. In addition, this work contains results which
pertain to computing the number of possible subsequences
of a given sequence. Such results could potentially be used
to derive bounds on the cardinalities of deletion-correcting
codes. Lastly, we note that the Varshamov-Tenengolts code
can be used to construct a single-deletion-correcting codebook
and the resulting code is currently the only known code
construction which is asymptotically optimal [12].

The rest of this paper is organized as follows. In Section II,
we introduce our notation and establish some preliminary
results. In Section III, we show that N(n, t) is a lower bound;
that is, we find two sequences of Levenshtein distance two
such that the intersection size of their deletion balls is N(n, t).
In Section IV, we show that N(n, t) is also an upper bound,
thereby establishing equality. Section V concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

We denote by F2 the set {0, 1}. Let x be a length-n binary
sequence in F

n
2. A sequence y ∈ F

n−t
2 is the outcome of t

deletions from x if y is a subsequence of x. The deletion ball
of radius t centered at x ∈ F

n
2 is defined to be

Dt (x) = { y ∈ F
n−t
2 | y is a subsequence of x}.

For two sequences x1, x2 ∈ F
n
2, we say that their Levenshtein

distance is t , and denote dL(x1, x2) = t if Dt (x1)∩Dt (x2) �=
∅ and Dt−1(x1)∩Dt−1(x2) = ∅. Equivalently, the Levenshtein
distance is one half the minimum number of insertions and
deletions required to convert x to y. The minimum Levenshtein
distance of a code C ⊆ F

n
2 is the minimum Levenshtein

distance between any two different sequences in C. The code is
called a t-deletion-correcting code if its minimum Levenshtein
distance is at least t+1. For notational convenience, we denote
Dt (x) = ∅ when t < 0 and thus |Dt (x)| = 0. A run of x is a
maximal interval which consists of the same symbol.

Let an ∈ F
n
2 be the alternating sequence where its first bit

is 1. For 0 < t < n, we denote by D(n, t) the maximum size
of a deletion ball of radius t , i.e.,

D(n, t) = max
x∈F

n
2

{|Dt (x)|}.
It is known from [2] that

D(n, t) = |Dt (an)| =
t∑

i=0

(
n − t

i

)
, (2)

and from [2] the following recursion holds

D(n, t) = D(n − 1, t) + D(n − 2, t − 1). (3)

We assume here and afterwards that D(n, t) = 0 if t > n,
n < 0, or t < 0. The main goal of this work is to study the
combinatorial value

N(n, t1, t2) = max
x,y∈F

n
2,dL (x,y)�t1

{|Dt2(x) ∩ Dt2(y)|}, (4)

where 0 < t1 < t2 < n. In [14], Levenshtein studied the case
t1 = 1 (i.e. x and y only need to be different from each other)
and showed that for 1 < t2 � n − 1

N(n, 1, t2) = 2D(n − 2, t2 − 1). (5)

This value is achieved for example as the intersection of the
balls centered at the two sequences

x = (0, 1, an−2), y = (1, 0, an−2).

In this paper we will focus on the combinatorial problem
stated in (4) for t1 = 2. Our main result in the paper is showing
that for t1 = 2 and n � 8,

N(n, 2, t) = N(n, t),

where N(n, t) is given by

N(n, t) = 2D(n − 4, t − 2) + 2D(n − 5, t − 2)

+2D(n − 7, t − 2)

+D(n − 6, t − 3) + D(n − 7, t − 3), (6)

when t < n/2 and N(n, t) = 2n−t when t � n/2. In fact,
it is not hard to verify that if t � n/2 then N(n, t) =
2n−t since one can consider the intersection of the sequences
x = 1001an−4 and y = 0110an−4, which are of Levenshtein
distance two from each other since D2(0110) = D2(1001) =
{00, 01, 10, 11}. Furthermore, for t � n

2 , Dt (x) = Dt (y) =
{0, 1}n−t since both of these sequences are concatenations of
pairs of 01 or 10. We used a computer search to determine the
values of N(n, 2, t) for n � 9, and the relation N(n, 2, t) =
N(n, t) holds for n = 8 and n = 9. Thus, unless stated
otherwise, we assume in this paper that the values of n and t
satisfy n � 10 and t < n

2 .
Let X ⊆ F

n
2 be a set and v a sequence of length at most n.

