
Reconstruction of Strings from their Substrings
Spectrum

Sagi Marcovich
Technion - Israel Institute of Technology

Haifa 3200003, Israel
sagimar@cs.technion.ac.il

Eitan Yaakobi
Technion - Israel Institute of Technology

Haifa 3200003, Israel
yaakobi@cs.technion.ac.il

Abstract—This paper studies reconstruction of strings based
upon their substrings spectrum. Under this paradigm, it is as-
sumed that all substrings of some fixed length are received and
the goal is to reconstruct the sequence. While many existing
works assumed that substrings are received error free, we follow
in this paper the noisy setup of this problem that was first stud-
ied by Gabrys and Milenkovic. The goal of this study is twofold.
First we study the setup in which not all substrings in the mul-
tispectrum are received, and then we focus on the case where
the read substrings are not error free. In each case we provide
specific code constructions of strings that their reconstruction is
guaranteed even in the presence of failure in either model. We
present efficient encoding and decoding maps and analyze the
cardinality of the code constructions.

I. INTRODUCTION

In many storage and communication channels it is not pos-
sible to receive the transmitted or stored word as one unit,
even in its noisy version. Rather, this information can only be
provided in other forms such as a list of its subwords, statistics
on its symbols, and more. This class of models is usually falls
the general framework of the string reconstruction problems.
There are several instances of this setup, such as the trace re-
construction problem [1], the k-deck problem [2], [3], [4], the
reconstruction from substring compositions problem [5], [6]
and the reconstruction problem by Levenshtein [7].

This paper studies an important setup for this class of prob-
lems, where it is assumed that the information about the word
is conveyed by the multispectrum of all its substrings of some
fixed length. Under this paradigm, the goal is to reconstruct
the word and the success of this process usually depends on
the length of the read substrings and the stored word. This
model of strings reconstruction is motivated by current DNA
sequencing technologies and in particular shotgun DNA se-
quencing [8]. In this method, the DNA strand is broken into
multiple fragments, called reads, which are then assembled
together to reconstruct the strand [9], [10], [11].

Mathematically speaking, for a length-n string w and
a positive integer L, its L-multispectrum, denoted by
SL(w), is the multiset of all its length-L substrings,
SL(w) = {w1,L, w2,L, . . . , wn−L+1,L}, where wi,L is the
substring (wi , wi+1, . . . , wi+L−1). Then, the goal is to recon-
struct the string w given its multispectrum SL(w). If a string
can be uniquely reconstructed from its L-multispectrum, then
it is called L-reconstructible. It was proved by Ukkonen [12]
that if all length-(L− 1) substrings of w are different, then
the word w is L-reconstructible. A string w that satisfies
this constraint is referred as (L− 1)-substring unique. Based
upon this property, it was recently proved in [13], [14] that
if L = da log(n)e for some fixed value of a > 1, then the
asymptotic rate of all L-reconstructible strings approaches 1.

Several recent papers have taken an information-theoretic
point of view to the sequence assembly problem. The goal
of these works was to study the fundamental limits of re-
construction of w from SL(w) with a fixed failure probabil-
ity under different setups and various error models. Arratia et

al. [15] studied the limits of any assembly algorithm that re-
covers w from SL(w) where w is an i.i.d DNA sequence, and
later Motahari, Bresler, and Tse [16] studied the case where
only a subset of SL(w) is available, while each read begins
at a uniformly distributed location of the sequence. They both
showed that if the reads are long enough to have no repeats,
then reconstruction is possible with high probability. This was
then extended in [17] for the case where every read is trans-
ferred through a symmetric substitution noisy read channel
and in [18] it was assumed that the reads are corrupted by at
most some fixed number of edit errors. Moreover, it has been
shown that if w satisfies several constraints, which are based
on its repeats statistics, then it can be assembled with high
probability from SL(w) [19] or a subset of it [20]. Another
variation of the sequence assembly problem, which allows to
partially reconstruct the sequence w, was studied in [21].

In this paper, we follow the recent work by Gabrys and
Milenkovic [13] and assume that the L-multispectrum is not
received error free, while requiring for reconstruction of w
in the worst case. We consider two models of this setup. In
the first one, it is assumed that not all substrings in the L-
multispectrum were read so only a subset of SL(w) is re-
ceived. The second model assumes that all reads in the L-
multispectrum were received, however some of them might
be erroneous. An important tool in our constructions uses the
set of substring unique strings and we also study its exten-
sion. Namely, for fixed L and d, it is said that w is an (L, d)-
substring distant string if the Hamming distance between any
two of its length-L substrings is at least d. We study the cardi-
nality of this set of words and show an encoding and decoding
maps for this constraint.

