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Abstract—In graph theory, a tree is one of the more popular
families of graphs with a wide range of applications in computer
science as well as many other related fields. While there are sev-
eral distance measures over the set of all trees, we consider here
the one which defines the so-called tree distance, defined by the
minimum number of edit operations, of removing and adding
edges, in order to change one tree into another. From a coding
theoretic perspective, codes over the tree distance are used for
the correction of edge erasures and errors. However, studying
this distance measure is important for many other applications
that use trees and properties on their locality and the number
of neighbor trees. Under this paradigm, the largest size of code
over trees with a prescribed minimum tree distance is investi-
gated. Upper bounds on these codes as well as code constructions
are presented. A significant part of our study is dedicated to the
problem of calculating the size of the ball of trees of a given ra-
dius. These balls are not regular and thus we show that while
the star tree has asymptotically the smallest size of the ball, the
maximum is achieved for the line tree.

I. INTRODUCTION

In graph theory, a tree is a special code case of a con-
nected graph, which comprises of n labeled nodes and n− 1
edges. Studying trees and their properties has been beneficial
in numerous applications. In signal processing trees are used
for the representation of waveforms [4]. In programming lan-
guages, trees are used as structures to describe restrictions in
the language. Trees also represent collections of hierarchical
text which are used in information retrieval. In cyber appli-
cations trees are used to represent fingerprint patterns [14].
One of the biology applications includes the tree-matching
algorithm to compare between trees in order to analyze mul-
tiple RNA secondary structures [22]. Trees are used in the
subgraph isomorphism problem which, among its very appli-
cations, is used for chemical substructure searching [2].

An important feature when studying trees is defining an
appropriate distance function. Several distance measures
over trees have been proposed in the literature. Among the
many examples are the tree edit distance [23], top-down
distance [21], alignment distance [9], isolated-subtree dis-
tance [24], and bottom-up distance [26]. These distance
measures are mostly characterized by adding, removing, and
relabeling nodes and edges as well as counting differences
between trees with a different number of nodes. One of the
more common and widely used distance, which will be re-
ferred to this work as the tree distance, considers the number
of edit edge operations in order to transform one tree to an-
other. Namely, given two labeled trees over n nodes, the tree
distance is defined to be half of the minimum number of
edges that are required to be removed and added in order to
change one tree into another. This value is also equivalent to
the difference between n− 1 and the number of edges that
the two trees share in common. Despite the popularity of this
distance function, the knowledge of its characteristics and
properties is quite limited. The goal of this paper is to close
on these gaps and study trees under the tree distance from
a coding theory perspective. To the best of our knowledge,
this direction has not been explored rigorously so far.

One of the classical problems in graph theory is finding a
minimal spanning tree (MST) for a given graph. While the
MST problem is solved in polynomial time [11], [16], it may
become NP-hard under some constraints. For example, in the
degree-constrained MST problem (d-MST) [10], [17], [18],
[28], it is required that the degree of every vertex in the MST
is not greater than some fixed value d. In another example, the
goal is to look for an MST in which the length of the simple
path between every two vertices is bounded from above by a
given value D > 4 [19]. One of the common approaches for
solving such problems uses evolution algorithms (EA). The
goal is to find a feasible tree to the problem by iteratively
searching for a candidate tree. This iterative procedure is in-
voked by using mutation operations over the current tree in
order to produce a new candidate tree. These mutation op-
erations typically involve the modification of edges and as
such are highly related to the tree distance. Thus, in order to
analyze the complexity of such algorithms it is necessary to
study the size of the balls according to the tree distance. In
fact, in [7] the size of the radius-one ball was computed for
all trees with at most 20 vertices. According to this computer
search, it was observed that the smallest size of the ball is
achieved when the tree is a star, while the largest for a line. In
this paper, we establish this result for any number of nodes in
the tree. Furthermore, it is shown that the size of the radius-t
ball ranges between Ω(n2t) (for a star tree) and O(n3t) (for
a line tree), while the average size of the ball is Θ(n2.5t).

