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Abstract—Weakly-private information retrieval (WPIR) is a
variant of the private information retrieval problem in which
a user wants to efficiently retrieve a file stored across a set of
servers while tolerating some information leakage on the identity
of the requested file to the servers. In this paper, we consider
WPIR from a single-server database where the information
leakage is measured in terms of the mutual information (MI)
or maximal leakage (MaxL) privacy metrics. In particular, we
establish a connection between the WPIR problem and rate-
distortion theory, and fully characterize the optimal tradeoff
between the download cost and the allowed information leakage
under the MI and MaxL metrics, settling the single-server WPIR
capacity.

I. INTRODUCTION

With the ever increasing demand for privacy rights on
the Internet, preserving user privacy has become of vital
importance for, e.g., big data applications and distributed
information systems. The European Union’s General Data Pro-
tection Regulation is an important example that demonstrates
the increasing awareness of this issue.

Private information retrieval (PIR), introduced by Chor et
al. [1], is one of the fundamental primitives that ensures user
privacy. In particular, it enables a user to download a desired
file stored in one or several servers without disclosing the
identity of the requested file to any of the servers. In recent
years, designing efficient PIR schemes from an information-
theoretic perspective has attracted significant attention [2], [3].
In this line of research, the efficiency is mainly measured
in terms of download rate, defined as the ratio between the
requested file size and the expected number of downloaded
symbols. The maximum possible download rate is referred to
as the PIR capacity.

Characterizing the capacity for variants of the PIR problem
is of fundamental importance. Sun and Jafar derived the PIR
capacity for the classical case where data is replicated across
multiple servers [2]. For the case when data is encoded by
a maximum distance separable (MDS) code and then stored
in multiple servers, the capacity, referred to as the MDS-PIR
capacity, was given in [3]. The PIR capacity when the storage
code is from a particular family of non-MDS codes, introduced
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in [4], was determined and shown to be equal to the MDS-
PIR capacity in [5]. Other PIR capacity results for various
scenarios can be found in, e.g., [6]–[9].

Recently, the notion of weakly-private information retrieval
(WPIR) was introduced independently by the works [10]–
[12]. WPIR can be seen as a generalization of PIR, which
guarantees the retrieval of a single file while leaking partial
information about the identity of the requested file to the
servers. For the scenario with multiple noncolluding servers,
it was shown that the download rate as well as the upload
cost and access complexity can be improved by trading off
the information leakage.

In practice, the servers are typically in control of a single
provider, violating the assumption that they can not collude.
Motivated by this important and practical observation, in this
paper we turn our attention and initiate the study of the more
compelling scenario in which data is stored in a single server,
i.e., the problem of single-server WPIR is considered. Similar
to [11], to measure the information leakage in an information-
theoretic sense, we adopt two commonly-used information
leakage metrics in the information theory literature, the mutual
information (MI) and maximal leakage (MaxL) metrics [13]–
[15]. The latter is known as one of the most useful information-
theoretic measures of information leakage in the computer
security literature. In particular, by developing the similarities
between the WPIR problem and rate-distortion theory, we fully
characterize the optimal tradeoff between the download cost
and a given level of information leakage for the MI and MaxL
privacy metrics, and hence determine the single-server WPIR
capacity. Moreover, a novel single-server WPIR capacity-
achieving scheme for both metrics is constructed by using
a time-sharing approach. Due to lack of space, all technical
proofs are omitted, and we refer to the extended version of
this work [16] for full details as well as the converse proofs.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

We denote by N the set of all positive integers, [a] ,
{1, 2, . . . , a}, and [a : b] , {a, a+1, . . . , b} for a, b ∈ {0}∪N
and a ≤ b. The set of nonnegative real numbers is denoted
by R+. Vectors are denoted by bold letters and sets by
calligraphic uppercase letters, e.g., x and X , respectively. In
general, vectors are represented as row vectors throughout the
paper. We use uppercase letters for random variables (RVs)
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(either scalar or vector), e.g., X or X . For a given index set
S, we write XS to represent

{
X(m) : m ∈ S

}
. The Hamming

weight of a vector x is denoted by wH(x), while its support
will be denoted by χ(x). EX [·] and EPX [·] denote expectation
with respect to the RV X and distribution PX , respectively.
H(X), H(PX), or H

(
p1, . . . , p|X |

)
represents the entropy of

X , where PX(·) = (p1, . . . , p|X |) denotes the distribution of
the RV X . I(X ;Y ) denotes the MI between X and Y . The
Galois field with q elements is denoted by GF(q).