The rest of the paper is organized as follows. In Section II,
we formally define the codes and constraints studied in this
paper and review several previous results. In Section III, we
study the case where an incomplete multispectrum is received.
Section IV studies the setup where some of the read substrings
are noisy as well as (L, d)-substring distant strings. Due to
the lack of space, some of the proofs in the paper are omitted.
These proofs and several more results can be found in the full
version of this work in [22].

II. DEFINITIONS AND PRELIMINARIES

This section formally defines the notations, constraints, and
codes studied in the paper. For integers i, j ∈ N such that i 6
j we denote by [i, j] the set {i, i + 1, . . . , j− 1, j}. We notate
by [i] a shorthand for [1, i]. For a multiset A, let |A| denote
the number of elements in A (with repetitions). For a set A of
integers and a ∈ A, bA(a) denotes the binary representation
of the index of a in A using dlog |A|e bits, when the integers
are ordered in an increasing order. When A is omitted, it is
implied that A = [n], while n will be clear from the context.

Let Σ denote a finite alphabet of size |Σ| = q, n an inte-
ger, and w ∈ Σn a string. For two positive integers i and k
such that i + k− 1 6 n, let wi,k denote the length-k substring658978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

of w starting at position i. Additionally, let Prefk(w) = w1,k,
Suffk(w) = wn+1−k,k denote the k-prefix, k-suffix of w, re-
spectively. For two strings w, x ∈ Σn, dH(w, x) is the Ham-
ming distance between w and x and wH(w) is the Hamming
weight of w. For a multiset S = {s1, . . . , sm} ⊆ Σn of strings,
dH(S) is defined to be the minimum Hamming of S, which
is the minimum Hamming distance among all pairs of strings
in S, i.e., dH(S) = min16i< j6m{dH(si , s j)}. For a nonneg-
ative integer t 6 n, Bt(w) denotes the radius-t Hamming ball
around w, that is, Bt(w) = {x ∈ Σn | dH(w, x) 6 t}.

For a string w ∈ Σn and a positive integer L 6 n, the set
SL(w) is defined to be the L-multispectrum of w, which is
the multiset of all its length-L substrings

SL(w) = {w1,L, w2,L, . . . , wn−L+1,L}.

The main family of strings studied in this paper is defined in
the next definition.

Definition 1. A string w ∈ Σn is called an (L, d)-substring
distant string if the Hamming distance of its L-multispectrum
is at least d, that is, dH(SL(w)) > d. For d = 1, we refer
to an (L, 1)-substring distance string as an L-substring unique
string.

We note that the case of d = 1 has also been studied in [14]
and was referred as repeat-free words.

Example 1. Let n = 16, L = 8, and x = 0100000111011111,
so its L-multispectrum is

SL(x) = {01000001, 10000011, 00000111, 00001110,
00011101, 00111011, 01110111, 11101111, 11011111}.

The string x is 8-substring unique and in fact is also (8, 2)-
substring distant. However, x is not (8, 3)-substring distant
since dH(x3,8, x4,8) = 2.

The family of (L, d)-substring distant strings and more
specifically L-substring unique strings is highly related to the
set of reconstructible strings, which is defined next. Namely,
a string w ∈ Σn is called an L-reconstructible string if it can
be uniquely reconstructed from its L-multispectrum. Hence, w
is an L-reconstructible string if for every x 6= w it holds that
SL(w) 6= SL(x). For positive integers n, q, d, L, we denote
by Sn,q(L, d) the set of all length-n (L, d)-substring distant
strings over Σn, where |Σ| = q. For d = 1 we simply denote
this value by Sn,q(L). The set of L-reconstructible strings is
denoted by Rn,q(L). We also let Sn,q(L, d) = |Sn,q(L, d)|,
Sn,q(L) = |Sn,q(L)|, and Rn,q(L) = |Rn,q(L)|. Lastly, in
case q = 2 we will seldom remove q from these notations.

The following connection between substring unique and re-
constructible strings was first established by Ukkonen in [12].

Theorem 2.[12] If a string x ∈ Σn is (L− 1)-substring unique
then it is L-reconstructible.

According to Theorem 2, it holds that Sn,q(L− 1) ⊆ Rn,q(L)
and in particular Sn,q(L− 1) 6 Rn,q(L).

The opposite direction of Theorem 2 does not always hold.
In fact, in [13], an encoding scheme that uses the property
from Theorem 2 is used in order to encode L-reconstructible
strings that are almost (L− 1)-substring unique. Recently, two
encoding schemes of reconstructible binary strings that are
also (L− 1)-substring unique were proposed in [14]. The first
scheme is applied for a window length of L = 2dlog(n)e+ 2
with a single bit of redundancy, and the second one works for
windows of length L = da log(n)e for 1 < a 6 2 and its

asymptotic rate approaches 1. According to the first scheme,
one can deduce that Sn(2dlog(n)e+ 2) > 2n−1 and the sec-
ond one implies that for all 1 < a 6 2,

lim
n→∞ log2(Sn(da log(n)e))

n
= 1.

