
Array Codes for Functional PIR and Batch Codes
Mohammad Nassar

Technion — Israel Institute of Technology
Haifa 3200003, Israel

mohamadtn@cs.technion.ac.il

Eitan Yaakobi
Technion — Israel Institute of Technology

Haifa 3200003, Israel
yaakobi@cs.technion.ac.il

Abstract—A functional PIR array code is a coding scheme
which encodes some s information bits into a t×m array such
that every linear combination of the s information bits has k
mutually disjoint recovering sets. Every recovering set consists
of some of the array’s columns while it is allowed to read at
most ` encoded bits from every column in order to receive the
requested linear combination of the information bits. Functional
batch array codes impose a stronger property where every mul-
tiset request of k linear combinations has k mutually disjoint
recovering sets. Given the values of s, k, t, `, the goal of this pa-
per is to study the optimal value of the number of columns m
such that these codes exist. Several lower bounds are presented
as well as explicit constructions for several of these parameters.

I. INTRODUCTION

Private information retrieval (PIR) codes and batch codes
are families of codes which have several applications such as
PIR protocols [2], [7], [10], [11], [24], [27], erasure codes in
distributed storage systems [17], [18], [21], one-step majority-
logic decoding [13], [15], load balancing in storage, crypto-
graphic protocols [12], switch codes [5], [8], [23], and more.
They have been recently generalized to functional PIR and
functional batch codes [30]. In this work we study these fam-
ilies of codes when they are used as array codes.

The setup of storing information in array codes works as
follows. Assume s bits are encoded to be stored in a t × m
array, where each column corresponds to a server such that
the encoded bits are stored in the server. The encoded bits
should satisfy several properties which depend upon whether
the resulting code is a PIR, batch, functional PIR, or func-
tional batch codes. Given a design parameter k of the code, it
is required in PIR codes that every information bit has k mu-
tually disjoint recovering sets. Here, a recovering set is a set
of columns, i.e., servers, in which given the encoded bits in
the columns of the recovering set it is possible to recover the
information bit. In case it is possible to read only a portion of
the encoded bits in every column, we denote this parameter by
`. An array code with these parameters and properties is de-
fined as an (s, k, m, t, `) PIR array code. Furthermore, it will
be called an (s, k, m, t, `) batch array code if every multiset
request of the k information bits has k mutually disjoint recov-
ering sets. In case the requests are not only of information bits
but any linear combination of them, we receive an (s, k, m, t, `)
functional PIR array code, if the same linear combination is
requested k times or (s, k, m, t, `) functional batch array code
for a multiset request of k linear combinations.

The main figure of merit when studying these families of
codes is to optimize the number of columns, i.e., servers,
given the values of s, k, t, `. Thus, the smallest m such that an
(s, k, m, t, `) PIR, batch, functional PIR, functional batch code
exists, is denoted by Pt,`(s, k), Bt,`(s, k), FPt,`(s, k), FBt,`(s, k),
respectively. Studying the value of Pt,`(s, k) has been initiated
in [11] and since then several more results have appeared;
see e.g. [3], [4], [6], [29]. Note that the first work [12] which
studied batch codes defined them in their array codes setup
and only later on they were studied in their one-dimensional
case, also known as primitive batch codes; see e.g. [1], [14],
[19], [22], [28]. Functional PIR and batch codes have been re-
cently studied in [30] but only for vectors, that is, t = ` = 1.

Thus, this paper initiates the study of functional PIR and
batch codes in the array setup.

The motivation to study functional PIR and batch codes
originates from the observation that in many cases and proto-
cols, such as PIR, the user is not necessarily interested in one
of the information bits, but rather, some linear combination
of them. Furthermore, functional batch codes are closely re-
lated to the family of random I/O (RIO) codes, introduced by
Sharon and Alrod [20], which are used to improve the random
input/output performance of flash memories. A variant of RIO
codes, called parallel RIO codes, was introduced in [25], and
linear codes of this family of codes have been studied in [26].
It was then shown in [30] that in fact linear parallel RIO codes
are equivalent to functional batch codes.

The rest of the paper is organized as follows. In Section II,
we formally define the codes studied in the paper, discuss some
of the previous related work, and list several basic proper-
ties. In Section III, we show lower bounds on the number of
servers for functional PIR and batch array codes. Section IV
lists several code constructions which are based on the Gadget
Lemma, covering codes, and several more results for k = 1, 2.
Section V presents three constructions of array codes and in
Section VI the rates of these codes are studied. Due to the lack
of space, some of the proofs in the paper are omitted and can
be found in the full version of this work in [16].

II. DEFINITIONS AND PRELIMINARIES
This work is focused on four families of codes, namely

private information retrieval (PIR) codes that were defined re-
cently in [11], batch codes that were first studied by Ishai et
al. in [12], and their extension to functional PIR codes and
functional batch codes that was recently investigated in [30].
In these four families of codes, s information bits are encoded
to m bits. While for PIR codes it is required that every infor-
mation bit has k mutually disjoint recovering sets, batch codes
impose this property for every multiset request of k bits. Sim-
ilarly, for functional PIR codes it is required that every linear
combination of the information bits has k mutually disjoint
recovering sets, and functional batch codes impose this prop-
erty for every multiset request of k linear combination of the
bits. While this description of the codes corresponds to the
case of one-dimensional codewords, the goal of this work is
to study their extension as array codes, which is defined as
follows. The set [n] denotes the set of integers {1, 2, . . . , n}
and Σ = F2.

