
The Error Probability of Maximum-Likelihood
Decoding over Two Deletion/Insertion Channels

Omer Sabary
Dept. of Computer Science

Technion — Israel Inst. of Technology
Haifa 3200003, Israel

omersabary@cs.technion.ac.il

Eitan Yaakobi
Dept. of Computer Science

Technion — Israel Inst. of Technology
Haifa 3200003, Israel

yaakobi@cs.technion.ac.il

Alexander Yucovich
Dept. of Computer Science

Technion — Israel Inst. of Technology
Haifa 3200003, Israel
yucovich@gmail.com

Abstract—This paper studies the problem of reconstructing a
word given several of its noisy copies. This setup is motivated
by several applications, among them is reconstructing strands
in DNA-based storage systems. Under this paradigm, a word
is transmitted over some fixed number of identical independent
channels and the goal of the decoder is to output the transmitted
word or some close approximation. The main focus of this pa-
per is the case of two deletion channels and studying the error
probability of the maximum-likelihood (ML) decoder under this
setup. First, it is discussed how the ML decoder operates. Then,
we observe that the dominant error patterns are deletions in the
same run or errors resulting from alternating sequences. Based
on these observations, it is derived that the error probability of
the ML decoder is roughly 3q−1

q−1 p2, when the transmitted word
is any q-ary sequence and p is the channel’s deletion probabil-
ity. We also study the cases when the transmitted word belongs
to the Varshamov Tenengolts (VT) code or the shifted VT code.
Lastly, the insertion channel is studied as well. These theoretical
results are verified by corresponding simulations.

I. INTRODUCTION

Reconstruction of sequences refers to a large class of prob-
lems in which there are several noisy copies of the information
and the goal is to decode the information, either with small
or zero error probability. One of the more relevant models to
the study in this paper is the trace reconstruction problem [5],
[17], [18], [29], [31], where it is assumed that a sequence is
transmitted through multiple deletion channels, so each bit is
deleted with some fixed probability p. Under this setup, the
goal is to determine the minimum number of traces, i.e., chan-
nels, required to reconstruct the sequence with high probabil-
ity. Other examples include the sequence reconstruction prob-
lem which was first studied by Levenshtein and others [13],
[23]–[26], [32], [41], [42]. One of the dominant motivating
applications of the sequence reconstruction problems is DNA
storage [2], [9], [14], [30], [43], where every DNA strand has
several noisy copies.

Many of the reconstruction problems are focused on study-
ing the minimum number of channels required for successful
decoding. However, in many cases, the number of channels
is fixed and then the goal is to find the best code construc-
tion that is suitable for this channel setup. Motivated by this
important observation, the goal of this paper is to study the er-
ror probability of maximum-likelihood decoding when a word
is transmitted over two deletion or insertion channels. This
study is also motivated by the recent works of Srinivasavarad-
han et al. [35], [36], where reconstruction algorithms for the
maximum-likelihood have been studied. Abroshan et al. pre-
sented in [1] a new coding scheme for sequence reconstruction
which is based on the Varshamov Tenegolts (VT) code [40]
and in a parallel work [22] it is studied how to design codes
for the worst case, when the number of channels is given.

When a word is transmitted over the deletion channel, the
channel output is necessary a subsequence of the transmitted
word. Hence, when transmitting the same word over multiple
deletion channels, the possible candidate words for decoding

are the so-called common supersequences of all channels’ out-
puts. Hence, an important part of the decoding process is to
find the set of all possible common supersequences and in par-
ticular the shortest common supersequences (SCS) [21]. Even
though this problem is in general NP hard [6] for an arbitrary
number of sequences, for two words a dynamic programming
algorithm exists with quadratic complexity; see [21] for more
details and further improvements and approximations for two
or more sequences [15], [20], [38], [39]. The case of finding
the longest common subsequences (LCS) is no less interesting
and has been extensively studied in several previous works;
see e.g. [3], [8], [16], [19], [27], [33]. Most of these works fo-
cused on improving the complexity of the dynamic program-
ming algorithm suggested in [3] and presented heuristics and
approximations for the LCS.

When a sequence is transmitted over two (or more) dele-
tion channels, the first step in the ML decoding algorithm is
to build upon the algorithm for finding the SCS to generate
all possible candidate words, i.e., all shortest common super-
sequences. However, if there is more than one candidate, it is
necessary to find the one that maximizes the probability that
it was sent over all channels. It is shown that this problem is
directly related to finding the embedding number between two
sequences [4], [12]. This value is the number of times a se-
quence can be generated by deletions from its supersequence.