This result is also proved directly in [14], by deriving a lower
bound on the number of strings in Sn(da log(n)e).

The motivation to study (L, d)-substring distant strings
originates from the observation that in many cases the
L-multispectrum cannot be read error-free. This translates to
a stronger property, such as the one given by (L, d)-substring
distant, that strings need to satisfy in order to guarantee
unique reconstruction in the presence of errors.

Definition 3. Let w ∈ Σn be a string and SL(w) is its
L-multispectrum. A multiset U is called a t-losses L-
multispectrum of w if U ⊆ SL(w) and |SL(w)| − |U| 6 t.
The t-losses L-multispectrum ball of w, denoted by BL,t(w),
is defined to be the multiset

BL,t(w) = {U | U is a t-losses L-multispectrum of w}.

Example 2. Let n, L, x be from Example 1. The multiset

U1 = {10000011, 00000111, 00001110, 01110111,
11101111, 11011111},

which equals to SL(x) \ {x1,L, x5,L, x6,L}, is a 3-losses L-
multispectrum of x.

When discussing reconstruction from some lossy multispec-
trum U of w, notice that if successive substrings of w are
missing from the start or the end of U then several entries of
the input string can be entirely absent from U. Therefore, given
the multispectrum U, we define its maximal-reconstructible
substring, denoted by W1(U), as the largest consecutive sub-
string of w which its data is contained in U. Since there are
at most t losses, it is ensured that the length of W1(U) is at
least n− t. Accordingly, the following definition presents the
family of strings that will be studied in Section III.

Definition 4. A string w is called an (L, t)-reconstructible
string if its maximal-reconstructible substring W1(U)
can be uniquely reconstructed from any of its t-losses
L-multispectrums U in BL,t(w).

Let Cε,i be such that when reading M = Cε,in substrings of
x uniformly at random with replacement, all but i substrings
of SL(x) are read with probability at least 1−ε. Assume that
the complete L-multispectrum SL(x) is required to recover the
sequence x. The probability that a single length-L substring is
not read upon M attempts is

P =

(
1− 1

n− L + 1

)M
=

(
1− 1

n− L + 1

)Cε,0n
≈ e−Cε,0 .

Thus, the probability that upon M reads not all substrings in
the L-multispectrum SL(x) are read can be upper bounded by
the union bound as

P0 6 (n− L + 1)P = (n− L + 1)e−Cε,0 ≈ ne−Cε,0 .

Hence, in order to guarantee success probability of at least 1−
ε, it suffices that ne−Cε,0 6 ε, i.e., Cε,0 > ln(n) + ln(1/ε).

On the other hand, if it is possible to reconstruct the se-
quence x even in the presence of t losses, it is enough to re-
quire (ne−Cε,t)t+1 6 ε and therefore Cε,t > ln(n) + ln(1/ε)

t+1 .
Hence, if for example 1/ε = O(na), then the number of reads
can be reduced roughly by a factor of (t + 1)(1− t

a+t+1).659

III. RECONSTRUCTING AN INCOMPLETE MULTISPECTRUM

In this section, we define constraints for (L, t)-reconstructible
strings, propose a reconstruction algorithm for those strings,
and analyze the cardinality of such family of strings.

A. Reconstruction Constraints

The goal of this subsection is to construct t-losses
L-reconstructible strings. This will be given by strings
that satisfy a few constraints, given in the next definition.
For simplicity, we consider here only the binary case, so
Σ = {0, 1}. For the rest of this section, we denote the integers
`1 = L− bt/3c − 1, `2 = L− d2t/3e − 1, `3 = L− t− 1
and the sets I2 = [n − `2 − t + 1, n − `2 + 1], I3 =
[n− `3 − t + 1, n− `3 + 1].

Definition 5. A string x ∈ Σn is said to satisfy the (n, L, t)-
lossy reconstruction (LREC) constraints if it fulfills the fol-
lowing three constrains.

1) x is a `1-substring unique string.
2) The first and last t + 1 length-`2 substrings are not iden-

tical to all other length-`2 substrings. Namely, for all i ∈
[t+1], j ∈ [n − `2 + 1] with i 6= j then xi,`2 6= x j,`2
and for all i ∈ [n − `2 + 1], j ∈ I2 with i 6= j, then
xi,`2 6= x j,`2 .

3) The first t + 1 length-`3 substrings are not identical
to the last t + 1 length-`3 substrings. Namely, for all
i ∈ [t+1], j ∈ I3, xi,`3 6= x j,`3 .