Motivated by the coding theory approach, in this work we
apply the tree distance, which is a metric, in order to study
codes over trees with a prescribed minimum tree distance.
This family of codes can be used for the correction of edge
erasures and errors. In Section II, we formally define the tree
distance and codes over trees as well as several more use-
ful definitions and properties. An edge erasure is the event
in which one of the edges in the tree is erased and a forest
is received with two sub-trees. This is also extended to the
erasure of multiple edges. If t edges are erased, then a for-
est with t + 1 sub-trees is received and the number of such
forests is (n−1

t ). In Section III, by using several known results
on the number of forests with a fixed number of sub-trees,
we are able to derive a sphere packing bound for codes over
trees. More specifically, the size of codes over trees of min-
imum tree distance d cannot be greater than O(nn−d−1). In
Section IV, we study balls of trees. The tree ball of trees of a
given tree T consists of all trees for which their tree distance
from T is at most some fixed radius t. It is observed that
these balls are not regular and in Section IV, it is shown that
the size of the star, line tree ball is Θ(n2t), Θ(n3t), respec-
tively, while the average size of the ball is Θ(n2.5t). Lastly,
in Section V, for a fixed d we show a construction of codes
over trees of size Ω(nn−2d). Finally, Section VI concludes
the paper. Due to the lack of space, some of the proofs in the
paper are omitted. These proofs and several more results can
be found in the full version of this work in [27].670978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020



II. DEFINITIONS AND PRELIMINARIES

Let G = (Vn, E) be a graph, where Vn = {v0, . . . , vn−1}
is a set of n > 1 labeled nodes, also called vertices, and
E ⊆ Vn × Vn is its edge set. In this paper, we only study
undirected trees and forests. By a slight abuse of notation, ev-
ery undirected edge in the graph will be denoted by 〈vi , v j〉
where the order in this pair does not matter, i.e., the notation
〈vi , v j〉 is identical to the notation 〈v j, vi〉. Thus, there are
(n

2) edges and the edge set is defined by

En = {〈vi , v j〉 | i, j ∈ [n]}, (1)

where [n] , {0, 1, . . . , n− 1}.
A finite undirected tree over n nodes is a connected undi-

rected graph with n− 1 edges. The degree of a node vi is the
number of edges that are incident to the node, and will be
denoted by deg(vi). Each node of degree 1 is called a leaf.
The set of all trees over n nodes will be denoted by T(n). By
Cayley’s formula [1] it holds that |T(n)| = nn−2. An undi-
rected graph that consists of only disjoint union of trees is
called a forest. The set of all forests over n nodes with ex-
actly t trees will be denoted by F(n, t). We sometimes use
the notation {C0, C1, . . . , Ct−1} = F ∈ F(n, t) to explicitly
denote a forest with t sub-trees (or connected components) of
F. Note that F(n, 1) = T(n).

Definition 1. A code over trees CT , denoted by T -(n, M), is a
set of M trees over n nodes. Each tree in the code CT is called
a codeword-tree. The redundancy r of the code CT is defined
by r = (n− 2) log(n)− log(M).

The definition of the redundancy follows from the observa-
tion that T(n) = nn−2. For each codeword-tree, a topology
and an arrangement of the nodes is unique information that
we want to store or send and read, even in the presence of
errors. For this purpose, erasures and errors in trees are de-
fined.

Definition 2. An erasure of ρ edges in a tree T ∈ T(n) is the
event in which ρ of the edges in T are erased and T is separated
into a forest of ρ + 1 sub-trees over n nodes. An error of ψ
edges in a tree T ∈ T(n) is the event in which ψ of the edges
in T are replaced with other ψ edges such that we receive a
new tree T′ ∈ T(n).

The tree distance for trees is next defined.

Definition 3. The tree distance between two trees T1 =
(Vn, E1) and T2 = (Vn, E2) will be denoted by dT (T1, T2)
and is defined to be,

dT (T1, T2) = n− 1− |E1 ∩ E2|.

It is clear that dT (T1, T2) = |E1 \ E2| = |E2 \ E1|. The fol-
lowing lemma is easily proved.

Lemma 4. The tree distance is a metric.

The tree distance of a code over trees CT is denoted by
dT (CT ), which is the minimum tree distance between any
two distinct trees in CT , that is,

dT (CT ) = min
T1 6=T2 T1 ,T2∈CT

{dT (T1, T2)}.