These two steps are in fact the process in which the ML
decoder operates. Thus, the main goal of this paper is to de-
termine the error probability of the ML decoder. Assume the
deletion probability of every channel is p. If there are t chan-
nels, then a lower bound on the error probability is at least pt

since if a bit is deleted in all t channels, then it will also be
deleted at the ML decoder’s output. However, it will be ob-
served that this lower bound is not tight. For example, if there
are two channels and a bit is deleted in a run in both chan-
nels (i.e., not necessarily the same bit), then this run will have
a deletion error as well. This indeed will be one of the main
error patterns of the ML decoder. Furthermore, it will be ob-
served that alternating subsequences in the word are also error
prone and these two will be the only dominant error patterns.
Thus, we will show that for arbitrary q-ary sequences, the er-
ror decoding probability for the runs is q+1

q−1 p2, while for the
alternating sequences is 2p2, independently of the field size.

The rest of the paper is organized as follows. Section II
presents the notations and the formal definition of transmis-
sion over multiple channels which will be studied in the paper.
Section III studies this problem for the insertion and deletion
channels. In Section IV, we present our main results for the
case of two channels. We consider the average decoding fail-
ure probability of the ML decoder and its average decoding
error probability when the code is the entire space, the VT
code, and the shifted VT code. We then continue in Section V
to study the equivalent problem for insertions. Section VI con-
cludes the paper and discusses open problems. Due to the lack
of space, some of the proofs in the paper are omitted.763978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020



II. DEFINITIONS AND PRELIMINARIES

We denote by Σq = {0, . . . , q− 1} the alphabet of size q
and Σ∗q ,

⋃∞̀
=0 Σ

`
q, Σ6n

q ,
⋃n
`=0 Σ

`
q, Σ>n

q ,
⋃∞̀

=n Σ
`
q. The

length of x ∈ Σn is denoted by |x| = n. The Levenshtein dis-
tance between two words x, y ∈ Σ∗q , denoted by dL(x, y), is
the minimum number of insertions and deletions required to
transform x into y, and dH(x, y) denotes the Hamming dis-
tance between x and y, when |x| = |y|. A word x ∈ Σ∗q will
be referred to as an alternating sequence if it cyclically re-
peats all symbols in Σq in the same order. For example, for
Σ2 = {0, 1}, the two alternating sequences are 010101 · · ·
and 101010 · · · , and in general there are q! alternating se-
quences. For n > 1, the set {1, . . . , n} is abbreviated by [n].

For a word x ∈ Σ∗q and a set of indices I ⊆ [|x|], the
word xI is the projection of x on the indices of I which
is the subsequence of x received by the symbols in the en-
tries of I. A word x ∈ Σ∗ is called a supersequence of
y ∈ Σ∗, if y can be obtained by deleting symbols from
x, that is, there exists a set of indices I ⊆ [|x|] such that
y = xI . In this case, it is also said that y is a subsequence
of x. Furthermore, x is called a common supersequence
(subsequence) of some words y1, . . . , yt if x is a superse-
quence (subsequence) of each one of these t words. The set
of all common supersequences of y1, . . . , yt ∈ Σ∗q is de-
noted by SCS(y1, . . . , yt) and SCS(y1, . . . , yt) is the length
of the shortest common supersequence (SCS) of y1, . . . , yt,
that is, SCS(y1, . . . , yt) = minx∈SCS(y1 ,...,yt)

{|x|}. Sim-
ilarly, LCS(y1, . . . , yt) is the set of all subsequences
of y1, . . . , yt and LCS(y1, . . . , yt) is the length of the
longest common subsequence (LCS) of y1, . . . , yt, that is,
LCS(y1, . . . , yt) = maxx∈LCS(y1 ,...,yt)

{|x|}.
We consider a channel S that is characterized by a condi-

tional probability PrS, which is defined by

PrS{y rec. |x trans.},

for every pair (x, y) ∈ (Σ∗q)
2. Note that it is not assumed

that the lengths of the input and output words are the same as
we consider also deletions and insertions of symbols, which is
the main topic of this work. As an example, it is well known
that if S is the binary symmetric channel (BSC) with crossover
probability 0 6 p 6 1/2, denoted by BSC(p), it holds that

PrBSC(p){y rec. |x trans.} = pdH(y,x)(1− p)n−dH(y,x),

for all (x, y) ∈ (Σn
2)

2, and otherwise (the lengths of x and
y is not the same) this probability equals 0. Similarly, for the
Z-channel, denoted by Z(p), it is assumed that only a 0 can
change to a 1 with probability p and so

PrZ(p){y rec. |x trans.} = pdH(y,x)(1− p)n−dH(y,x),

for all (x, y) ∈ (Σn
2)

2 such that x 6 y, and otherwise this
probability equals 0.