For n, L, t, denote by Dn(L, t) the set of all strings that satisfy
the (n, L, t)-LREC constraints and let Dn(L, t) = |Dn(L, t)|.

In [13], the authors focused on a type of errors which corre-
sponds to occurrence of bursts of substring losses. They iden-
tified a lossy multispectrum U ⊆ SL(x) to have G-maximal
coverage gap if G is the maximum number of consecutive
substrings that are not included in SL(x). Based on this char-
acterization, they showed that if x is (L − G − 1)-substring
unique it is reconstructible from such a lossy multispectrum
U. When applying this constraint to our problem, assume that
U ∈ BL,t(x), then it is necessary that G = t since all the
losses can occur consecutively. Based on the results of [14], in
order to construct a rate-1 code of (L, t)-reconstructible strings
for given n and t, the construction proposed in [13] requires
that L > da log(n)e + t for some a > 1. It will be shown
in Section III-C that the (n, L, t)-LREC constraint composes
a rate-1 code for values of L that satisfies L > da log(n)e+
bt/3c, where a > 1 + b/3 and t = db log(n)e+ o(log(n))
for b < 3. Hence, for these parameters, the construction pro-
posed in this paper imposes a weaker constraint on the value
of L than the construction proposed in [13].

B. Reconstruction Algorithm

Our next goal is showing that for every string which satis-
fies the (n, L, t)-LREC constraint, its maximal-reconstructible
substring can be uniquely decoded even if at most some t sub-
strings are not read. Namely, we prove the following theorem.

Theorem 6. Every string x ∈ Dn(L, t) is (L, t)-reconstructible.

The proof of Theorem 6 is given by an explicit decoding
algorithm which receives a multiset U ∈ BL,t(x) for some
x ∈ Dn(L, t). First, we present in Algorithm 1, an auxil-
iary procedure, called the Stitching Algorithm, which receives
two inputs: 1) A set A of substrings that we aim to stitch,
and 2) ρ 6 t, a parameter that will indicate the minimum
overlapping size of two substrings in order to be stitched to-
gether. The stitching algorithm is based on iterative stitching

steps and is composed of three nested loops. At the most in-
ner loop, two substrings are stitched if the suffix of the first
is identical to the prefix of the second. This will later indicate
that these substrings originated from the same positions in the
input string. The middle loop constructs continuous substrings
of U by finding a prefix of such a substring and repeatedly
applying the inner loop in order to correctly concatenate to it
more bits. The outer loop iterates over k = 0, . . . ,ρ and at
every iteration we bridge gaps that were created by losses of
k consecutive substrings. The stitching algorithm returns a set
of continuous substrings reconstructed from U. We say that an
operation of the stitching algorithm is successful if the output
set size is strictly smaller than the input set size.

Algorithm 1 Stitch(A,ρ)
1: for k = 0, . . . ,ρ do
2: B = ∅
3: while A 6= ∅ do
4: pick w ∈ A such that for every other w′ ∈ A,

PrefL−k−1(w) 6=SuffL−k−1(w′)
5: set A = A \ {w}
6: while there exists w′ ∈ A such that SuffL−k−1(w) =

PrefL−k−1(w′) do
7: set w = w◦ Suff|w′ |−L+k+1(w

′)
8: set A = A \ {w′}
9: end while

10: set B = B ∪ {w}
11: end while
12: set A = B
13: end for
14: return B

Algorithm 2, called the Reconstruction Algorithm, receives
a t-losses L−multispectrum U for some x ∈ Dn(L, t) and
uses the stitching algorithm to reconstruct W1(U), the max-
imal reconstructible substring of U. In case the returned set
by the reconstruction algorithm consists of a single string we
assume that the output is the string itself (i.e. not a set).

Algorithm 2 Reconstruct(U, t)
Input: U ∈ BL,t(x) for some x ∈ Dn(L, t)
Output: W1(U) the maximum reconstructible-substring of U

1: Invoke A0 = Stitch(U, bt/3c).
2: If |A0| = 1 and A0 = {y}: return y.
3: If |A0| = 2 and A0 = {y1 , y2}: return Stitch(A0 , t).
4: If |A0| = 3 and A0 = {y1 , y2 , y3}: for i = 1, 2, 3 invoke

Ai = Stitch(A0 \ {yi}, d2t/3e) and if successful invoke A′i =
Stitch(Ai ∪ {yi}, d2t/3e). If successful again, return A′i .