We denote by X v the set of all sequences in X that start with
the sequence v, that is,

X v = {x ∈ X | v is a prefix of x}.
Similarly, Xv is the set of all sequences in X that end with
the sequence v. We can apply these notations simultaneously
so for two sequences v1, v2 each of length at most n, X v1

v2 is
the set of all sequences starting with v1 and ending with v2.
For a sequence v ∈ F

m
2 and a set X ⊆ F

n
2, the set v ◦ X is

the result of prepending the sequence v before every sequence
in X ,

v ◦ X = {(v1, . . . , vm , x1, . . . , xn) | (x1, . . . , xn) ∈ X }.
Similarly, the set X ◦ v consists of the concatenation of the
sequence v at the end of every sequence in X .
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We finish this section with the following two lemmas which
follow from the same ideas as in [4] and [17], and therefore
whose proofs have been omitted. These lemmas will be used
repeatedly in the next two sections. The first one claims that
finding the cardinality of a set can be done by splitting it into
mutually disjoint sets according to the prefixes and suffixes of
its sequences.

Lemma 1: Let n, m1, m2, be positive integers such that m1+
m2 � n, and X ⊆ F

n
2 . Then,

|X | =
∑

x1∈F
m1
2

∑

x2∈F
m2
2

∣∣X x1
x2

∣∣ .

As an immediate result of Lemma 1, we conclude that for
every x ∈ F

n
2 and two positive integers m1, m2 such that m1 +

m2 � n − t , the following equality holds

|Dt (x)| =
∑

x1∈F
m1
2

∑

x2∈F
m2
2

∣∣Dt (x)x1
x2

∣∣ . (7)

The second lemma claims that finding all sequences in a
deletion ball Dt (x) which start with x1 and end x2 can be
done by first finding the smallest prefix, suffix that contains
x1, x2 as a subsequence, respectively, and then calculating the
deletion ball in the remainder of the sequence x.

Lemma 2: Let n, m1, m2, t be positive integers, and x ∈
F

n
2, x1 ∈ F

m1
2 , x2 ∈ F

m2
2 . Assume that k1 is the smallest integer

such that x1 is a subsequence of (x1, . . . , xk1 ) and k2 is the
largest integer where x2 is a subsequence of (xk2 , . . . , xn).
If k1 < k2 then

Dt (x)x1
x2

= x1 ◦ Dt∗(xk1+1, . . . , xk2−1) ◦ x2,

where t∗ = t − (k1 − m1) − (n − k2 + 1 − m2). In particular,
∣∣Dt (x)x1

x2

∣∣ = ∣∣Dt∗(xk1+1, . . . , xk2−1)
∣∣ .

Lastly, we state the following claim, whose proof is straight-
forward. For a binary sequence x = (x1, x2, . . . , xn−1, xn), let
R(x) = (xn, xn−1, . . . , x2, x1), and x̄ = (1 − x1, . . . , 1 − xn).

Claim 1: Let x, y ∈ F
n
2 . Then,

|Dt (x) ∩ Dt (y)| = |Dt (R(x)) ∩ Dt (R(y))|
= |Dt (x̄) ∩ Dt ( ȳ)|.

The following example illustrates our notations.
Example 1: Let X ⊆ F

4
2 be the following set

X = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1),

(0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 1)}.
Then, X 0

0 = {(0, 1, 0, 0), (0, 1, 1, 0)}, X 0
1 = {(0, 0, 0, 1),

(0, 0, 1, 1), (0, 1, 0, 1)}, X 1
0 = {(1, 0, 0, 0)}, X 1

1 =
{(1, 0, 1, 1), (1, 1, 0, 1)}, and note that |X | = |X 0

0 | + |X 0
1 | +

|X 1
0 | + |X 1

1 |. Furthermore

(0, 1) ◦ X
= {(0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0),

(0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 1, 0), (0, 1, 1, 0, 0, 0),

(0, 1, 1, 0, 1, 1), (0, 1, 1, 1, 0, 1)}.
If x = (0, 1, 1, 0, 0, 1) then D3(x)1

0 = 1 ◦ D1((1, 0)) ◦ 0 =
1 ◦ {0, 1} ◦ 0, and |D3(x)1

0| = 2.

For x = (0, 1, 1, 0), y = (0, 1, 0, 1), we have that

R(x) = (0, 1, 1, 0), R(y) = (1, 0, 1, 0),

x̄ = (1, 0, 0, 1), ȳ = (1, 0, 1, 0),

and

D1(x) ∩ D1(y) = {(0, 1, 0), (0, 1, 1)}
D1(R(x)) ∩ D1(R(y)) = {(0, 1, 0), (1, 1, 0)}

D1(x̄) ∩ D1( ȳ) = {(1, 0, 1), (1, 0, 0)}.
In particular, |D1(x) ∩ D1(y)| = |D1(R(x)) ∩ D1(R(y))| =
|D1(x̄) ∩ D1( ȳ)|.

III. THE LOWER BOUND

The main goal of this section is to establish the value
of N(n, t) as a lower bound on N(n, 2, t). We accomplish
this task by showing in Theorem 3 that the sequences x =
(1, 0, an−4, 0, 1), y = (0, 1, an−4, 1, 0) of Levenshtein dis-
tance two satisfy

|Dt (x) ∩ Dt (y)| = N(n, t).