In the deletion channel with deletion probability p, denoted
by Del(p), every symbol of the word x is deleted with proba-
bility p. Similarly, in the insertion channel with insertion prob-
ability p, denoted by Ins(p), a symbol is inserted in each of
the possible |x|+ 1 positions of the word x with probability
p, while the probability to insert each of the symbols in Σq is
the same and equals p

q .
A decoder for a code C with respect to the channel S is a

function D : Σ∗q → C. Its average decoding failure probability

is defined by Pfail(S, C ,D) = ∑c∈C Pfail(c)
|C| , where

Pfail(c) = ∑
y:D(y) 6=c

PrS{y rec. |c trans.}.

We will also be interested in the average decoding error prob-
ability which is the average normalized distance between the
transmitted word and the decoder’s output. The distance will
depend upon the channel of interest. For example, for the BSC
we will consider the Hamming distance, while for the deletion
and insertion channels, the Levenshtein distance will be of
interest. Hence, for a channel S, distance function d, and a
decoder D, we let Perr(S, C ,D, d) = ∑c∈C Perr(c,d)

|C| , where

Perr(c, d) = ∑
y:D(y) 6=c

d(y, c)
|c| · PrS{y rec. |c trans.}.

The maximum-likelihood (ML) decoder for C with respect to
S, denoted by DML, outputs a codeword c ∈ C that maximizes
the probability PrS{y rec. |c trans.}. That is, for y ∈ Σ∗q ,

DML(y) = arg max
c∈C

{{PrS{y rec. |c trans.}} .

It is well known that for the BSC, the ML decoder simply
chooses the closest codeword with respect to the Hamming dis-
tance. The channel capacity is referred to as the maximum in-
formation rate that can be reliably transmitted over the channel
S and is denoted by Cap(S). For example, Cap(BSC(p)) =
1−H(p), where H(p) = −p log(p)− (1− p) log(1− p) is
the binary entropy function.

The conventional setup of channel transmission is extended
to the case of more than a single instance of the channel. As-
sume a word x is transmitted over some t identical channels
of S and the decoder receives all channel outputs y1, . . . , yt.
This setup is characterized by the conditional probability

Pr(S,t){y1, . . . , yt rec.|x trans.} =
t

∏
i=1

PrS{yi rec.|x trans.}.

The definitions of a decoder, the ML decoder and the
error probabilities are extended similarly. The input to
the ML decoder is the words y1, . . . , yt and the out-
put is the codeword c which maximizes the probability
Pr(S,t){y1, . . . , yt rec.|x trans.}. The average decoding
failure probability, average decoding error probability is gen-
eralized in the same way and is denoted by Pfail(S, t, C ,D),
Perr(S, t, C ,D, d), respectively. The capacity of this channel
is denoted by Cap(S, t), so Cap(S, 1) = Cap(S).

The case of the BSC was studied by Mitzenmacher in [28],
where he showed that

Cap(BSC(p), t))

= 1 +
t

∑
i=0

(
t
i

)(
pi(1− p)t−i log

pi(1− p)d−i

pi(1− p)t−i + pt−i(1− p)i

)
.

On the other hand, the Z channel is significantly easier to solve
and it is possible to verify that Cap(Z(p), t) = Cap(Z(pt)).
It is also possible to calculate the average decoding error and
failure probabilities for the BSC and Z channels. For example,
when C = Σn

2 , one can verify that

Perr(Z(p), t, Σn
2 ,DML, dH) = pt,

and if t is odd then

Perr(BSC(p), t, Σn
2 ,DML, dH) =

t−1
2

∑
i=0

(
t
i

)
pt−i(1− p)i .

Similarly, Pfail(Z(p), t, Σn
2 ,DML) = 1 − (1 − pt)n and

Pfail(BSC(p), t, Σn
2 ,DML) = 1−(1−∑

t−1
2

i=0 (
t
i)pt−i(1− p)i)n.