Let Bk denote the set B after the k-th iteration of the for
loop of Algorithm 1. The next example demonstrates how Al-
gorithms 1 and 2 operate.
Example 3. Let n, L, x, U1 from Example 2, so that U1 ∈
BL,t(x) and x ∈ Dn(L, t) with t = 3. Assume that we in-
voke Reconstruct(U1, t). First, the algorithm invokes A0 =
Stitch(U1, 1). At the first iteration of the for loop where k = 0,
assume the algorithm picks x2,8 = 10000011 and stitches to
it x3,8 = 00000111 followed by x4,8 = 00001110. Next, the
algorithm picks x7,8 = 01110111 and stitches to it x8,8 =
11101111 followed by x9,8 = 11011111. Thus, we have at
the end of this iteration

B0 = {x2,10, x7,10} = {1000001110, 0111011111}.
No stitching is made at the second iteration for k = 1 and thus
A0 = B1 = B0 is the output of the stitching algorithm. Since
|A0| = 2, we execute next in Step 3, Stitch(A0, 3). Then, the
two substrings of A0 are stitched at iteration k = 2, since
Suff5(x2,10) = Pref5(x7,10). Eventually, the string x2,15 =
1000001110111 = W1(U1) is returned as expected.660

C. Cardinality Analysis
Next, we estimate the value of Dn(L, t) for some specific

parameters of n, L, t. Our approach is based on the result
from [14] which claims that the asymptotic rate of the set
Sn,2(L) approaches 1, when L = da log(n)e and a > 1.
Building upon this result, for a given value of t that satisfies
t = db log(n)e+ o(log(n)) for some 0 6 b < 3, we show
how to choose the value of L so the (n, L, t)-LREC con-
straints hold. This result is proved in the following theorem.

Theorem 7. If t = db log(n)e+ o(log(n)) for some 0 6 b <
3 and L = da log(n)e+ bt/3c+ 1, where a > 1 + b/3, then

lim
n→∞ log2(Dn(L, t))

n
= 1.

Proof: For t and L stated in the theorem it holds that L =
(a + b/3) log(n) + o(log(n)), `1 = a log(n) + o(log(n)),
and `2 = (a− b/3) log(n) + o(log(n)). According to [14] it
holds that the rate of the set Sn,2(L′) when L′ = da′ log(n)e
approaches 1 for all a′ > 1, that is,

lim
n→∞ log2(Sn(L′ = da′ log(n)e))

n
= 1. (1)

The outline of the proof works as follows. Consider the set
Sn′ ,2(`2) for n′ = n− (t + `3). By (1), it holds that

lim
n→∞

log2(Sn−(t+`3)
(`2))

n− (t + `3)
= lim

n→∞
log2(Sn−(t+`3)

(`2))

n
= 1.

Next, we will show that Dn(L, t) > Sn−(t+`3)
(`2) and this

will conclude the proof. In order to accomplish this result,
we will show that every string in Sn′ ,2(`2) can be extended
into a length-n string in Dn(L, t). Let w ∈ Sn′ ,2(`2), so it is
an `2-substring unique string. We show how to find a string
u ∈ Σt+`3 such that w ◦ u ∈ Dn(L, t), i.e., it satisfies all three
(n, L, t)-LREC constraints. In fact we will show how to find
u such that w ◦ u is `2-substring unique and it satisfies the
third constraint of the (n, L, t)-LREC constraints. First note
that the string u has 2t+`3 optional values. Since the string
w ◦ u has to be `2-substring unique, the number of options
that are eliminated is at most

n · (t + `2 + `3) · 2t+`3−`2 = n · (t + `2 + `3) · 2d2t/3e. (2)

Similarly, the number of eliminated strings by the third con-
straint is at most

(t + 1) · (t + 1) · 2t. (3)

Lastly, we have that 2t+`3 = 2da log(n)e+bt/3c and by compar-
ing with (2) we get for n large enough

2da log(n)e+bt/3c > n · (t + `2 + `3) · 2d2t/3e.
Moreover, by comparing with (3) it also holds that

2da log(n)e+bt/3c > (t + 1) · (t + 1) · 2t

since b < 3. Thus, it is concluded that such a string u exists.

IV. RECONSTRUCTING AN ERRONEOUS MULTISPECTRUM

In this section, we address the problem of reconstructing
strings from a multispectrum that suffered substitution errors.
This family of multispectrums is formally defined as follows.

Definition 8. Let w ∈ Σn be a string and SL(w) is its
L-multispectrum. A multiset U = {u1, . . . , un−L+1} is called
a (t, s)-erroneous L-multispectrum of w if there exists a set
of indices Ie(U) = {i1, . . . , im} ⊂ [n− L + 1] where m 6 t
such that for every i ∈ [n − L + 1] \ Ie(U), ui = wi,L and

for every i ∈ Ie(U), dH(ui , wi,L) 6 s. The (t, s)-erroneous
L-multispectrum ball of w, denoted by BL,t,s(w), is defined
to be the multiset

BL,t,s(w) = {U | U is a (t, s)-erroneous L-multispectrum of w}.