We first begin with the following simple, yet useful, claim
which is a restatement of a result from [17].

Claim 2: (c.f. [17], Lemma II.5) Let � < n, x ∈ F
n
2, y ∈

F
n−�
2 , where y ∈ D�(x) and � < t . Then, Dt−�(y) ⊆ Dt (x).
The following three claims are the results we need in order

to prove Theorem 3. The next claim is a result of counting
all sequences in the set Dt (an) ∩ Dt (ān) that start with a 1
symbol and all sequences in the set Dt (an)∩Dt (ān) that start
with the 0 symbol.

Claim 3: For all n and t,

|Dt (an) ∩ Dt (ān)| = 2D(n − 2, t − 1). (8)

The next claim follows by considering all sequences in the
set Dt (an−1, 0)∩Dt (ān−1, 0) that end with a 0 symbol and all
sequences in the set Dt (an−1, 0) ∩ Dt (ān−1, 0) that end with
a 1 symbol.

Claim 4: For all n and t,

|Dt (an−1, 0) ∩ Dt (ān−1, 0)|
= 2D(n − 3, t − 1) + D(n − 3, t − 2).

The next claim can be proven by first considering all
sequences in the intersection that start with the 1 symbol and
applying Claim 4, and then considering all sequences in the
intersection that start with the 0 symbol and applying Claim 2.

Claim 5: For even n and t,

Dt (an, 0) ∩ Dt (1, an)| = 2D(n − 3, t − 1)

+ D(n−3, t−2) + D(n−2, t−2).

The next theorem constitutes the lower bound.
Theorem 3: For all n and t, N(n, 2, t) � N(n, t).

Proof: We show here the proof for even values of n,
while the proof for odd values follows from similar ideas. Let
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Fig. 1. Outline of proof of upper bound.

x = (1, 0, an−4, 0, 1), y = (0, 1, an−4, 1, 0), and we denote
X = Dt (x) ∩ Dt (y). We first consider the set X 0

0 .

|X 0
0 | (a)= |0 ◦ (Dt−2(an−4) ∩ Dt (1, an−4, 1)) ◦ 0|

= |Dt−2(an−4) ∩ Dt (1, an−4, 1)|
(b)= |Dt−2(an−4)| = D(n − 4, t − 2), (9)

where (a) follows from Lemma 2 and (b) follows by applying
Claim 2 since an−4 ∈ D2(1, an−4, 1). By repeating the same
steps of X 0

0 , we get that

|X 1
1 | = D(n − 4, t − 2). (10)

For the set X 1
0 , we have from Lemma 2

|X 1
0 | = |1 ◦ (Dt−1(ān−3) ∩ Dt−1(an−3)) ◦ 0|

= |Dt−1(ān−3) ∩ Dt−1(an−3)| (a)= 2D(n − 5, t − 2),

(11)

where (a) follows from Claim 3. Similarly, for the set X 0
1 ,

we have

|X 0
1 | = |0 ◦ (Dt−1(an−4, 0) ∩ Dt−1(1, an−4)) ◦ 1|

= |Dt−1(an−4, 0) ∩ Dt−1(1, an−4)|
(a)= 2D(n − 7, t − 2) + D(n − 6, t − 3)

+ D(n − 7, t − 3), (12)

where (a) is a result of Claim 5. Finally, by applying Lemma 1
and summing (9), (10), (11), and (12) we get the result in the
statement of the theorem.

IV. THE UPPER BOUND

We now prove that the lower bound from the previous
section is also an upper bound. That is, we show that for any
pair of sequences, x, y where dL(x, y) � 2, the intersection
of their deletion balls is at most N(n, t). We proceed by
considering different possibilities for x, y and showing that
this result holds in all cases.

At a high level, the logical flow of the section is illustrated
in Figure 1. We first assume dL(x, y) � 2 and that x, y differ
on the first and last bits.

1) Lemma 5 shows that if x, y have more than N(n, t)
common subsequences, then x cannot have the same
value in positions one and two.

2) As a consequence of Lemma 5, if x, y have more than
N(n, t) common subsequences then the sequences can be
written as x = (1, 0, x
, ā, a) ∈ F

n
2, y = (0, 1, y
, a, ā) ∈

F
n
2 for some a ∈ F2.

3) Lemma 7 then shows that the intersection of the deletion
balls for x, y (as described in the previous sentence) is at
most N(n, t) and that we can write x = (1, 0, an−4, ā, a)
and y = (0, 1, an−4, a, ā).

4) Finally, in Theorem 8, we remove the restriction that
x and y differ in the first bit, and show that when
dL(x, y) � 2 for any x, y, the intersection of their
deletion balls is at most N(n, t).