However, calculating these probabilities for the deletion and
insertion channels is a far more challenging task. The goal
of this paper is to study in depth the special case of t = 2
and estimate the average error and failure probabilities, when764



the code is the entire space, the Varshamov Tenengolts (VT)
code [40], and the shifted VT (SVT) code [34].

This model is closely connected to several related problems.
In the reconstruction problem studied by Levenshtein [24],
[25], it was assumed that the word is transmitted over several
noisy channels and the goal of the decoder is to decode the
transmitted word in the worst case, assuming that all chan-
nels’ outputs are different from each other. Several extensions
of these problems have been studied; see e.g. [13], [23], [26],
[32], [41], [42], however in all of them the goal is to find
the number of channels that guarantees unique decoding in
the worst case. The most relevant case of the reconstruction
problem to our work is the one studied in [7], where it was
shown how the shifted VT codes can be used for the two
single-deletion channels case. In a parallel work [22] the dual
problem is studied where the number of channels is given
and then the goal is to find the best code which guarantees
successful decoding in the worst case. Hence, the problem
studied in this paper can be regarded as the probabilistic vari-
ant of the dual problem of the reconstruction problem. Yet
another highly related problem is the one of the trace recon-
struction problem [5], [10], [11], [17], [18], [29], [31]. The
most relevant works to our study are the recent ones [35],
[36], where decoding algorithms for maximum likelihood are
presented for a fixed number of channels.

III. THE DELETION AND INSERTION CHANNELS

In this section we establish several basic results for the dele-
tion channel with multiple instances. We start with several use-
ful definitions. For two words x, y ∈ Σ∗q , the number of times
that y can be received as a subsequence of x is called the
embedding number of y in x and is defined by

Emb(x; y) = |{I ⊆ [|x|] | xI = y}|.

Note that if y is not a subsequence of x then Emb(x; y) = 0.
The embedding number has been studied in several previous
works; see e.g. [4], [12] and in [35] it was referred to as the
binomial coefficient. In particular, this value can be computed
with quadratic complexity [12].

While the calculation of the conditional probability
PrS{y rec. |x trans.} is a rather simple task for many of the
known channels, it is not straightforward for channels which
introduce insertions and deletions. The following basic claim
is well known and was also stated in [35], however it is pre-
sented here for the completeness of the results in the paper
and since it will be used in our derivations to follow.

Claim 1. For all (x, y) ∈ (Σ∗q)
2, it holds that

PrDel(p){y rec. |x trans.} = p|x|−|y| · Emb(x; y),

PrIns(p){y rec. |x trans.} =
(

p
q

)|y|−|x|
· Emb(y; x).

According to Claim 1, it is possible to explicitly character-
ize the ML decoder for the deletion and insertion channels as
described also in [35].

Claim 2. Assume c ∈ C ⊆ (Σq)n is the transmitted word and
y ∈ (Σq)6n is the output of the deletion channel Del(p), then

DML(y) = arg max
c∈C

{Emb(c; y)}.

Similarly, for the insertion channel Ins(p), for y ∈ (Σq)>n,

DML(y) = arg max
c∈C

{Emb(y; c)}.

In case there is more than a single instance of the deletion
channel, the following claim follows.

Claim 3. Assume c ∈ C ⊆ (Σq)n is the transmitted word and
y1, . . . , yt ∈ (Σq)6n are the output words from Del(p), then

DML(y1, . . . , yt) = arg max
c∈C∩SCS(y1 ,...,yt)

{ t

∏
i=1

Emb(c; yi)

}
,

and for the insertion channel Ins(p), for y1, . . . , yt ∈ (Σq)>n,

DML(y1, . . . , yt) = arg max
c∈C∩LCS(y1 ,...,yt)

{ t

∏
i=1

Emb(yi ; c)
}

.

Proof: Every candidate to be considered in the ML
decoder is a common supersequence of y1, . . . , yt. Hence,
DML(y) = c, where c ∈ C ∩ SCS(y1, . . . , yt) maximizes

PrDel(p){y1, . . . , yt rec. |c trans.} =
t

∏
i=1

p|c|−|yi | ·Emb(c; yi).

Since ∏
t
i=1 p|c|−|yi | is the same for all candidates c, the state-

ment holds. A similar proof holds for the insertion channel.