Let w ∈ Σn be a string and U = {u1, . . . , un−L+1} ∈
BL,t,s(w) be an erroneous spectrum. Note that if an entry of
the input string w can appear in U incorrectly more times
than it appears correctly, we are not able to determine its cor-
rect value from U. Hence, let W2(U) denote the maximum
reconstructible-substring of U, a string of length n that takes at
every position i the majority value of the occurrences of wi in
U. Namely, for m ∈ N we define the function majm : Σm → Σ
that takes a vector A ∈ Σm and returns the element a ∈ A that
has the most appearances in A. If there is more than one ele-
ment of Σ that satisfies this requirement, the function majm se-
lects the first element in lexicographic order. For convenience,
we omit the parameter m if it is clear from the context, and
sometimes refer to A as a multiset instead of as a vector. Thus,

W2(U) = (w1, . . . , wn) with w j = maj(U, j),

where
maj(U, j)=maj{(ui)k | i ∈ [n− L + 1], k ∈ [L], i+k−1 = j}.
Definition 9. A string w is called an (L, t, s)-reconstructible
string if its maximal-reconstructible substring W2(U) can
be uniquely reconstructed from any of its (t, s)-erroneous
L-multispectrums U in BL,t,s(w).

In order to have a controlled number of incorrect entries
in W2(U), we can add the constraint t < L/2. This con-
straint ensures that for every U ∈ BL,t,s(w), all entries of w
besides the first and last 2t entries can not appear in U er-
roneously more times than their appear correctly. Therefore,
W2(U) satisfies W2(U)2t+1,n−4t = w2t+1,n−4t.

Our next goal is to establish the following theorem that will
be followed by a reconstruction algorithm for erroneous mul-
tispectrums of (L, t, s)-reconstructible strings, which is based
upon the substring-distant property.

Algorithm 3 Reconstruct(U, t, s)
Input: U ∈ BL,t,s(x) for x ∈ Sn(L− 1, 4s + 1)
Output: W2(U) the maximum reconstructible-substring of U

1: Initialize B[1, . . . , n] as an array of n empty vectors, set
i = 1, A = U

2: Pick w1 ∈ A such that for every other w ∈ A,
dH(PrefL−1(w1),SuffL−1(w)) > 2s + 1

3: Set A = A \ {w1}
4: For every j = 1, . . . , L, append (w1) j to B[j]
5: while |A| 6= 0 do
6: Pick wi+1 ∈ A such that dH(SuffL−1(wi),

PrefL−1(wi+1)) 6 2s
7: Set A = A \ {wi+1}, i = i + 1
8: For every j = 1, . . . , L, append (wi) j to B[i + j− 1]
9: end while

10: Return y = (y1, . . . , yn) where y j = ma j(B[j])

Theorem 10. If a string x ∈ Σn is (L − 1, 4s + 1)-substring
distant, then it is (L, t, s)-reconstructible.

The proof of Theorem 10 is given by an explicit reconstruction
algorithm, presented in Algorithm 3. The algorithm receives
an erroneous multispectrum U ∈ BL,t,s(x) for x ∈ Sn(L −
1, 4s + 1) and reconstructs the maximum reconstructible sub-
string W2(U). The algorithm uses the substring-distant prop-
erty of x to identify the correct order of the substrings of U.661

Algorithm 4 LDEncode(w, L, d)
Input: A string w ∈ Σn−1

Output: A string x ∈ Sn(L, d)
1: Set x = w ◦ 0 ◦ 1d ◦ 0`−|ud | ◦ ud

Elimination:
2: while exist indexes i < j such that dH(xi,L , x j,L) < d or an index i 6 |x| − 2`+ |ud| where dH(xi,` , 0`−|ud | ◦ ud) < d do
3: case 1: violating substrings xi,L , x j,L exists
4: if i, j ∈ J1 = [|x| − L− `− d, |x| − L + 1] (xi,L contains the suffix 0 ◦ 1d ◦ 0`−|ud | ◦ ud) then
5: Remove xi,L−(|x|−L−`−d−i)+1, append 100 ◦ bJ1 (i) ◦ bJ1 (j) ◦ EncDistL,d−1(xi,L , x j,L) to the left of x
6: else
7: Remove xi,L, append 101 ◦ b(i) ◦ b(j) ◦ EncDistL,d−1(xi,L , x j,L) to the left of x
8: end if
9: case 2: a substring xi,` with i < |x| − 2`+ |ud| such that dH(xi,` , 0`−|ud | ◦ ud) < d exists