Definition 5. A code over trees CT of tree distance d, denoted
by T -(n, M, d), has M trees over n nodes and its tree distance
is dT (CT ) = d.

Since the tree distance is a metric, the following theorem
holds straightforwardly.

Theorem 6. A T -(n, M) code over trees CT is of tree distance
d if and only if it can correct any d− 1 edge erasures and if and
only if it can correct any b(d− 1)/2c edge errors.

Lastly, we define the largest size of a code over trees with
a prescribed tree distance.

Definition 7. The largest size of a code over trees with
tree distance d is denoted by A(n, d). The minimum
redundancy of a code over trees will be defined by
r(n, d) = (n− 2) log(n)− log(A(n, d)).

III. BOUNDS ON CODES OVER TREES

In this section we show upper bounds for codes over trees.
We start with several definitions. Denote by F(n, d) the size
of F(n, d), i.e., the number of forests with n nodes and d
sub-trees. The value of F(n, d) was shown in [13], to be

F(n, d) =
(

n
d

)
nn−d−1

d

∑
i=0

(
(−1

2
)i
(

d
i

)
(d + i)(n− d)!
ni(n− d− i)!

)
or another representation of it in [3],

F(n, d) = nn−d
d

∑
i=0

(
(−1

2
)i
(

d
i

)(
n− 1

d− 1 + i

)
(d + i)!

nid!

)
.

The next corollary summarizes some of these known results.

Corollary 8. The following properties hold for all n.
1) F(n, 1) = nn−2,
2) F(n, 2) = 1

2 nn−4(n− 1)(n + 6),
3) F(n, 3) = 1

8 nn−6(n− 1)(n− 2)(n2 + 13n + 60),
4) F(n, n− 4) = 1

16 (
n
4)(n

2 + 3n + 10)(n− 4)(n + 3),
5) F(n, n− 3) = 1

2 (
n
4)(n

2 + 3n + 4),
6) F(n, n− 2) = 3(n+1

4 ),
7) F(n, n− 1) = (n

2),
8) F(n, n) = 1.

For each T = (Vn, E) ∈ T(n), and 0 6 t 6 n− 1, denote
by ET(n, t) the set

ET(n, t) = {E′ | |E′| = t, E′ ⊆ E}, (2)

where clearly |ET(n, t)| = (n−1
t ). For each T ∈ T(n), E′ ∈

ET(n, t), denote the forest FT,E′ = (Vn, E \ E′), where
FT,E′ ∈ F(n, t + 1).

Definition 9. The forest ball of a tree T = (Vn, E) of radius
t in F(n, t + 1) is defined to be

PT(n, t) = {FT,E′ ∈ F(n, t + 1) | E′ ∈ ET(n, t)}.

A. Sphere-Packing Bound

The following theorem proves the sphere packing bound
for codes over trees, while the proof can be found in [27].

Theorem 10. For all n > 1 and 1 6 d 6 n, it holds that
A(n, d) 6 F(n, d)/(n−1

d−1).

It was also proved in [13] that for any fixed d,

lim
n→∞ F(n, d)

nn−2 =
1

2d−1(d− 1)!
,

which immediately implies the following corollary.671



Corollary 11. For all n > 1 and fixed d, it holds that

A(n, d) 6 F(n, d)/
(

n− 1
d− 1

)
= O(nn−1−d),

and thus r(n, d) = (d− 1) log(n) +O(1).

Notice that by Corollary 8(7) it holds that

A(n, n− 1) 6
(

n
2

)
/(n− 1) = n/2. (3)

In Section V we will show that A(n, n − 1) = bn/2c, by
showing a construction of a T -(n, bn/2c, n− 1) code over
trees for all n > 1. Similarly, by Corollary 8(6),

A(n, n− 2) 6 3
(

n + 1
4

)
/

(
n− 1
n− 3

)
=

1
2

(
n + 1

2

)
, (4)

however, we will next show how to improve this bound
such that A(n, n− 2) 6 n. In Section V, a construction of
T -(n, n, n − 2) codes over trees will be shown, leading to
A(n, n− 2) = n. Finally, by Corollary 8(5),

A(n, n− 3) 6
1
2

(
n
4

)
(n2 + 3n + 4)/

(
n− 1
n− 4

)
=

1
8

n(n2 + 3n + 4), (5)

where a better upper bound will be shown in the sequel, which
improves this bound to be A(n, n− 3) 6 1.5n2. Finding a
construction for this case is left for future work.