We first introduce a few identities that will be used through-
out the section. From [14], we have

D(n, t) � D(n + 1, t + 1), (13)

and

D(n, t) � D(n + 1, t). (14)

The following corollary follows from (3) and (6).
Corollary 4: For all n and t, we have

N(n, t) = N(n − 1, t) + N(n − 2, t − 1). (15)

We begin by restricting our attention to sequences x, y that
differ on the first bit and the last bit.

Lemma 5: For all n and t, let x, y ∈ F
n
2 be such that x1 = 1,

y1 = 0 and

1) dL(x, y) � 2,
2) xn �= yn, and
3) x1 = x2.

Then, |Dt (x) ∩ Dt (y)| � N(n, t).
Proof: Assume first that xn = 0, so yn = 1 and we can

write

x = (1, 1, x
, 0), y = (0, y
, 1),

where x
 = (x 

1, . . . , x 


n−3) ∈ F
n−3
2 , y
 = (y 


1, . . . , y 

n−2) ∈

F
n−2
2 . Let X = Dt (x)∩Dt (y). We first consider the set |X 0|,

where we have

|X 0| � |Dt (x)0| � |Dt−2(x
, 0)0| � D(n − 3, t − 2).

Similarly,

|X 1
0 | � |Dt (y)1

0| � |Dt−2(y
)1
0| � D(n − 4, t − 2).

As for the set |X 1
1 |, assume first that x 


n−3 = 1 and y 

1 = 1.

Then we get

|X 1
1 | = ∣∣1◦(Dt−1(1, x 


1, . . . , x 

n−4) ∩ Dt−1(y 


2, . . . , y 

n−2)

)◦1
∣∣

= ∣∣(Dt−1(1, x 

1, . . . , x 


n−4) ∩ Dt−1(y 

2, . . . , y 


n−2)
)∣∣

� 2D(n − 5, t − 2),

where the last inequality holds since (1, x 

1, . . . , x 


n−4) �=
(y 


2, . . . , y 

n−2) as otherwise we won’t have dL(x, y) � 2.

To complete this part assume that x 

n−3 = 0, then we get

|X 1
1 | �

∣∣Dt−1(1, x
)1
∣∣ �

∣∣Dt−2(1, x 

1, . . . , x 


n−4)1
∣∣

� D(n − 4, t − 2).
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Using (3) and (6), it can be shown that D(n − 3, t − 2) +
2D(n − 4, t − 2) � N(n, t) for the case where x 


n−3 = 0. For
the case where x 


n−3 = 1, we show at the end of the proof that
D(n −3, t −2)+ D(n −4, t −2)+2D(n −5, t −2) � N(n, t)
so the result holds in either case.

We now consider the case xn = 1, so yn = 0 and

x = (1, 1, x
, 1),

y = (0, y
, 0),

and let X = Dt (x) ∩ Dt (y). As before, we get

|X 0| � D(n − 3, t − 2), |X 1
1 | � D(n − 4, t − 2).

and |X 1
0 | � 2D(n − 5, t − 2).

Finally, we conclude that in both cases

|X | � D(n − 3, t − 2) + D(n − 4, t − 2) + 2D(n − 5, t − 2)

� N(n, t),

where the last inequality holds since

N(n, t) − (D(n − 3, t − 2)

+D(n − 4, t − 2) + 2D(n − 5, t − 2))

= N(n, t) − (2D(n − 4, t − 2) + D(n − 5, t − 3)

+2D(n − 5, t − 2))

= 2D(n − 7, t − 2) + D(n − 6, t − 3) + D(n − 7, t − 3)

− (D(n − 6, t − 3) + D(n − 7, t − 4))

= 2D(n − 7, t − 2) + D(n − 7, t − 3)

−D(n − 7, t − 4) � 0.

To prove this part we used the relation on D(n, t) from (3)
and the expression for N(n, t) from (6).

As a result of Lemma 5, if x, y ∈ F
n
2 are such that

dL(x, y) � 2, x1 = 1, x, y disagree in the first and last bits,
and |Dt (x) ∩ Dt (y)| > N(n, t), then x = (1, 0, x
, 1, 0), y =
(0, 1, y
, 0, 1) or x = (1, 0, x
, 0, 1), y = (0, 1, y
, 1, 0) where
x
, y
 ∈ F

n−4
2 . The purpose of the next lemma is to show that

in either case x
, y
 ∈ {an−4, ān−4}. In order to establish this
result, we first state the following three useful claims. The
proof of Claim 6 appears in Appendix A. Appendices B and
C contain proof sketches for Claims 7 and 8, respectively.

Claim 6: For all n and t, suppose the number of runs in
x ∈ F

n
2 is at most n − 1. Then,

|Dt (x)| � D(n − 2, t) + D(n − 2, t − 1) + D(n − 4, t − 2).