10: if i ∈ J2 = [|x| − 2`− d, |x| − 2`+ |ud| − 1] (xi,` contains the suffix 0 ◦ 1d ◦ 0`−|ud | ◦ ud) then
11: Remove xi,`−(|x|−2`−d−i)+1, append 11 ◦ bJ2 (i) ◦ EncDist`,d−1(xi,` , 0`−|ud | ◦ ud) to the left of x
12: else
13: Remove xi,`, append 0 ◦ b(i) ◦ EncDist`,d−1(xi,` , 0`−|ud | ◦ ud) to the left of x
14: end if
15: end while
16: if |x| > n, return x1,n

Expansion:
17: while |x| < n do
18: Set

B =

(⋃
i∈[1,|x|−`]

Bd−1(xi,`)

)
∪
(⋃

i∈[|x|−`+1,|x|]
CB`,d−1(xi,|x|−i+1)

)
19: Pick y ∈ Σ` \ B and append x = x ◦ y
20: end while
21: Return x1,n

Then, it takes for each entry of x the majority vote of its oc-
currences in U.

The correctness of Algorithm 3, which verifies the correct-
ness of Theorem 10 can be found in [22] as well the proof of
the following two lemmas.
Lemma 11. For L = 2 log(n) + (d− 1) log(log(n)) +O(1)
and n large enough, it holds that Sn(L, d) > 2n−1 and hence
the redundancy of the set Sn(L, d) is at most a single bit.

Lemma 12. For fixed d, a > 1, and L = da log(n)e, it holds
that the asymptotic rate of the set Sn(L, d) is 1.

Lastly in this section, a generic encoding algorithm is pre-
sented that uses a single redundancy bit in order to encode
length-n strings that are (L, d)-distant, for1

L = 2 log(n) + 2(d− 1) log(log(n)) + 4.

Note that this value of L is far from the value derived in
Lemma 11 only by roughly (d− 1) log(log(n)).

Let w, w′ ∈ Σn be strings such that dH(w, w′) 6 ρ for
an integer ρ 6 n. The construction EncDistn,ρ(w, w′) is
taken from [23] and encodes the distance between w, w′.
Let p1, . . . , pdH(w,w′) denote the indices of the entries which
w, w′ do not agree upon. For every i ∈ [ρ] let yi ∈ Σlog(n)

be set as b(pi) if i 6 dH(w, w′) and 0log(n) otherwise. Thus,

EncDistn,ρ(w, w′) = y1 ◦ · · · ◦ yρ.

The output size is independent of w, w′ and equals ρ log(n).
We utilize a marker substring, first introduced in [23], which

we notate as a d-auto cyclic string. A string u ∈ Σn is a d-
auto cyclic string, if it satisfies dH(u, 0i ◦ u1,n−i) > d for
every 1 6 i 6 d. The authors of [23] also presented a con-
struction of such strings of length ddlog(d)e + 2d. Let ud
denote a d-auto cyclic string for the rest of this section.

Next, let w ∈ Σk for k 6 n. We want to construct a set of
length-n strings, that contains all y ∈ Σn that satisfy

1For simplicity, in this section we drop some of the ceiling notations.

dH(Prefn(w ◦ y), y) 6 t, (4)

for some t 6 n. Therefore, let m = dn/ke, and set
CBn,t(w) =Pref1,n(w1 ◦ · · · ◦wm)

∣∣∣∣∣∣
∃{ti}m

i=1 s.t. ∑
m
i=1 ti 6 t,

∃{wi}m
i=0 s.t. w0 = w and

∀i ∈ [m], wi ∈ Bti (wi−1)

 .

The set CBn,t(w) is notated as the concatenation ball of
radius-t around w. One can verify that for every y ∈ Σn that
satisfies (4), then y ∈ CBn,t(w).

Algorithm 4 receives a string w ∈ Σn−1, and outputs a
string x ∈ Sn(L, d). The algorithm shares ideas with the en-
coding scheme of repeat-free words from [14], and consists
of two main procedures, elimination and expansion. First, we
append to w a marker substring of length L/2 + d + 1 that
contains the d-auto cyclic string ud, which is used by the de-
coder to identify the end of the elimination procedure. Then,
at the elimination procedure we repeatedly look for substrings
of length L that their Hamming distance is less than d. When
found, we remove the first of the substrings and encode the oc-
currence using the function EncDistL,d−1. Likewise, we elim-
inate occurrences of substrings of length L/2 that their Ham-
ming distance from the (L/2)-suffix of the string is less than
d. During this procedure, we ensure that the marker substring
located at the suffix of the string remains intact. Later, at the
expansion procedure we enlarge the string to length n by in-
serting substrings of length L/2 while making sure that the
string remains (L, d)-distant. The value of ` in the Algorithm 4
is defined by ` = L/2 = log(n) + (d− 1) log(log(n)) + 2.