B. An Improved Upper Bound for A(n, n− 2) and A(n, n−
3)

Before we show the improved upper bounds for A(n, n−
2) and A(n, n − 3), a few more definitions are presented.
For a positive integer n, let En be the set of all (n

2) edges
as defined in (1). A graph G = (U ∪ V, E) is a bipartite
graph with node sets U and V if U ∩V = ∅ and every edge
connects a vertex from U to a vertex from V, i.e., E ⊆ U ×
V. Reiman’s inequality in [15] and [20] states that if |V| 6
|U|, then every bipartite graph G = (U ∪V, E) with girth at
least 6 satisfies

|E |2 − |U| · |E | − |V| · |U| · (|V| − 1) 6 0. (6)

According to Theorem 10, A(n, n− 2) 6 1
2 (

n+1
2 ) and in

the next theorem this bound will be improved to be A(n, n−
2) 6 n.

Theorem 12. For all positive integer n, A(n, n− 2) 6 n.

Proof: Let CT be a T -(n, M, n − 2) code. Let G =
(U ∪ V, E) be a bipartite graph such that V = CT , U = En
(defined in (1)) and (T, e) ∈ E if and only if the tree T ∈
CT has the edge e ∈ En. Clearly, |V| = M, |U| = (n

2) and
|E | = M(n− 1).

Since CT is a T -(n, M, n− 2)D code it holds that for all
T1 = (Vn, E1), T2 = (Vn, E2) ∈ CT , |E1 ∩ E2| 6 1. That is,
there are no two codeword-trees in CT that share the same
two edges. Hence, there does not exist a cycle of length four
in G, i.e., the girth of G is at least six. By (4), for all n > 3, it
holds that |V| = M 6 1

2 (
n+1

2 ) 6 (n
2) = |U|, so the inequality

stated in (6) will be used next. Since |V| = M, |U| = (n
2)

and |E | = M(n− 1),

M2(n− 1)2 −
(

n
2

)
M(n− 1)−M

(
n
2

)
(M− 1) 6 0,

and it can be verified that it holds if and only if M 6 n.

As mentioned above, in Section V we will show
that A(n, n − 2) = n. Next, we showed in (5) that
A(n, n − 3) 6 1

8 n(n2 + 3n + 4) = O(n3). Using similar
techniques, we state the following theorem while its proof is
shown in [27].

Theorem 13. For all n, A(n, n− 3) 6 1.5n2.

IV. TREE BALLS

In Section III, we introduced and studied the forest ball of
a tree in order to derive a sphere packing bound on codes
over trees with a prescribed minimum tree distance. In this
section we introduce several more ball definitions and study
their size behavior. These results will also be used to apply
the generalized Gilbert Varshamov bound [25] on codes over
trees. We start from some definitions.

A tree will be called a star tree (or a star in short) if it has a
node vi , i ∈ [n] such that deg(vi) = n− 1, and all the other
nodes v j, j ∈ [n], j 6= i satisfy deg(v j) = 1. A line tree (or
a line in short) over n nodes is a graph whose nodes can be
listed in the order vi0 , vi1 , . . . , vin−1 , where i0, i1, . . . , in−1 ∈
[n], such that its edges are 〈vi j , vi j+1〉 for all j ∈ [n− 1].

Definition 14. The tree ball of a tree of radius t in T(n) cen-
tered at T ∈ T(n) is defined to be

BT(n, t) = {T′ ∈ T(n) | dT (T′, T) 6 t}.

The size of the tree ball of trees of T, BT(n, t), is denoted by
VT(n, t).

We define the average ball size to be the average value of all
tree ball of trees, that is,

V(n, t) =
∑T∈T(n) VT(n, t)

nn−2 .