Claim 7: For all n and t, suppose x ∈ F
n
2, y ∈ F

n
2 are such

that x �= y, the number of runs in x = (x1, . . . , xn) is n − 1,
y has at least n − 1 runs, and x2 �= x3, xn−1 �= xn−2. Then,

|Dt (x) ∩ Dt (y)| � D(n − 2, t − 1) + D(n − 4, t − 1)

+ D(n − 4, t − 2) + D(n − 6, t − 3).

Claim 8: For all n and t, suppose x ∈ F
n
2, y ∈ F

n
2 are such

that x �= y and the number of runs in x is at most n − 2.
Then,

|Dt (x) ∩ Dt (y)| � D(n − 2, t − 1) + D(n − 4, t − 1)

+ D(n − 4, t − 2) + D(n − 6, t − 3).

Using Claims 6, 7, and 8, we prove the following lemma.

Lemma 6: For all n and t, let a ∈ F2. Let x =
(1, 0, x
, ā, a) ∈ F

n
2, y = (0, 1, y
, a, ā) ∈ F

n
2 be such that

dL(x, y) � 2. If

|Dt (x) ∩ Dt (y)| � N(n, t),

then x
, y
 ∈ {an−4, ān−4}.
Proof: Similar to before, let X = Dt (x)∩Dt (y). Assume

in the contrary that x
 �∈ {an−4, ān−4}, then we can apply
Claim 6 to get

|X 0
ā | = |0 ◦ (Dt−2(x
) ∩ Dt (1, y
, a)

) ◦ ā|
� |Dt−2(x
)| � D(n − 6, t − 2)

+ D(n − 6, t − 3) + D(n − 8, t − 4).

We also have

|X 1
a | � |1 ◦ Dt−2(y
) ◦ a| � D(n − 4, t − 2).

Furthermore, notice

|X 1
ā | = |1 ◦ (Dt−1(0, x
) ∩ Dt−1(y
, a)

) ◦ ā|,
where (y
, a) �= (0, x
), since otherwise we will get that
dL(x, y) = 1. Therefore, we can apply (5) to get that

|X 1
ā | � 2D(n − 5, t − 2).

Next we consider |X 0
a | where

|X 0
a | = |0 ◦ (Dt−1(x
, ā) ∩ Dt−1(1, y
)

) ◦ a|
If (x
, ā), (1, y
) satisfy the conditions of

Claim 7 or Claim 8, then we can write

|X 0
a | � D(n − 5, t − 2) + D(n − 7, t − 2)

+ D(n − 7, t − 3) + D(n − 9, t − 4).

We now consider the case where (x
, ā), (1, y
) do not
satisfy the conditions in Claim 7 and Claim 8. If (x
, ā) does
not satisfy the conditions for x in Claim 8, then (x
, ā) has at
least (n −3)−1 = n −4 runs and, in particular, x
 ∈ F

n−4
2 has

(n−4)−1 = n−5 runs by assumption since x
 �∈ {an−4, ān−4}.
If (1, y
) does not satisfy the conditions for x in Claim 8, then
using the same logic as before we conclude that y
 ∈ F

n−4
2 has

n − 5 runs. If (x
, ā), (1, y
) do not satisfy the conditions in
Claim 7 then x 


2 = x 

3 or x 


n−4 = x 

n−5. Suppose that x 


2 = x 

3

(the case where x 

n−4 = x 


n−5 follows from the same ideas).
Since x
 has n −5 runs, then x 


1 �= x 

2 and x 


n−6 �= x 

n−5. Thus,

(0, x
), (y
, a) satisfy the conditions in Claim 7. Therefore,
using the same logic as before

|X 0
a | � 2D(n − 5, t − 2),

and

|X 1
ā | � D(n − 5, t − 2) + D(n − 7, t − 2)

+ D(n − 7, t − 3) + D(n − 9, t − 4).

Thus, applying Lemma 1 along with (3), it is possible to
show that if x, y satisfy the conditions in this lemma, then

|X | � D(n − 4, t − 2) + 3D(n − 5, t − 2) + D(n − 6, t − 2)

+ D(n − 7, t − 2) + D(n −6, t −3) + D(n − 7, t −3)

+ D(n − 8, t − 4) + D(n − 9, t − 4) � N(n, t).
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The next lemma will be directly used in the derivation of
the upper bound. The proof relies on simply enumerating the
possible choices for x, y and applying previous results such
as Lemma 6.

Lemma 7: For all n and t, let x = (1, 0, x
, ā, a) ∈ F
n
2, y =

(0, 1, y
, a, ā) ∈ F
n
2 be such that dL(x, y) � 2. Then,

|Dt (x) ∩ Dt (y)| � N(n, t).