Definition 1.
1) An (s, k, m, t, `) PIR array code over Σ is defined by an

encoding map E : Σs → (Σt)m that encodes s information
bits x1, . . . , xs into a t × m array and a decoding func-
tion D that satisfies the following property. For any i ∈ [s]
there is a partition of the columns into k recovering sets
S1, . . . , Sk ⊆ [m] such that xi can be recovered by reading
at most ` bits from each column in S j, j ∈ [k].

2) An (s, k, m, t, `) batch array code over Σ is defined by an
encoding map E : Σs → (Σt)m that encodes s information
bits x1, . . . , xs into a t×m array and a decoding function
D that satisfies the following property. For any multiset re-
quest of k bits i1, . . . , ik ∈ [s] there is a partition of the

1024978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

columns into k recovering sets S1, . . . , Sk ⊆ [m] such that
xi j , j ∈ [k] can be recovered by reading at most ` bits from
each column in S j.

3) An (s, k, m, t, `) functional PIR array code over Σ is de-
fined by an encoding map E : Σs → (Σt)m that encodes s
information bits x1, . . . , xs into a t×m array and a decod-
ing function D that satisfies the following property. For
any request of a linear combination v of the information
bits, there is a partition of the columns into k recovering
sets S1, . . . , Sk ⊆ [m] such that v can be recovered by
reading at most ` bits from each column in S j, j ∈ [k].

4) An (s, k, m, t, `) functional batch array code over Σ is
defined by an encoding map E : Σs → (Σt)m that encodes
s information bits x1, . . . , xs into a t× m array and a de-
coding functionD that satisfies the following property. For
any multiset request of k linear combinations v1, . . . , vk of
the information bits, there is a partition of the columns into
k recovering sets S1, . . . , Sk ⊆ [m] such that v j, j ∈ [k]
can be recovered by reading at most ` bits from each col-
umn in S j.

We refer to each column as a bucket and to each entry in
a bucket as a cell. Furthermore, it is said that a cell stores a
singleton if one of the information bits is stored in the cell.
In the rest of the paper we will refer to every linear combi-
nation of the information bits as a binary vector of length
s, which indicates the information bits in this linear com-
bination. Our goal is to fix the values of s, k, t and ` and
then seek to optimize the value of m. In particular, we will
have that t and ` are fixed, where t > `, and then study the
growth of m as a function of s and k. Hence, we denote
by Pt,`(s, k), Bt,`(s, k), FPt,`(s, k), FBt,`(s, k) the smallest m
such that an (s, k, m, t, `) PIR, batch, functional PIR, func-
tional batch code exists, respectively. In case ` = t = 1 we
will simply remove them from these notations.

The following upper and lower bounds on the number of
buckets for PIR array codes have been shown in [4], [6], [29]
and are stated in the following theorem.

Theorem 2.
1) Pt,t(s, k) > 2·k·s

s+t , [4, Th. 3].
2) For any integer t > 2 and any integer s > t, Pt,t(s, k) >

k·s·(2s−2t+1)
(2s−2t+1)t+(s−t)2 , [4, Th. 4].

3) For any integer t > 2 and any integer s > 2t, Pt,t(s, k) >
2k·s·(s+1)

(s−t)2+3st−t2+2t , [29, Th. 16].
4) For any integer t > 2 and any integer t < s 6 2t,

Pt,t(s, k) 6 k·s·(2s−2t+1)
(2s−2t+1)t+(s−t)2 , [4, Th. 6].

5) For any integers p, t with p 6 t + 1, Pt,t(pt, k) 6
m, where k = (t

t−p+1)(
s
t) and m = (t

t−p+1)(
s
t) +

(s−p
t−p+1)(

s−1
p−1), [6, Th. 10].

Note that for any two integers t > 2 and s > t, the bound
in Theorem 2(2) improves upon the bound in Theorem 2(1).
This is verified by showing that k·s·(2s−2t+1)

(2s−2t+1)t+(s−t)2 − 2·k·s
s+t > 0

by basic algebraic manipulations. However the lower bound in
Theorem 2(1) holds for all values of s, while the one in The-
orem 2(2) only for s > t. Also, in [29] it was shown that for
any two integers t > 2 and s > 2t, the bound in Theorem 2(3)
is stronger than the bound in Theorem 2(2).

The result in Theorem 2(4) is achieved by Construction 1
in [4]. The authors of [4] presented another construction which
is not reported here due to its length. For the exact details
please refer to [4, Construction 4 and Th.8]. This construction
was then improved in [29] and [6]. Several more constructions
of PIR array codes have also been presented in [6], [29].