The correctness of Algorithm 4 as well as explanation for
the decoding can also be found in [22]. In [22] we also present
another construction for reconstructing from erroneous multi-
spectrum, which we had to omit due to the lack of space.

ACKNOWLEDGMENT

This work was partially supported by the United States-
Israel BSF grant 2018048.662

REFERENCES

[1] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing
strings from random traces,” in Proc. of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2004,
pp. 910–918.

[2] M. Dudık and L. J. Schulman, “Reconstruction from subsequences,”
Journal of Combinatorial Theory, Series A, vol. 103, no. 2, pp. 337–
348, 2003.

[3] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and P. Stockmeyer,
“Reconstruction of sequences,” Discrete Mathematics, vol. 94, no. 3, pp.
209–219, 1991.

[4] A. D. Scott, “Reconstructing sequences,” Discrete Mathematics, vol.
175, no. 1-3, pp. 231–238, 1997.

[5] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “On recon-
structing a string from its substring compositions,” in Proc. of the IEEE
International Symposium on Information Theory, Austin, Texas, USA,
2010, pp. 1238–1242.

[6] ——, “String reconstruction from substring compositions,” SIAM Jour-
nal on Discrete Mathematics, vol. 29, no. 3, pp. 1340–1371, 2015.

[7] V. I. Levenshtein, “Efficient reconstruction of sequences from their sub-
sequences or supersequences,” Journal of Combinatorial Theory, Series
A, vol. 93, no. 2, pp. 310–332, 2001.

[8] H. Li, “Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences,” Bioinformatics, vol. 32, no. 14, pp. 2103–2110,
2015.

[9] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake,
C. Heiner, A. Clum, A. Copeland, J. Huddleston, E. E. Eichler, S. W.
Turner, and J. Korlach, “Nonhybrid, finished microbial genome assem-
blies from long-read SMRT sequencing data,” Nature Methods, vol. 10,
no. 6, pp. 563–569, 2013.

[10] N. Loman, J. Quick, and J. Simpson, “A complete bacterial genome as-
sembled de novo using only nanopore sequencing data,” Nature Methods,
vol. 12, no. 8, pp. 733–735, 2015.

[11] S. L. Salzberg, “Mind the gaps,” Nature Methods, vol. 7, no. 2, pp.
105–106, 2010.

[12] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191–211,
1992.

[13] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded se-
quences from multiset substring spectra,” in Proc. of the IEEE Interna-
tional Symposium on Information Theory, Vail, Colorado, USA, 2018,
pp. 2540–2544.

[14] O. Elishco, R. Gabrys, M. Medard, and E. Yaakobi, “Repeat free codes,”
in Proc. of the IEEE International Symposium of Information Theory,
Paris, France, 2019, pp. 932–936.

[15] R. Arratia, D. Martin, G. Reinert, and M. Waterman, “Poisson process
approximation for sequence repeats, and sequencing by hybridization,”
Journal of Computational Biology : a Journal of Computational Molec-
ular Cell Biology, vol. 3, pp. 425–463, 1996.

[16] A. S. Motahari, G. Bresler, and D. Tse, “Information theory of DNA
shotgun sequencing,” IEEE Transactions on Information Theory, vol. 59,
no. 10, pp. 6273–6289, 2013.

[17] A. Motahari, K. Ramchandran, D. Tse, and N. Ma, “Optimal DNA shot-
gun sequencing: Noisy reads are as good as noiseless reads,” in Proc.
of the IEEE International Symposium of Information Theory, Istanbul,
Turkey, 2013, pp. 1640–1644.

[18] S. Ganguly, E. Mossel, and M. Racz, “Sequence assembly from cor-
rupted shotgun reads,” in Proc. of the IEEE International Symposium of
Information Theory, Barcelona, Spain, 2016, pp. 265–269.

[19] G. Bresler, M. Bresler, and D. Tse, “Optimal assembly for high through-
put shotgun sequencing,” BMC Bioinformatics, vol. 14, 2013.

[20] I. Shomorony, T. Courtade, and D. Tse, “Do read errors matter for
genome assembly?” in Proc. of the IEEE International Symposium of
Information Theory, Hong Kong, 2015, pp. 919–923.

[21] I. Shomorony, G. Kamath, F. Xia, T. Courtade, and D. Tse, “Partial
DNA assembly: A rate-distortion perspective,” in Proc. of the IEEE In-
ternational Symposium of Information Theory, Barcelona, Spain, 2016,
pp. 1799–1803.

[22] S. Marcovich and E. Yaakobi, “Reconstruction of strings from their sub-
strings spectrum,” Arxiv, 2019.

[23] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA stor-
age,” IEEE Transactions on Information Theory, vol. 65, no. 6, pp.
3671–3691, 2019.

663