Proof Sketch: Let X = Dt (x) ∩ Dt (y). The result can be
proven by considering the following eight cases:
(a) x = (1, 0, ān−4, 1, 0), y = (0, 1, an−4, 0, 1),
(b) x = (1, 0, an−4, 1, 0), y = (0, 1, ān−4, 0, 1),
(c) x = (1, 0, ān−4, 0, 1), y = (0, 1, an−4, 1, 0),
(d) x = (1, 0, an−4, 0, 1), y = (0, 1, ān−4, 1, 0),
(e) x = (1, 0, ān−4, 1, 0), y = (0, 1, ān−4, 0, 1),
(f) x = (1, 0, ān−4, 0, 1), y = (0, 1, ān−4, 1, 0),
(g) x = (1, 0, an−4, 1, 0), y = (0, 1, an−4, 0, 1),
(h) x = (1, 0, an−4, 0, 1), y = (0, 1, an−4, 1, 0).

We now have the main result of this paper.
Theorem 8: For all n and t, let x = (x1, x2, . . . , xn) ∈

F
n
2, y = (y1, y2, . . . , yn) ∈ F

n
2 be such that dL(x, y) � 2.

Then,

|Dt (x) ∩ Dt (y)| � N(n, t).

Proof: The proof will be by induction on the lengths of the
sequences x, y. The base cases for n = 10, 11 were verified
using a computerized search.

Suppose the result holds for all m < n where n is the
length of x, y. Let us write x = (x1, x
), y = (y1, y
) (for
x1, y1 ∈ F2) and denote X = Dt (x) ∩ Dt (y). There are two
cases:

1) x1 = y1, or
2) x1 �= y1.

We first consider case 1). Then, dL(x
, y
) � 2 and from the
inductive hypothesis we get

∣∣X x1
∣∣ = ∣∣x1 ◦ (Dt (x
) ∩ Dt (y
)

)∣∣ = |Dt (x
) ∩ Dt (y
)|
� max

x∗,y∗∈F
n−1
2 ,dL (x∗,y∗)�2

{|Dt (x∗) ∩ Dt (y∗)|}
� N(n − 1, t).

Suppose xk is the first occurrence of the symbol x̄1 in x
and the symbol x̄1 appears in x not after it appears in y.
Notice that under this setup, we have (x1, x2, . . . , xk−1) =
(y1, y2, . . . , yk−1) = (x1, x1, . . . , x1) and so dL(x

, y

) � 2,
where x

 = (xk, . . . , xn) and y

 = (yk, . . . , yn). Since k � 2,
applying the inductive hypothesis along with Lemma 2 gives
∣∣∣X x̄1

∣∣∣ � |x̄1 ◦ (Dt−(k−1)(x

) ∩ Dt−(k−1)(y

))|
= |Dt−(k−1)(x

) ∩ Dt−(k−1)(y

)|
� max

x∗,y∗∈F
n−k
2 ,dL (x∗,y∗)�2

{|Dt−(k−1)(x∗) ∩ Dt−(k−1)(y∗)|}
� N(n − k, t − k + 1)

� N(n − 2, t − 1).

According to Corollary 4, N(n, t) = N(n − 1, t) + N(n − 2,
t − 1) which completes the proof for the case where x1 = y1.

In order to prove case 2), suppose that x1 �= y1. Then,
we also assume xn �= yn since otherwise if xn = yn we
can reverse the sequences and apply the same logic as above.
However, if x1 �= y1 and xn �= yn then from Lemmas 5 and 7,
we have |Dt (x) ∩ Dt (y)| � N(n, t) in this case as well and
so the result holds.

V. CONCLUSION AND OPEN PROBLEMS

In this work, we solved the problem of computing the
maximum intersection of the deletion balls for two sequences
such that the two sequences belong to a single deletion-
correcting code. Recall that our motivation for studying this
problem was part of a larger effort to determine the quantity:

N(n, t1, t2) = max
x,y∈F

n
2,dL (x,y)�t1

{|Dt2(x) ∩ Dt2(y)|},

for arbitrary values of t1 and so the problem of extending these
results to the case of t1 � 3 remains open.

There are a few possible directions for future work based
upon the ideas introduced here. Recall from Section I that the
maximum size of the set Dt (x) for any x ∈ F

n
2 is achieved

when x = an and in this case we have |Dt (an)| = D(n, t).
For t1 = 1, N(n, t1, t2) is achieved for the two sequences:
x = (1, 0, 1, 0, . . . , 1, 0), y = (0, 1, 1, 0, . . . , 1, 0) so that
x = an and y can be obtained from an by transposing the
first two bits of x. For t2 = 2, we showed in this work that
N(n, t1, t2) is achieved when x = (1, 0, 1, 0, . . . , 0, 1) and
y = (0, 1, 1, 0, . . . , 1, 0), so that y is as before and, in this
case, x can be obtained from an by transposing the last two
bits of an . It remains an open question whether a similar
pattern exists for sequences which obtain N(n, t1, t2) when
t1 � 3.