The following theorem summarizes some of the known ba-
sic previous results, as well as several new ones. The proofs
are rather simple and are thus omitted.
Theorem 3. For every s, k, t, `, a positive integers:

1) Pt,`(s, 1) = Bt,`(s, 1) = ds/te.
2) FPt,`(s, k1 + k2) 6 FPt,`(s, k1) + FPt,`(s, k2) (also for P,

B, and FB).
3) FPt,`(s, a · k) 6 a · FPt,`(s, k) (also for P, B, and FB).
4) FPt,`(s1 + s2, k) 6 FPt,`(s1, k) + FPt,`(s2, k) (also for P,

B, and FB).
5) FPt,`(a · s, k) 6 a · FPt,`(s, k) (also for P, B, and FB).
6) FPt,`(s, k) 6 a · FPa·t,`(s, k) (also for P, B, and FB).

One of the simplest ways to construct array PIR and batch
codes uses the Gadget Lemma, which was first proved in [12].

Lemma 4.(The Gadget Lemma) Let C be an (s, k, m, 1, 1)
batch code, then for any positive integer t there exists an
(ts, k, m, t, 1) batch array code C ′ (denoted also by t · C).

It is easily verified that the Gadget Lemma holds also for PIR
codes and therefore Pt,`(s, k) 6 Pt,1(s, k) 6 P(ds/te, k) and
Bt,`(s, k) 6 Bt,1(s, k) 6 B(ds/te, k). However, unfortunately,
the Gadget Lemma does not hold in general for functional
PIR and batch codes. Even a weaker variation of the Gad-
get Lemma, where ` = t, does not hold in general for func-
tional PIR and batch codes either. Assume by contradiction
that if there is an (s, k, m, 1, 1) functional PIR code C, then
for any positive integer t there exists a (ts, k, m, t, t) func-
tional PIR array code. Then, this will imply that FPt,t(ts, k) 6
FP(s, k). However, it is known that FP(2, 2) = 3 by the sim-
ple parity code. Thus, under this assumption it would hold that
FP2,2(4, 2) 6 FP(2, 2) = 3. But, according to a lower bound
on functional PIR array codes, which will be shown in The-
orem 6, it holds that FP2,2(4, 2) > 2·2·15

15+3 > 3, which is a
contradiction.

III. LOWER BOUNDS ON ARRAY CODES

In this section we present several lower bounds on func-
tional PIR and batch array codes. Let {a

b} be the Stirling num-
ber of the second kind, which calculates the number of parti-
tions of a set of a elements into b nonempty subsets. It is well
known that {a

b} =
1
b! ∑

b
i=0(−1)b−i(b

i)i
a.

Theorem 5. Let s, k, t and ` be positive integers. Then,
1) FBt,`(s, k) > m∗, where m∗ is the smallest positive inte-

ger such that ∑
m∗
i=k (

m∗
i) · {

i
k} ·

(
∑
`
j=1 (

t
j)
)i

> (2s+k−2
k).

2) FPt,`(s, k) > m∗, where m∗ is the smallest positive integer

such that ∑
m∗
i=k (

m∗
i) · {

i
k} ·

(
∑
`
j=1 (

t
j)
)i

> 2s − 1.
3) FPt,`(s, k) > m∗, where m∗ is the smallest positive integer

such that ∑
m∗−k+1
i=1 (m∗

i) ·
(

∑
`
j=1 (

t
j)
)i

> k · (2s − 1).

4) FPt,`(s, k) >
⌈

log2(k(2
s−1)+1)

log2(∑
`
i=0 (

t
i))

⌉
.

Lastly in this section we show a different lower bound for
functional PIR array codes, which is motivated by the corre-
sponding lower bound for PIR array codes from [4, Th. 3].

Theorem 6. For any s, k, t and ` positive integers, FPt,`(s, k) >
2·k·(2s−1)

(2s−1)+(∑`
i=1 (

t
i))

.

Proof: Suppose there exists an (s, k, m, t, `) functional
PIR array code. There are 2s − 1 possible linear combination
requests which are denoted by ui for 1 6 i 6 2s− 1. For each
i ∈ [2s − 1], let αi be the number of recovering sets of size 1
of the i-th linear combination request ui.

1025

Since it is possible to read at most ` bits from each bucket,
every bucket can satisfy at most ∑

`
i=1 (

t
i) linear combinations.

Thus, the number of recovering sets of size 1 is m · ∑`
i=1 (

t
i),

and ∑
2s−1
j=1 α j 6 m ·∑`

i=1 (
t
i). Hence, there exists q ∈ [2s − 1]

such that αq 6
m·∑`

i=1 (
t
i)

2s−1 , so out of its k disjoint recovering
sets of uq, at most αq of them are of size 1, and the size of
each of the remaining k−αq subsets is at least 2. Hence,

m > αq + 2(k−αq) = 2k−αq > 2k−
m · ∑`

i=1 (
t
i)

2s − 1
,

and therefore m(1 +
∑
`
i=1 (

t
i)

(2s−1)) > 2k, which implies that

FPt,`(s, k) > 2k(2s−1)
(2s−1)+∑

`
i=1 (

t
i)

.

IV. GENERAL CONSTRUCTIONS OF ARRAY CODES

In this section we present several constructions of array
codes for functional PIR and batch codes.

A. Basic Constructions
Even though the Gadget Lemma cannot be extended in gen-

eral for functional PIR and batch codes, here we show a vari-
ation of it that will hold.