Let us remind here the definition of the forest ball of a
tree PT(n, t) from Definition 9 and the set ET(n, t) as de-
fined in (2). Given a tree T and an edge-set E′ ∈ ET(n, t),
let FT,E′ = (Vn, E \ E′) ∈ PT(n, t) be the forest which is
also denoted by FT,E′ = {C0, C1, . . . , Ct}, such that |C0| 6
|C1| 6 · · · 6 |Ct|. The profile vector of T and E′ is denoted
by PT(E′) = (|C0|, |C1|, . . . , |Ct|) and the multi-set PT(n, t)
is given by

PT(n, t) = {PT(E′) | E′ ∈ ET(n, t)}.

Notice that |PT(n, t)| = |PT(n, t)| = |ET(n, t)| = (n−1
t ).

Our main goal in this section is to study the size of the
radius-one tree ball of trees for all trees. This result is stated
in the next lemma.

Lemma 15. For any T ∈ T(n) it holds that

VT(n, 1) = ∑
(i,n−i)∈PT(n,1)

(
i(n− i)− 1

)
+ 1. (7)

Note that VT(n, t) depends on the choice of its center
T. For example, it can be shown that if T is a star then
VT(n, 1) = (n− 1)(n− 2) + 1 and if T is a line tree, then
VT(n, 1) = (n − 1)(n − 2)(n + 3)/6 + 1. If T is a star,
line the size of VT(n, t) is denoted by V?(n, t), V–(n, t),
respectively.

Our next goal is to show that for any T ∈ T(n) it holds
that

V?(n, 1) 6 VT(n, 1) 6 V–(n, 1).672



The following claim is easily proved.

Claim 1 Given positive integers i, n such that i ∈ [n], it holds
that n− 1 6 i(n− i).

Next the following lemma is stated.

Lemma 16. For all T ∈ T(n),

∑
(i,n−i)∈PT(n,1)

i(n− i) 6
(

n + 1
3

)
.

Next, we show the following important result.

Theorem 17. For any T ∈ T(n) it holds that

V?(n, 1) 6 VT(n, 1) 6 V–(n, 1).

Proof: First we prove the lower bound. For all T ∈ T(n)

VT(n, 1) = ∑
(i,n−i)∈PT(n,1)

(
i · (n− i)− 1

)
+ 1

> ∑
(i,n−i)∈PT(n,1)

(
1 · (n− 1)− 1

)
+ 1

= (n− 1)(n− 2) + 1 = V?(n, 1),

where the inequality holds due to Claim 1. Next, due to
Lemma 16,

VT(n, 1) = ∑
(i,n−i)∈PT(n,1)

(
i · (n− i)− 1

)
+ 1

= ∑
(i,n−i)∈PT(n,1)

(
i · (n− i)

)
− (n− 1) + 1

6
(

n + 1
3

)
− (n− 1) + 1

= (n− 1)(n− 2)(n + 3)/6 + 1 = V–(n, 1),

which leads to the fact that VT(n, 1) 6 V–(n, 1).

An approximation for the average ball of radius one, or the
value V(n, 1), is shown next. First, the following theorem is
shown, while its proof is shown in [27].

Theorem 18. For all n,

∑
T∈T(n)

VT(n, 1) =
1
2

n!
n−2

∑
k=0

nk

k!
− (n− 2)nn−2.

For two functions f (n) and g(n) we say that f (n) ≈ g(n)
if limn→∞ f (n)

g(n) = 1. As a direct result of Theorem 18 the
next corollary follows.

Corollary 19. It holds that,

V(n, 1) ≈ 0.5
√
π

2
n2.5.

Proof: It was shown in [6] that n! ∑
n−2
k=0

nk

k! ≈√
π
2 nn+0.5, and therefore,

V(n, 1) =
∑T∈T(n) VT(n, 1)

nn−2 ≈ 1
2

√
π

2
nn+0.5−(n−2)

=
1
2

√
π

2
n2.5.

To summarize the results of this section, we proved that for
every T ∈ T(n) it holds that V?(n, 1) = Θ(n2), V–(n, 1) =
Θ(n3), VT(n, 1) = Ω(n2), VT(n, 1) = O(n3) and the aver-
age ball size satisfies V(n, 1) = Θ(n2.5). In the extended ver-
sion of this work [27], it is shown that for every fixed radius t,
V?(n, t) = Θ(n2t), V–(n, t) = Θ(n3t), VT(n, t) = Ω(n2t),
VT(n, t) = O(n3t), and V(n, t) = Θ(n2.5t). The sphere
packing bound for smallest tree ball of trees size of radius t
for T -(n, M, d = 2t + 1) codes over trees in this case shows
that

A(n, d) 6
nn−2

αn2t =
1
α

nn−2−2t =
1
α

nn−1−d,

for some constant α. Thus, we derive a similar result as in
Corollary 11.