APPENDIX A
PROOF OF CLAIM 6

Proof of Claim 6: We make use of the following lemma
which can be found in [17].

Lemma 9: (c.f. [17], Lemma 6) For any binary strings u, v,
and for any bit b, |Dt ((u, b, b, v))| � |Dt ((u, b, b̄, v̄))|.

According to Lemma 9, we only need to consider the case
in which x has exactly n − 1 runs, and assume without loss
of generality that x1 = 1. In this case, x is the alternating
sequence an−1, where one of its bits is repeated. For 1 � i �
n − 1, let us denote by an−1,i the sequence an−1 where its
i -th bit is repeated, and the same for ān−1,i .

Let us denote g1(n, t) = D(n − 1, t) + D(n − 3, t − 2) and
g2(n, t) = D(n − 2, t) + D(n − 4, t − 2) + D(n − 2, t − 1)
and for 3 � i � n − 1 we recursively define

gi(n, t) = gi−2(n − 2, t − 1) + gi−1(n − 1, t).

We will prove by induction that for 1 � i � n − 1,

|Dt (an−1,i )| = gi (n, t).

In the base case, we first verify that g1(n, t) = |Dt (an−1,1)|
and g2(n, t) = |Dt (an−1,2)|. For i = 1, notice that
|Dt (an−1,1)| = D(n − 1, t) + D(n − 3, t − 2) = g1(n, t).
In addition for i = 2, |Dt (an−1,2)| = g1(n − 1, t) + D(n − 2,
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t − 1) = g2(n, t). Let us assume that the claim holds for all
j < i and consider the sequence an−1,i . The proof follows
from the observation that

|Dt (an−1,i )| = |Dt (an−1,i )
0| + |Dt (an−1,i )

1|
= |Dt−1(an−3,i−2)| + |Dt (ān−2,i−1)|
= |Dt−1(an−3,i−2)| + |Dt (an−2,i−1)|
= gi−2(n − 2, t − 1) + gi−1(n − 1, t)

= gi(n, t).

We now prove that 1 � i � n − 1, gi (n, t) � D(n − 2, t) +
D(n − 4, t − 2) + D(n − 2, t − 1) by induction on i . For the
base case, for g2(n, t) we have equality and this inequality
holds for g1(n, t) since

D(n − 2, t) + D(n − 4, t − 2) + D(n − 2, t − 1) − g1(n, t)

= D(n − 4, t − 2) − D(n − 5, t − 3) � 0,

from (13). Now assume that gi (n, t) � D(n −2, t)+ D(n −4,
t − 2) + D(n − 2, t − 1) for all i � i (∗) and consider the case
where i = i (∗) + 1. Then,

gi(∗) (n, t) = gi(∗)−2(n − 2, t − 1) + gi(∗)−1(n − 1, t)

� D(n − 4, t − 1) + D(n − 6, t − 3)

+ D(n − 4, t − 2) + D(n − 3, t)

+ D(n − 5, t − 2) + D(n − 3, t − 1)

= D(n − 2, t) + D(n − 4, t − 2) + D(n−2, t−1),

which follows by applying (3) three times.

APPENDIX B
PROOF SKETCH OF CLAIM 7

Proof Sketch of Claim 7: Let us first denote H (n, t) =
D(n−2, t−1)+D(n−4, t−1)+D(n−4, t−2)+D(n−6, t−3)
for t < n/2 and H (n, t) = 2n−t for t � n/2. The proof is
by induction. The cases where n = 5, 6 were verified by a
computerized search. Suppose the result holds for all n < m.
We consider two cases:

1) x, y agree in the first and last bits, and
2) x, y disagree in the first bit or in the last bit.

Suppose that 1) holds so that x1 = y1 = a ∈ F2. Let
X = Dt (x) ∩ Dt (y). Then, from Lemma 2, we have

∣∣X a
∣∣ = ∣∣a ◦ (Dt (x
) ∩ Dt (y
)

)∣∣ = ∣∣Dt (x
) ∩ Dt (y
)
∣∣ (16)

where x
, y
 are the length-(n − 1) sequences that satisfy x =
(a, x
) and y = (a, y
). Now if x
, y
 satisfy the conditions in
the claim, we can apply the inductive hypothesis and conclude

∣∣X a
∣∣ � H (n − 1, t) (17)

Suppose xk is the first occurrence of the symbol ā in x and
the symbol ā appears in x not after it appears in y. If x

 =
(xk+1, xk+2, . . . , xn), y

 = (yk+1, yk+2, . . . , yn) satisfy the
conditions in the claim, we can apply the inductive hypothesis
along with Lemma 2 so that

∣∣∣X ā
∣∣∣ � H (n − 2, t − 1).