Lemma 7. For any positive integer p, if there exists an (s, p ·
k, m, t, `) functional batch array code, then there exists an (p ·
s, k, m, p · t, `) functional batch array code. Therefore,

FPp·t,`(s, k) 6 FBp·t,`(p · s, k) 6 FBt,`(s, p · k),

and in particular, FPt,1(s, k) 6 FBt,1(s, k) 6 FB(d s
t e, t · k).

Proof Outline: Let C be an (s, p · k, m, t, `) functional
batch array code. We construct a (p · s, k, m, p · t, `) functional
batch array code C ′ by using the code C. The p · s information
bits are partitioned into p parts, each of size s, such that the
i-th part is encoded to a t×m array Ai using C. The code C ′
is presented by a pt× m array A that contains the p arrays
A1, . . . , Ap.

Let R = {v1, . . . , vk} be a multiset request of size k of
the p · s information bits, where vi , i ∈ [k] is a binary vector
of length ps that represents the i-th request. For each i ∈ [k],
denote vi = (v1

i , . . . , vp
i) where v j

i , j ∈ [p] is a vector of
length s, that represents the linear combination of the j-th part
of the information bits. Let R∗ = {v j

i : 1 6 i 6 k, 1 6 j 6 p}
be a multiset request of size pk consisting of pk vectors of
length s each. By requesting R∗ from the code C we get pk
recovering sets. For each i ∈ [k], the request vi can be satisfied
by the union of the recovering sets of each v j

i , j ∈ [p], where
for each j ∈ [p], in the recovering sets of v j

i we read the cells
from the array A j. It can be shown that each recovering set
obtained from C is used only once in one of the recovering
sets in the code C ′. Thus, the recovering sets are disjoint and
from each bucket at most ` cells are read as in the code C.

Another general construction is stated in the next theorem.
Theorem 8. For any positive integers, s, k, t, t0, and `,
FBt,`(s, k) 6 m + m0, where m = FBt+t0 ,`(s, k) and
m0 = FBt,`(m · t0, k).

The idea behind the proof of Theorem 8 is explained for the
specific parameters t0 = m0 = k = 1. An (s, 1, m + 1, t, `)
functional batch array code C ′ can be constructed using an
(s, 1, m, t + 1, `), (m, 1, 1, t, `) functional batch array codes
C1, C2, respectively. The code C ′ will have the first t rows of
the code C1 and another one bucket which is the encoding of
all the linear combinations in the cells of the last row of C1
using the code C2. In the decoding, when a linear combina-
tion is requested, the recovering set of the code C1 are used.

However, instead of reading the cells in the last row, we read
them from the additional bucket in order to get a recovering
set for the same request of the code C ′. Note that a similar
statement can hold for functional PIR array code, where for
any positive integers s, k, t, t0, and `, FPt,`(s, k) 6 m + m0,
where m = FPt+t0 ,`(s, k) and m0 = FBt,`(m · t0, k).

B. Constructions based upon Covering Codes

In this section it is shown how covering codes are used to
construct array codes. Denote by dH(x, y) the Hamming dis-
tance between two vectors x, y. Next we remind the definition
of covering codes [9].

Definition 9. Let n > 1, R > 0 be integers. A code C ⊆ Σn is
called an R-covering code if for every word y ∈ Σn there is a
codeword x ∈ C such that dH(x, y) 6 R. The notation [n, k, R]
denotes a linear code of length n, dimension k, and covering
radius R. The value g[n, R] denotes the smallest dimension of a
linear code with length n and covering radius R.

The following property is well known for linear covering
codes; see e.g. [9, Th. 2.1.9].

Property 10. For an [n, k, R] linear covering code with some
parity check matrix H, every syndrome vector s ∈ Σn−k can
be represented as the sum of at most R columns of H.

The connection between linear codes and functional batch
array codes is established in the next theorem.

Theorem 11. Let C be a [t, t− s, `] linear covering code, then
there exists an (s, 1, 1, t, `) functional batch array code. In par-
ticular, FBt,`(t− g[t, `], 1) = 1.

Theorem 11 holds also for functional PIR array code and thus
the following results are derived.

Corollary 12. Let s, k, t and ` be positive integers. Then,

1) FPt,`(s, k) 6 FBt,`(s, k) 6 k ·
⌈

s
t−g[t,`]

⌉
.

2) FPt+t0 ,`(s, k) 6 FPt,t(s, k), where t0 = g[t + t0, `]. Also
works for FB.

3) FPt,`(s, k) 6 FBt,`(s, k) 6 k ·
(⌈ s

α

⌉
+ 1
)
, where

⌈ s
α

⌉
6

t− g[t, `], andα = (t + 1)− g[(t + 1), `].

The third claim of Corollary 12 is derived from Theorem 11
and Theorem 8.

C. The Cases of k = 1, 2
Even though the cases of k = 1, 2 are the most trivial ones

when the codewords are vectors, they are apparently not easily
solved for array codes. In this section we summarize some of
our findings on these important and interesting cases.

Theorem 13. For each s, t, ` positive integers:

1) FPt,`(s, 1) >
⌈

s
log2(∑

`
i=0 (

t
i))

⌉
.

2) FPt,t(s, 1) =
⌈ s

t
⌉
.

3)
⌈

s
log2(t+1)

⌉
6 FPt,1(s, 1) 6

⌈
s

blog2(t+1)c

⌉
.