Note that since there is more than a single channel, when
the goal is to minimize the average decoding error probability,
the ML decoder does not necessarily have to output a code-
word but any word that minimizes the average decoding error
probability. Thus, for the rest of the paper, when discussing the
average decoding error probability it is assumed that the ML
decoder can output any word and not necessarily a codeword
from C. Thus, we get the following claim.
Claim 4. Assume c ∈ C ⊆ (Σq)n is the transmitted word and
y1, . . . , yt ∈ (Σq)6n are the output words from Del(p), then

DML(y1, . . . , yt) = arg max
x∈SCS(y1 ,...,yt)

{
p|x|·t

t

∏
i=1

Emb(x; yi)

}
,

and for the insertion channel Ins(p), for y1, . . . , yt ∈ (Σq)>n,

DML(y1, . . . , yt) = arg max
x∈LCS(y1 ,...,yt)

{
p|x|·t

t

∏
i=1

Emb(yi ; x)
}

.

Assume C is Σn
q . The average decoding failure probability

of the ML decoder over the deletion channel Del(p) with t
instances is denoted by Pfail(Del(p), t, Σn

q ,DML) and shortly
Pfail(q, p, t). Similarly, the average decoding error probabil-
ity is Perr(Del(p), t, Σn

q ,DML, dL) and shortly Perr(q, p, t). If
t = 2 it will be removed from the notations.

Our main goal in the rest of the paper is to calculate close
approximations for Pfail(q, p, t) and Perr(q, p, t) when t = 2.
Note that a lower bound on these probabilities is pt since if
the same symbol is deleted in all of the channels, then it is not
possible to recover its value and thus it will be deleted also
in the output of the ML decoder. This was already observed
in [35] and in their simulation results. In the next section, we
will analyze these probabilities for the special case of t = 2,
when the code is Σn

q , the VT code [40], and the SVT code [34].
Complexity wise, it is well known that the time complex-

ity to calculate the SCS length and the embedding numbers of
two sequences are both quadratic with their length. However,
the number of SCSs can grow exponentially [12], [21]. Thus,
given a list of SCSs of size L, the complexity of the ML de-
coder for t = 2 will be O(Ln2). The main idea behind these
algorithms uses dynamic programming in order to calculate
the SCS length and the embedding numbers for all prefixes of
the given words. However, when calculating for example the
SCS for y1 and y2 it is already known that SCS(y1, y2) 6
n. Hence, it is not hard to observe that (see e.g. [3]) many
paths corresponding to prefixes which their length difference
is greater than d1 + d2 can be eliminated, when d1, d2 is the
number of deletions in y1, y2, respectively. In particular, when
d1 and d2 are fixed, then the time complexity is linear. In our
simulations we used this improvement when implementing the
ML decoder. Other improvements and algorithms of the ML
decoder are discussed in [35], [36].765



IV. TWO DELETION CHANNELS

In this section we consider only the case of two deletion
channels and prove in Theorem 8 an approximation for the
average decoding error probability in the form of

Perr(q, p) ≈ 3q− 1
q− 1

p2 + O(p3).

As mentioned in Section III, a lower bound on the value of
Perr(q, p, t) is pt. This lower bound is indeed not tight since
if symbols from the same run are deleted then the outputs of
the two channels of this run are the same and it is impossible
to detect that this run experienced a deletion in both of its
copies. The probability of deletions due to runs is denoted by
Prun(q, p) and the next lemma approximates this probability.

Lemma 5. For the deletion channel Del(p), it holds that

Prun(q, p) ≈ q + 1
q− 1

p2.

Proof: Given a run of length r, the probability that both
of its copies have experienced a deletion is roughly (rp)2.
Furthermore, the occurrence probability of a run of length ex-

actly r is
(

1
q

)r−1
· q−1

q . Thus, for n large enough, the error
probability is approximated by
∞
∑
r=1

(rp)2
(

1
q

)r−1
· q− 1

q
= p2 · q− 1

q

∞
∑
r=1

r2
(

1
q

)r−1

= p2 · q− 1
q

1 + 1
q

(1− 1
q )

3
= p2 · q(q + 1)

(q− 1)2 .

The expected length of a run is given by
∞
∑
r=1

r
(

1
q

)r−1
· q− 1

q
=

q− 1
q

∞
∑
r=1

r
(

1
q

)r−1
=

q
q− 1

.