Thus, if x1 = y1 and x
, y
 and x

, y

 satisfy the conditions
in the claim, then |Dt (x) ∩ Dt (y)| � H (n − 1, t) + H (n − 2,
t − 1) = H (n, t).

Suppose x1 = y1 and x
, y
 do not satisfy the conditions in
the claim. Then we have that one of the following holds since
x �= y:

1) x 

2 = x 


3, or
2) x 


n−2 = x 

n−1,

3) x1 = x2.

If x1 = x2, then |X | � 2D(n − 3, t − 1) + D(n − 3, t − 2),
which, using the recurrence from (3), can be shown is less
than H (n, t). Thus, we need to only consider cases 1) and 2).
Without loss of generality, we assume x 


2 = x 

3. Then,

x3 = x4 and since x has n − 1 runs we have x2 �= x3,
xn−2 �= xn−3, xn−3 �= xn−4. Let R(X ) = Dt ((R(x)) ∩
Dt (R(y)). Then, since x1 = a = y1 we can apply the inductive
hypothesis to conclude

|X a| = |R(Xa)| = | (Dt (R(x
)) ∩ Dt (R(y
))
) ◦ a|

� H (n − 1, t),

where R(x 
), R(y
) satisfy the inductive hypothesis since
x2 �= x3, xn−2 �= xn−3, and xn−3 �= xn−4. If x

, y

 satisfy
the conditions in the lemma, then |X ā | � H (n − 2, t − 1) and
the result follows.

We still need to consider the case where x
, y
 from (16)
satisfy the conditions in the lemma but x

, y

 from (17) do
not. Then, we can handle this case similar to the one where
x
 �= y
, and we can conclude that |X | � H (n, t) as desired.
We have just shown that if x1 = y1, then the statement in the
claim holds.

Suppose then that x1 �= y1 = a ∈ F2; this case can be
handled by considering all sequences in the intersection that
start with the symbol a followed by all sequences that start
with the symbol ā. The case where xn �= yn can be handled
by considering the reverse of the sequences x, y.

APPENDIX C
SKETCH OF PROOF OF CLAIM 8

A slightly stronger result can be proven. Let H (n, t) be as
defined in Appendix B.

Claim 9: Suppose n, t are integers where n � 5. Suppose
x ∈ F

n
2, y ∈ F

n
2 are such that x �= y and the number of runs

in x is at most n − 2. Then,

|Dt (x) ∩ Dt (y)| � H (n, t).

Proof Sketch: The proof can be done by induction.
The case where n = 5, 6 was verified by a computerized
search. Suppose the results holds for all n < m. Then the
result can be proven by considering the cases where 1) x, y
either agree in the first and last bits or 2) x, y disagree in the
first or the last bits. Let X = Dt (x) ∩ Dt (y).

Suppose 1) holds so that x1 = y1 and xn = yn . Then, similar
to the proof of Claim 7

∣∣X a
∣∣ = ∣∣a ◦ (Dt (x
) ∩ Dt (y
)

)∣∣ = ∣∣Dt (x
) ∩ Dt (y
)
∣∣ .
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If x
, y
 satisfy the conditions either in the inductive assump-
tion or the conditions from Claim 7 or Claim 8, we can write

∣∣X a
∣∣ � max

x
,y
∈F
n−1
2

{|Dt (x
) ∩ Dt (y
)|}
� H (n − 1, t).

If x

 = (xk+1, xk+2, . . . , xn), and y

 =
(yk+1, yk+2, . . . , yn) satisfy the conditions in this
claim or Claim 7 or Claim 8, we can again use the
inductive hypothesis to write

∣∣X ā
∣∣ � H (n − 2, t − 1). Notice

that if the following conditions are true, then Claim 8 holds:

1) x1 = y1, xn = yn ,
2) x
, y
 satisfy the conditions in Claim 7 or Claim 8, and
3) x

, y

 satisfy the conditions in Claim 7 or Claim 8.

For the case where x1 = y1, xn = yn and x
, y
 do not
satisfy the conditions in Claim 7 or Claim 8, it can be shown
that |X | = 2D(n − 3, t − 1) + D(n − 3, t − 2), which is less
than H (n, t).

Suppose now that x1 = y1, xn = yn and x

, y

 do not
satisfy the conditions in Claim 7 or Claim 8, but x
, y

satisfy the inductive assumption. Then, it can be shown from
induction that |X a | � H (n − 1, t), and

∣∣X ā
∣∣ � 2D(n − 5,

t − 2) + D(n − 5, t − 3) � H (n − 2, t − 1). This implies that
when x1 = y1, xn = yn , then |Dt (x) ∩ Dt (y)| � H (n, t).

The last case to consider is where x1 �= y1 = a ∈ F2. It can
be shown that the result holds in this case as well and so the
statement holds.
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