4) FPt,α·t(s, 1) 6
⌈

s
t−g[t,α·t]

⌉
, where 0 < α < 1.

5) FPt,t/2(s, 1) = s
t + 1, where t is even, s

t is integer, and
s
t 6 t− 1.

Claims 2, 3 and 4 are derived from Theorem 11. Claim 5 is
derived from Corollary 12(2). An improvement for the case of
` = 1 is proved in the following theorem.

1026

TABLE I
(15, 1, 7, 4, 1) FUNCTIONAL PIR ARRAY CODE

1 2 3 4 5 6 7
x1 x3 x5 x7 x9 x11 x1 x3 x5 x7 x9 x11
x2 x4 x6 x8 x10 x12 x2 x4 x6 x8 x10 x12

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x1 · · · x12
x13 x14 x15 x13 x14 x13 x15 x14 x15 x13 x14 x15

Theorem 14. For any positive integers s1, s2, and t,

FPt,1(s1 + s2, 1) 6
⌈

s1

blog2(t + 1)c

⌉
+ 1,

where 2s2 − 16
(⌈

s1
blog2(t+1)c

⌉
+ 1
)
(t− (2blog2(t+1)c− 1)).

Proof: We construct an (s1 + s2, 1, m, t, 1) functional
PIR array code for m =

⌈
s1

blog2(t+1)c

⌉
+ 1. The first s1 infor-

mation bits are divided into m− 1 parts, where hi , i ∈ [m− 1]
is the size of part i, and hi 6 blog2(t + 1)c. Then, all the
linear combinations of part i ∈ [m− 1] are written in the i-th
bucket, so in each of the first m− 1 buckets there are at least
t− (2blog2(t+1)c − 1) empty cells. In the last bucket, the par-
ity of each of the first 2blog2(t+1)c − 1 rows is stored. Since
2s2 − 1 6 m · (t − (2blog2(t+1)c − 1)), each of the 2s2 − 1
linear combinations of the s2 bits can be written in the empty
cells of the m buckets.

Let v = (v1, . . . , vm) be a request such that for any i ∈
[m− 1] the length of vi is hi, the length of vm is s2, and for
simplicity assume that they are all nonzero. The linear combi-
nation vm is satisfied by the cell where it is stored and assume
it is in the j-th bucket, where j < m. Assume that the cell in
the j-th bucket where the linear combination v j is stored is in
row r. We read from each bucket b ∈ [m− 1], where b 6= j
the cell with the linear combination represented by vb + ub,
where ub is the vector that represents the cell in bucket b in
row r, while if vb + ub = 0 we don’t read from bucket b. Also,
we read the cell in row r from the last bucket. Then the lin-
ear combination we get is the combination that is represented
by (v1, . . . , vm−1), because ∑16b6m,b 6= j ub = v j and for each
b ∈ [m− 1] where b 6= j we read the linear combination that
is represented by vb + ub from bucket b.

For any t, s1, s2 where s = s1 + s2 and s2 > blog2(t +
1)c, the upper bound in Theorem 14 improves upon the one
in Theorem 13(3) since

⌈
s

blog2(t+1)c

⌉
>
⌈

s1
blog2(t+1)c

⌉
+ 1.

Example 1. In this example the construction of a (15, 1, 7, 4, 1)
functional PIR array code is demonstrated based on Theo-
rem 14. It can be verified that the parameters t = 4, s1 = 12
and s2 = 3 satisfy the constraints of Theorem 14. The con-
struction is given in Table I. The first s1 = 12 information
bits are partitioned into 6 parts, each part of size 2. All
the nonzero linear combinations of part i, i ∈ [6] are writ-
ten in the i-th bucket with one cell remains empty. The sum
of each of the first 3 rows is written. Now, there are still
7 empty cells, which are used to store all the nonzero lin-
ear combinations of the last s2 = 3 bits in the empty cells.
This example implies that FP4,1(15, 1) 6 7, and from The-
orem 13(3) it can be verified that FP4,1(15, 1) > 7. Thus,
FP4,1(15, 1) = 7. Note that in this example and in the rest
of the paper the notation xi1 xi2 · · · xih is a shorthand to the
summation xi1 + xi2 + · · ·+ xih . 2

Lastly, we report on several results for k = 2.
Theorem 15. Let s be positive integer. Then,

1) 6 6 FB2,2(8, 2) 6 7.
2) 6 6 FB3,1(8, 2) 6 7.
3) 0.71s . log7(2

s−1 · (2s − 1)) 6 FB2,2(s, 2) 6 7 ·
⌈ s

8
⌉
.

TABLE II
(8, 2, 7, 2, 2) FUNCTIONAL PIR ARRAY CODE

1 2 3 4 5 6 7
x1 x2 x1 x2 x5 x6 x5 x6 x1 x2 x5 x6
x3 x4 x3 x4 x7 x8 x7 x8 x3 x4 x7 x8

TABLE III
CONSTRUCTION A FOR t = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x1 x1 x1 x1 x1 x2 x2 x2 x2 x3 x3 x3 x4 x4 x5
x2 x3 x4 x5 x6 x3 x4 x5 x6 x4 x5 x6 x5 x6 x6

16 17 18 19 20 21 22 23 24 25
x1x2x3 x1x2x4 x1x2x5 x1x2x6 x1x3x4 x1x3x5 x1x3x6 x1x4x5 x1x4x6 x1x5x6
x4x5x6 x3x5x6 x3x4x6 x3x4x5 x2x5x6 x2x4x6 x2x4x5 x2x3x6 x2x3x5 x2x3x4

The first claim of Theorem 15 can be verified by using The-
orem 5(1) and the construction given in Table II. The second
claim of Theorem 15 is derived from the first claim and Corol-
lary 12(2). Lastly, the upper bound of the third claim is derived
from the first claim and Theorem 3(5). The lower bound is de-
rived from Theorem 5(1).