Hence, the expected number of runs in a vector of length n is
n · q−1

q and thus the approximated number of deletions due to
runs is

n · q− 1
q
· p2 · q(q + 1)

(q− 1)2 = np2 · q + 1
q− 1

,

which verifies the statement in the lemma.
However, runs are not the only source of errors in

the output of the ML decoder. For example, assume the
i-th and the (i + 1)-th symbols are deleted from the
two channels. If the transmitted word x is of the form
x = (x1, . . . , xi−1, 0, 1, xi+2, . . . , xn), then the two chan-
nels’ outputs are y1 = (x1, . . . , xi−1, 0, xi+2, . . . , xn)
and y2 = (x1, . . . , xi−1, 1, xi+2, . . . , xn). However, these
two outputs could also be received upon deletions ex-
actly in the same positions if the transmitted word is
x′ = (x1, . . . , xi−1, 1, 0, xi+2, . . . , xn). Hence, the ML de-
coder can output the correct word only in one of these two
cases. Longer alternating sequences cause the same problem
as well and the occurrence probability of this event, denoted
by Palt(q, p), will be estimated in the next lemma.

Lemma 6. For the deletion channel Del(p), it holds that

Palt(q, p) ≈ 2p2.
Proof: Assume there is a deletion in the first channel in

the i-th position and the closest deletion in the second chan-
nel is j > 0 positions apart, i.e., either in position i − j or
i + j. For simplicity assume it is in the (i + j)-th position and
x[i: j] is an alternating sequence ABAB · · · . Then, the same
outputs from the two channels could be received if the trans-
mitted word is the same as x but with changing the order of

the alternating sequence, that is, the symbols of the word in the
positions of [i : j] are BABA · · · . Therefore, the occurrence
probability of this event can be approximated by

2p2 ·
∞
∑
j=1

q− 1
q
· 1

q j−1 = 2p2,

where q−1
q ·

1
q j−1 is the probability that x[i: j] is any alternating

sequence and the multiplication by 2 takes into account the
cases of deletion in either position i− j or i + j.

At this point one may ask whether these two error events are
the only dominant ones and indeed this question is answered
in the affirmative, as stated in the following lemma.

Lemma 7. If there is a deletion in the first, second channel in
position i, i + j, where j > 0, respectively, and the sequence
x[i:i+ j] is neither a run nor an alternating sequence, then these
deletions are corrected successfully by the ML decoder.

We are now ready to show the following theorem on the
Levenshtein error rate for the case of two channels.

Theorem 8. The Levenshtein error rate for two deletion chan-
nels is approximated by

Perr(q, p)≈Prun(q, p)+Palt(q, p)+O(p3)=
3q−1
q−1

p2+O(p3).

Proof: The proof follows from the above few lemmas.
Note that each run error translates to an increase of the Lev-
enshtein distance by one. On each occurrence of the alternating
event the decoder chooses the correct subsequence with proba-
bility 0.5 and every error increases the Levenshtein distance by
two since it translates to one insertion and one deletion. Lastly,
the O(p3) expression compensates for all other less dominant
error events which introduce more than two deletions that are
close to each other at least in one of the channels.

Using these observations, we are also able to approximate
the average decoding failure probability.

Theorem 9. The average decoding failure probability is

Pfail(q, p) ≈ e−
3q−1
q−1 p2n.

Proof: This is the probability that there was neither a
deletion error because of the runs nor errors because of the
alternating sequences. Hence, this probability becomes

(1− Prun(q, p))n · (1− Palt(q, p))n

≈ (1− (Prun(q, p) + Palt(q, p)))n =

(
1− 3q− 1

q− 1
p2
)n

≈ e−
3q−1
q−1 p2n.

So far we have discussed only the case in which the
code C is the entire space. However, the most popular
deletion-correcting code is the VT code [40]. Recently, SVT,
an extension of the VT code, has been proposed in [34] for
the correction of burst deletions. The goal of the SVT code
is to correct a deletion error while its position is known up
to some roughly log(n) consecutive locations. However, this
construction has been recently used in [7] to build a code
that is specifically targeted for the reconstruction of a word
that is transmitted through two single-deletion channels. Due
to the relevance of correcting deletion and alternating er-
rors, the decoding failure probabilities of these two codes
are investigated in this work. We abbreviate the notation of
Pfail(Del(p), 2, VTn,DML),Pfail(Del(p), 2, SVTn,DML) by
Pfail(VTn, q, p),Pfail(SVTn, q, p), respectively. The following
theorem summarizes these results.766