By using the Gilbert-Varshamov lower bound for the aver-
age ball size [25] for T -(n, M, d = t + 1) codes over trees,
we get,

A(n, d) = Ω(nn−2−2.5(d−1)) = Ω(nn+0.5−2.5d).

However, in Section V, based upon Construction 3, we will
get that

A(n, d) = Ω(nn−2d).

V. CONSTRUCTIONS OF CODES OVER TREES

In this section we show several constructions of codes over
trees. The first is the construction of T -(n, bn/2c, n − 1)
codes, and the second is the construction of T -(n, n, n− 2)
codes. The third and our main result in this section is the
construction of T -(n, M, d) codes for fixed d where M =
Ω(nn−2d). For positive integers a and n we will use the no-
tation 〈a〉n to denote the value of (a mod n).

A. A Construction of T -(n, bn/2c, n− 1) Codes

A line tree T = (Vn, E) with the edge set

E = {(vi j , vi j+1) | j ∈ [n− 1], i j ∈ [n]},

will be denoted by T = (vi0 , vi1 , . . . , vin−1), i.e., the nodes
vi0 and vin−1 are leaves and the rest of the nodes have degree
2. Note that the number of line trees over n nodes is n!/2,
so every line tree has two representations in this form and we
will use either one of them in the sequel. For s ∈ [bn/2c],
denote by Ts = (Vn, E) the line tree

Ts =


(

v〈s〉n , v〈s−1〉n , v〈s+1〉n , . . . , v〈s+ n−1
2 〉n

)
: if n is odd,(

v〈s〉n , v〈s−1〉n , v〈s+1〉n , . . . , v〈s− n
2 〉n

)
: if n is even.

Example 1. For n = 10 an example of the line-tree T0 is
shown. By looking at the lower half of the circle in this fig-
ure, i.e. nodes v0, v9, v8, v7, v6, v5, there is a single edge con-
necting two vertices on this half circle. The line tree T1 is re-
ceived by rotating anticlockwise the nodes on this circle by
one step. Note that all the edges in T0 and T1 are disjoint and
this property holds also for the other tree lines T2, T3, T4.

The construction of a T -(n, bn/2c, n− 1) code is given as
follows. This construction is motivated by the factorization of
the complete graph into mutually disjoint Hamiltonian paths;
see [8], [12].

Construction 1 For all n > 3 let CT1 be the following code
over trees

CT1 = {Ts = (Vn, E)|s ∈ [bn/2c]}.673
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(a) The T0 tree.

𝑣0
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𝑣6

𝑣0

𝑣9 𝑣8

𝑣7

(b) The T1 tree.

Fig. 1. This code contains 5 trees, T0 , T1 , T2 , T3 , and T4.

Theorem 20. The code CT1 is a T -(n, bn/2c, n− 1) code.

In this construction the result A(n, n − 1) > bn/2c is
shown, and since by (3), A(n, n− 1) 6 n/2 it is deduced
that A(n, n− 1) = bn/2c.

B. A Construction of T -(n, n, n− 2) Codes

For convenience, a star T with a node vi of degree n− 1
will be denoted by Tvi . The construction of a T -(n, n, n− 2)
code will be as follows.

Construction 2 For all n > 4 let CT2 be the following code

CT2 = {Tvi = (Vn, E)|i ∈ [n]}.

Clearly, the code CT2 is a set of all stars over n nodes. Next
we state that this code is a T -(n, n, n − 2) code, while its
proof is written in [27].

Theorem 21. The code CT2 is a T -(n, n, n− 2) code.

In this trivial construction it is shown that A(n, n− 2) > n
and since by Theorem 12, A(n, n− 2) 6 n it is deduced that
A(n, n− 2) = n.

C. A Construction of T -(n, M, d) Codes

In this section we show a construction of T -(n, M, d)
codes for any positive integer d. Note that according to
Corollary 11, A(n, d) = O(nn−1−d) and by Corollary 23 it
will be deduced that A(n, d) = Ω(nn−2d).