V. SPECIFIC CONSTRUCTIONS OF ARRAY CODES

In this section we discuss three constructions of array codes.

A. Construction A

The first construction was given in [11, Th.20], where it was
proved in [6, Th.10] that this construction gives a PIR array
code for any integer t > 2. We study how it can be used also
as batch and functional PIR array codes for t = 2. Denote by
CA

2 the code that is obtained from this construction with t = 2
which is demonstrated in Table III.

Now we want to show that the code CA
2 is a (6, 15, 25, 2, 2)

batch array code, by using several properties which are proved
in the following three lemmas. For each i ∈ [6] denote by
Fi ⊆ [15] the subset of buckets from the first 15 buckets, that
have a cell with the singleton xi. Assume that every multiset re-
quest R of size k = 15 is represented by a vector (k1, . . . , k6),
where ki indicates the number of times xi appears in the mul-
tiset request and k1 > · · · > k6.

Lemma 16. For any multiset request (k1, . . . , k6) of size k =
15, the code CA

2 can satisfy all the requests of bits x3, x4, x5, x6
by using only the first 15 buckets.

Lemma 17. In the code CA
2 , for any information bit xi and for

any bucket b1 ∈ [15] \ Fi, there exists a bucket b2, 16 6 b2 6
25 such that {b1, b2} is a recovering set of xi. In addition, the
|[15] \ Fi| recovering sets we get are disjoint.

For any information bit xi , i ∈ [6] denote by Ri
b the recov-

ering set that uses bucket b ∈ [15] and can satisfy xi. For
example, R1

1 = {1} and R1
12 = {12, 22}.

Lemma 18. For the two information bits x1, x2, the buck-
ets {10, 11, . . . , 15} are divided into 3 pairs, {(10, 15),
(11, 14),(12, 13)}, such that for any pair (b1, b2), it holds that∣∣∣R1

b1
∩ R2

b2

∣∣∣ > 0 and
∣∣∣R2

b1
∩ R1

b2

∣∣∣ > 0.

Theorem 19. The code CA
2 is a (6, 15, 25, 2, 2) batch array

code. In particular, B2,2(6, 15) = 25.

The upper bound in Theorem 19 can be verified based on
Lemmas 16, 17, and 18. The lower bound is derived from The-
orem 2(3). In addition it is possible to show that the code CA

2
is a (6, 11, 25, 2, 2) functional PIR array code. This is stated
in the following theorem while the lower bound is obtained
using Theorem 6.

Theorem 20. The code CA
2 is a (6, 11, 25, 2, 2) functional PIR

array code. In particular, 21 6 FP2,2(6, 11) 6 25.

1027

TABLE IV
CONSTRUCTION 21 FOR r = 3

1 2 3 4
x1 x2 x3 x1 x2 x1

x4 x2 x3 x3
x6 x4 x5 x6 x4 x5
x7 x7 x5 x6
x8 x9 x7 x8 x9 x8
x10 x10 x11 x9
x11 x12 x12 x10 x11 x12

B. Construction B
Next we generalize an example given in [11] of a PIR code

and study how it can be used also as batch array codes. First
the construction for the general case is presented.
Construction 21. Let r > 3 be a fixed integer, the number of
information bits is s = r(r + 1), the number of the buckets
is m = r + 1, and the number of the cells in each bucket is
t = (r− 1)r+ 1. The information bits are partitioned into r+ 1
parts each of size r, denote by Si the part i of the bits. For each
i ∈ [r + 1], write the linear combination ∑ j∈Si

x j to bucket i.
For each i, i ∈ [r+ 1] write each one of the subsets of size r− 1
of Si as singletons in a different bucket other than bucket i.

For r > 3 denote the code obtained from Construction 21
by CB

r . Construction 21 for the case of r = 3 is demonstrated
in Table IV. It is possible to show that for any r > 3 the code
CB

r is an (r2 + r, r, r + 1, r2 − r + 1, r− 1) PIR array code.
Theorem 22. For any integer r > 3 the code CB

r from Construc-
tion 21 is an (r2 + r, r, r + 1, r2 − r + 1, r− 1) PIR array code.
In particular,

r · (4r2 + 3r− 1)
4r2 − r + 1

6 Pr2−r+1,r−1(r
2 + r, r) 6 r + 1.

Next we want to show that for any integer r > 3 the code
CB

r is an (r2 + r, r, r + 1, r2 − r + 1, r− 1) batch array code,
by using a property stated in the following lemma.

Lemma 23. For any integer r > 3 it holds that every two buck-
ets of the code CB

r can form a recovering set of every bit xi by
reading at most r− 1 cells from each bucket.