Theorem 10. The average decoding failure probabilities for the
VT and SVT codes are given by

Pfail(VTn , q, p) ≈ (1− Prun(q, p))n · (1− Palt(q, p))n

+ (1− Prun(q, p))n · nPalt(q, p) (1− Palt(q, p))n−1 ,

+ nPrun(q, p) (1− Prun(q, p))n−1 · (1− Palt(q, p))n

Pfail(SVTn , q,p) ≈ (1− Prun(q, p))n · (1− Palt(q, p))n

+ (1− Prun(q, p))n · nPalt(q, p) (1− Palt(q, p))n−1 .

Proof: The proof follows from the observation that the
VT code is capable of decoding either a single run error or
a single alternating error. On the other hand, the shifted VT
code is capable of only correcting a single alternating error;
see [7] for more details.

We verified the theoretical results presented in this sec-
tion by the following simulations. These simulations were
tested over words of length n = 450 which were used to
create two noisy copies given a fixed deletion probability
p ∈ [0.005, 0.05]. Then, the two copies were decoded by the
ML decoder as described in Claim 4. Finally, we calculated
the Levenshtein error rate of the decoded word as well as the
average decoding failure probability (referred to here as fail-
ure rate). Fig. 1 plots the results of the Levenshtein error rate
which confirms the probability expression Perr(q, p) from
Theorem 8. Similarly, in Fig. 2 we present separately the error
probability Palt(q, p),Prun(q, p), along with the correspond-
ing value as calculated in Lemma 5, 6, respectively. Lastly, in
Fig. 3, we simulated the ML decoder for the VT codes and
the SVT codes and calculated the failure rate Pfail(q, p). The
implementation of the VT code was taken from [37], and we
modified this implementation for SVT codes.

Fig. 1. Levenshtein error rate by the deletion probability p. These simulations
verify Theorem 8.

Fig. 2. Levenshtein error rate by the deletion probability p. These simulations
verify Lemma 5 and Lemma 6.

V. TWO INSERTION CHANNELS

This section continues the two-channel study but for the in-
sertion case. In a similar manner to the deletion case, also
here the dominant errors result from increasing the length of
a run and error that results from the occurrence of an alternat-
ing sequence. We denote by Pins

err(q, p) the Levenshtein error

Fig. 3. Failure rate of the ML decoder, stratified by the coding scheme. These
simulations verify Theorem 9 and Theorem 10.

rate of the ML decoder upon two instances of the insertion
channel Ins(p). Similarly, Pins

fail(q, p) is the average decoding
failure probability and lastly Pins

run(q, p),Pins
alt(q, p) is the in-

sertion probability due to runs, occurrence probability due to
alternate sequences, respectively. The following theorem sum-
marizes the results of this section.
Theorem 11. For the insertion channel Ins(p), it holds that

Pins
run(q, p) ≈ q + 1

q(q− 1)
p2, Pins

alt(q, p) ≈ 2
q

p2,

Pins
err(q, p) ≈ 3q− 1

q(q− 1)
p2 + O(p3), Pins

fail(q, p) ≈ e−
2

q−1 p2n.

Since the proof of this theorem repeats the same ideas as the
ones for the deletion case we omit its details here.

The theoretical results of Theorem 11 have also been veri-
fied by simulation results over words of length n = 500, which
were used to create two noisy copies with a given fixed inser-
tion probability p ∈ [0.005, 0.05]. Then, the two copies were
decoded with the ML decoder according to Claim 4. Lastly,
we calculated and plotted in Fig. 4 the Levenshtein error rate
as well as the error rates from runs and alternating sequences.

Fig. 4. Levenshtein error rate by the insertion probability p. This simulation
verifies Theorem 11.

VI. CONCLUSTION

The main contribution of this paper is the study of the de-
coding error probability of the ML decoder for two deletion
or insertion channels. While the results in the paper provide
a significant contribution in the area of codes for insertions
and deletions and sequence reconstruction, there are still sev-
eral interesting problems which are left open. Some of them
are summarized as follows:

1) Study the non-identical channels case. For example two
deletion channels with different probabilities p1 and p2.

2) Study the decoding error probability for more than two
channels, both for insertions and deletions.

3) Study channels which introduce insertions, deletions, and
substitutions.

4) Design coding schemes as well as complexity-efficient
algorithms for the ML decoder in each case.767
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