For a vector u ∈ Fm
2 denote by wH(u) its Hamming

weight, and for two vectors u, w ∈ Fm
2 , dH(u, w) is their

Hamming distance. A binary code C of length m and size K
over F2 will be denoted by (m, K) or (m, K, d), where d de-
notes its minimum Hamming distance. If C is also linear and
k is its dimension, we denote the code by [m, k] or [m, k, d].

Let En be the set of all (n
2) edges as defined in (1), with a

fixed order. For any set E ⊆ En, let vE be its characteristic
vector of length (n

2) which is indexed by the edge set En and
every entry has value one if and only if the corresponding
edge belongs to E. That is,

(vE)e =

{
1, e ∈ E
0, otherwise

.

The construction of T -(n, M, d) code over trees will be as
follows.

Construction 3 For all n > 1 let C be a binary code
((n

2), K, 2d− 1). Then, the code CT3 is defined by

CT3 = {T ∈ T(n) | vE ∈ C}.

Theorem 22. The code CT3 is a T -(n, M, d) code over trees.

Proof: By Theorem 6, a code over trees CT with param-
eters T -(n, M) has minimum distance d if and only if CT

can correct any d − 1 edge erasures. Notice also that since
C is a code with Hamming distance 2d− 1, it can correct at
most any d− 1 substitutions.

Let T = (V, E) be a codeword-tree of CT3 with its charac-
teristic vector vE. Suppose that T experienced at most d− 1
edge erasures, generating a new forest F with the edge set
E′. Since E′ ⊆ E and |E′| > |E| − (d − 1), it holds that
dH(vE′ , vE) 6 d− 1 and the vector vE can be corrected us-
ing a decoder of C.

The next corollary summarizes the construction result.
Corollary 23. For positive integer n and fixed d, A(n, d) =
Ω(nn−2d) and the redundancy is r(n, d) 6 2(d− 1) log(n)+
O(1).

Proof: Applying BCH codes in Construction 3 for all
n > 1, linear codes [(n

2), k, 2d− 1] are used with redundancy

r = (d− 1) log(
(

n
2

)
) +O(1) = 2(d− 1) log(n) +O(1)

redundancy bits. The 2r cosets of the C codes are also binary
((n

2), 2k, 2d− 1) codes. Note that each tree T from T(n) can
be mapped by Construction 22 to exactly one of these cosets.
Thus, by the pigeonhole principle, there exists a code CT3 of
cardinality at least

nn−2

22(d−1) log(n)+O(1) =
nn−2

αn2d−2 =
1
α

nn−2d,

for some constant α. Thus, we also deduce that
r(n, d) 6 2(d− 1) log(n) +O(1).

Remark 1. Note that in Construction 3 we could use a code
correcting (d− 1) asymmetric errors. However, we chose to
use symmetric error-correcting codes since this does not im-
prove the asymptotic result and in order to derive the result
in Corollary 23 we needed linear codes.

VI. CONCLUSION

In this paper, we initiated the study of codes over trees over
the tree distance. Upper bounds on such codes were presented
together with specific code constructions for several parame-
ters of the number of nodes and minimum tree distance. For
the tree ball of trees, it was shown that the star tree reaches the
smallest size, while the maximum is achieved for the line tree.
This guarantees that for fixed values of t, the size of every
ball of a tree is lower, upper-bounded from below, above by
Ω(n2t), O(n3t), respectively. Furthermore, it was shown that
the ball average size is Θ(n2.5t). We also showed that optimal
codes over trees ranged between O(nn−d−1) and Ω(nn−2d).

While the results in the paper provide a significant contri-
bution in the area of codes over trees, there are still several
interesting problems which are left open. Some of them are
summarized as follows.

1) Improve the lower and upper bounds on the size of codes
over trees, that is, the value of A(n, d), when d is fixed
and also for n/2 6 d 6 n− 3.

2) Find an optimal construction for d = n− 3.
3) Study codes over trees under different metrics such as

the tree edit distance.
4) Study the problem of reconstructing trees based upon

several forests in the forest ball of trees; for more de-
tails see [5].
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