Theorem 24. For any integer r > 3 the code CB
r from Construc-

tion 21 is an (r2 + r, r, r+ 1, r2− r+ 1, r− 1) batch array code.
In particular,

r · (4r2 + 3r− 1)
4r2 − r + 1

6 Br2−r+1,r−1(r
2 + r, r) 6 r + 1.

The lower bound in Theorem 24 (and 22) is achieved by
using Theorem 2(2). The upper bound is achieved by using
Contruction 21, where it can be verified that for any multiset
request of r + 1 bits, the code CB

r can satisfy the first r− 1
bits of the request by using only r− 1 buckets. Then by us-
ing the remaining two buckets the code CB

r can satisfy the last
bit according to Lemma 23. Furthermore, since for any r > 3,
r < r·(4r2+3r−1)

4r2−r+1 6 Pr2−r+1,r−1(r
2 + r, r) 6 Br2−r+1,r−1(r

2 +
r, r) 6 r + 1, we conclude that Construction 21 gives optimal
PIR and batch array codes.

C. Construction C
We present our third construction and study how it is used

as PIR and functional PIR array codes for several parameters.

Construction 25. Let s > 2 be a fixed integer. The number of
information bits is s, the number of cells in each bucket (the
number of the rows) is 2. We write each two nonzero disjoint
linear combinations of total size at most s, thus we need m =
∑

s
i=2((

s
i) · {

i
2}) buckets. Then,

m =
s

∑
i=2

((
s
i

){
i
2

})
=

s

∑
i=2

(
s
i

)
(2i−1 − 1)=

3s + 1
2
− 2s.

TABLE V
CONSTRUCTION FOR s = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
x1 x1 x1 x2 x2 x3 x1 x1 x1 x2 x2 x2 x3 x3
x2 x3 x4 x3 x4 x4 x2 x3 x2 x4 x3 x4 x1 x3 x1 x4 x3 x4 x1 x2 x1 x4

15 16 17 18 19 20 21 22 23 24 25
x3 x4 x4 x4 x1 x2 x3 x4 x1 x2 x1 x3 x1 x4

x2 x4 x1 x2 x1 x3 x2 x3 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3 x3 x4 x2 x4 x2 x3

For any integer s > 2 denote the code that is obtained from
Construction 25 by CC

s . Construction 25 for the case of s = 4
is demonstrated in Table V and provides the following results.
Theorem 26.

1) 23 6 P2,1(4, 16) 6 25.
2) 24 6 FP2,2(4, 14) 6 25.
3) 88 6 FP2,2(5, 48) 6 90.

The lower bound of the first claim is obtained using Theo-
rem 2(2). The lower bounds of the last two claims are obtained
using Theorem 6.

VI. ASYMPTOTIC ANALYSIS OF ARRAY CODES

The goal of this section is to provide a figure of merit in
order to compare between the different constructions of array
codes. For simplicity we consider the case where ` = t, that
is, it is possible to read all the bits in every bucket. Under this
setup, it holds that FPt,t(s, k) 6 sk/t for all s, k, and t. This
motivates us to define the following values

RX(t, k) = lim sup
s→∞

Xt,t(s, k)
sk/t

,

where X ∈ {P, B, FP, FB}. The case where t = 1 has been
studied in several previous works. For example, for functional
PIR array codes we have RFP(1, k) > 1

k·H(1/k) for any even
integer k > 4 [30, Th. 13]. Also, for functional batch array
codes it holds from [30, Th. 21] that RFB(1, k) 6 1

k·H(ck)
,

where c1 = 1
2 and ck+1 is the root of the polynomial H(z) =

H(ck)− zH(ck). For the case k = 1 we have RFB(t, 1) =
RFP(t, 1) = 1 from Theorem 13(2). According to the bounds
and constructions studied in the paper, we can already sum-
marize several results in the following theorems for t = 2 and
some other values.

Theorem 27.
1) RFP(2, 2) 6 RFB(2, 2) 6 7

8 = 0.875, and RFB(2, 2) >
0.71.

2) RFP(2, 11) 6 25
33 = 0.758. RFP(2, 14) 6 25

28 = 0.893.
RFP(2, 48) 6 3

4 = 0.75.
3) RP(2, 16) 6 25

32 = 0.78125.RB(2, 15) 6 5
9 = 0.556.

Theorem 28.
1) For any r > 3, RP(r2 − r + 1, r) 6 (r+1)(r2−r+1)

r(r2+r) (also
for B).

2) For any t > 2,RP(t, k) 6 m
k(t+1) , where k = (t(t+1)

t) and

m = k +
(t(t+1)

t+1)

t .
3) For any two integers t and k, RFB(t, k) 6 1

k·H(ctk)
, where

c1 = 1
2 and ck+1 is the root of the polynomial H(z) =

H(ck)− zH(ck). (From Lemma 7).
4) For any positive integers t, k, and a, RX(t, a · k) 6
RX(t, k) and RX(t, k) 6 RX(a · t, k), where X ∈
{P, B, FP, FP}.

ACKNOWLEDGMENT

This work was partially supported by the ISF grant 1817/18
and by the Technion Hiroshi Fujiwara cyber security research
center and the Israel cyber directorate.

1028

REFERENCES

[1] H. Asi and E. Yaakobi, “Nearly optimal constructions of PIR and batch
codes,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 151–155, Aachen, Ger-
many, Jun. 2017.

[2] A. Beimel, Y. Ishai, E. Kushilevitz, and J.F. Raymond, “Breaking the
O(n1/(2k−1)) barrier for information theoretic private information re-
trieval,” Proc. of the 43rd Symposium on Foundations of Computer Sci-
ence, Vancouver, B.C., IEEE Computer Society, pp. 261–270, 2002.

[3] S. Blackburn and T. Etzion, “PIR array codes with optimal PIR rates,” in
Proc. IEEE Int. Symp. on Inf. Theory, pp. 2658–2662, Aachen, Germany,
Jun. 2017.

[4] S. Blackburn and T. Etzion, “PIR array codes with optimal virtual server
rate,” IEEE Trans. on Inf. Theory, vol. 65, no. 10, pp. 6136–6145, Oct.
2019.

[5] S. Buzaglo, Y. Cassuto, P. H. Siegel, and E. Yaakobi, “Consecutive switch
codes,” IEEE Trans. Inform. Theory, vol. 64, no. 4, pp. 2485–2498, Apr.
2018.

[6] Y.M. Chee, H.M. Kiah, E. Yaakobi, and H. Zhang, “A generalization
of Blackburn-Etzion construction for PIR array codes,” Proc. IEEE Int.
Symp. on Inf. Theory, pp. 1062–1066, Paris, France, Jul. 2019.

[7] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, 45, 1998. Earlier version in FOCS 95.

[8] Y. M. Chee, F. Gao, S. T. H. Teo, and H. Zhang, “Combinatorial system-
atic switch codes,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 241–245,
Hong Kong, Jun. 2015.

[9] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes,
North-Holland, Amsterdam, 1997.

[10] Z. Dvir and S. Gopi, “2-server PIR with subpolynomial communication,”
J. ACM, vol. 63, no. 4, pp. 39:1–39:15, Nov. 2016.

[11] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead:
coding instead of replication,” arXiv:1505.06241, May 2015.

[12] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. of the 36-sixth Annual ACM Symposium on
Theory of Computing, pp. 262–271, Chicago, ACM Press, 2004.

[13] S. Lin and D.J. Costello, Error Control Coding. Upper Saddle River,
NJ, USA: Prentice-Hall, 2004.

[14] H. Lipmaa and V. Skachek, “Linear batch codes,” Coding Theory and
Applications, CIM Series, vol. 3. pp. 245–253, 2015.

[15] J.L. Massey, Threshold Decoding. Cambridge, MA, USA: MIT Press,
1963.

[16] M. Nassar and E. Yaakobi, “Array codes for functional PIR and batch
codes,” arXiv, Jan. 2020.

[17] L. Pamies-Juarez, H. D. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” in Proc. IEEE Int. Symp. Inf.
Theory, pp. 892–896, Istanbul, Turkey, Jul. 2013.

[18] A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, “Locality
and availability in distributed storage,” in Proc. IEEE Int. Symp. Inf.
Theory, pp. 681–685, Honolulu, HI, Jun. 2014.

[19] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál, “Batch codes through
dense graphs without short cycles,” IEEE Trans. Inform. Theory, vol. 62,
no. 4, pp. 1592–1604, Apr. 2016.

[20] E. Sharon and I. Alrod, “Coding scheme for optimizing random I/O per-
formance,” Non-Volatile Memories Workshop, San Diego, Apr. 2013.

[21] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. on Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[22] A. Vardy and E. Yaakobi, “Constructions of batch codes with near-
optimal redundancy,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 1197–
1201, Barcelona, Spain, Jul. 2016.

[23] Z. Wang, H.M. Kiah, Y. Cassuto, and J. Bruck, “Switch codes: Codes
for fully parallel reconstruction,” IEEE Trans. on Infor. Theory, vol. 63,
no. 4, pp. 2061–2075, Apr. 2017.

[24] G. William, “A survey on private information retrieval,” Bulletin of the
EATCS. 2004.

[25] E. Yaakobi and R. Motwani, “Construction of random input-output codes
with moderate block lengths,” in Proc. IEEE Trans. on Comm., vol. 64,
no. 5, pp. 1819–1828, May 2016.

[26] A. Yamawaki, H. Kamabe, and S. Lu, “Construction of parallel RIO
codes using coset coding with Hamming code,” in Proc. IEEE Inf. The-
ory Workshop (ITW), pp. 239–243, Kaohsiung, Taiwan, Nov. 2017.

[27] S. Yekhanin, “Private information retrieval,” Comm. of the ACM, vol. 53,
no. 4, pp. 68–73, 2010.

[28] H. Zhang and V. Skachek, “Bounds for batch codes with restricted query
size,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 1192–1196, Barcelona,
Spain, Jul. 2016.

[29] H. Zhang, X. Wang, H. Wei, and G. Ge, “On private information retrieval
array codes,” IEEE Trans. on Inf. Theory, vol. 65, no. 9, pp. 5565–5573,
Sep. 2019.

[30] Y. Zhang, E. Yaakobi, and T. Etzion, “Bounds on the length of functional
PIR and batch codes,” arXiv:1901.01605, Jan. 2019.

1029