B. System Model

We consider a single server that stores M indepen-
dent files X(1), . . . ,X(M), where each file X(m) =(
X

(m)
1 , . . . , X

(m)
β

)
, m ∈ [M], is represented as a length-β

row vector over GF(q). Assume that each element of X(m) is
chosen independently and uniformly at random from GF(q).
Thus, in q-ary units, we have H

(
X(m)

)
= β, ∀m ∈ [M]. A

user wishes to efficiently retrieve X(M) by allowing some
information leakage to the server, where the requested file
index M is assumed to be uniformly distributed over [M]. We
give the following definition for a single-server WPIR scheme.

Definition 1. An M-file WPIR scheme C for a single server
storing M files consists of:
• A random strategy S, whose alphabet is S.
• A query function

φ : {1, . . . ,M} × S → Q

that generates a query Q = φ(M,S) with alphabet Q.
The query Q is sent to the server to retrieve the M -th
file.

• An answer function

ϕ : Q× GF(q)βM → AβL

that returns the answer A , ϕ(Q,X [M]) back to the
user, with download symbol alphabet A. Here, L = L(Q)
is the normalized length of the answer, which is a function
of the query Q.

• A privacy leakage metric ρ(·)(PQ|M ) ≥ 0, which is
defined as a function of the conditional probability mass
function (PMF) PQ|M , that measures the amount of
leaked information of the identity of the requested file
to the server by observing the generated query Q, where
the superscript (·) indicates the used metric.

This scheme must satisfy the condition of perfect retrievability,

H
(
X(M)

∣∣A,Q,M) = 0. (1)

We remark that a PIR scheme is equivalent to a WPIR
scheme for which no information leakage is allowed.

C. Metrics of Information Leakage

Given a single-server M-file WPIR scheme and a fixed
distribution PM , its designed query conditional PMF given
the index M of the requested file, PQ|M , can be seen as
a privacy mechanism (a randomized mapping). The server
receives the random outcome Q of the privacy mechanism

PQ|M , and is curious about the index M of the requested file.
The information leakage of a WPIR scheme is then measured
with respect to its corresponding privacy mechanism PQ|M .

In this paper, we focus on two commonly-used information-
theoretic measures, namely MI and MaxL. For the former, the
information leakage is quantified by

ρ(MI)(PQ|M ) , I(M ;Q). (2)

The second privacy metric, MaxL, can be defined based on the
min-entropy (MinE) measure discussed in the computer sci-
ence literature, see, e.g., [13]. Moreover, since we assume that
M is uniformly distributed, the MinE information leakage and
the MaxL privacy metric can be shown to be equivalent [14],
[15]. The latter is given by

MaxL(M ;Q) , log2

∑
q∈Q

max
m∈[M]

PQ|M (q|m). (3)

Henceforth, we will use the closed-form expression in (3) as
the MaxL privacy metric and denote the MaxL privacy metric
of a WPIR scheme by

ρ(MaxL)(PQ|M ) , MaxL(M ;Q).

In the following, the information leakage metric of a WPIR
scheme C is denoted by ρ(·)(C ).

D. Download Cost and Rate for a Single-Server WPIR Scheme

For WPIR, in contrast to PIR, the download costs for the
retrieval of different files do not necessarily need to be the
same. Hence, the download cost is defined as the expected
download cost over all possible requested files. The download
cost of a single-server WPIR scheme C for the retrieval of
the m-th file, denoted by D(m)(C ), is defined as the expected
length of the returned answer over all random queries,

D(m)(C ) , EPQ|M=m
[L(Q)],

and the overall download cost is measured in terms of the
expected download cost over all files, i.e.,

D(C ) , EPM
[
EPQ|M [L(Q)]

]
= EM,Q[L(Q)]. (4)

Accordingly, the WPIR rate is defined as R(C ) , D(C )−1.
In this paper, our goal is to characterize the optimal trade-

off between the download cost and the allowed information
leakage with respect to a privacy metric. We start with the
following definition of an achievable download-leakage pair.

Definition 2. Consider a single server that stores M files. A
download-leakage pair (D, %) is said to be achievable in terms
of the information leakage metric ρ(·) if there exists a WPIR
scheme C such that EM,Q[L(Q)] ≤ D and ρ(·)(C ) ≤ %. The
download-leakage region is the set of all achievable download-
leakage pairs (D, %).
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III. CHARACTERIZATION OF THE OPTIMAL
DOWNLOAD-LEAKAGE TRADEOFF

Consider a single-server WPIR scheme, where the leakage is
measured by ρ(MI) or ρ(MaxL). The minimum achievable down-
load cost for a given leakage constraint % can be formulated
by the optimization problem

minimize EPMPQ|M [L(Q)]

subject to PQ|M ∈ Pret, (5a)

ρ(·)(PQ|M ) ≤ %, (5b)

where Pret is defined as the set of all PMFs that satisfy (1).
For convenience, since we know that a designed conditional

distribution PQ|M of a WPIR scheme always satisfies (5a),
throughout this paper we will assume that any PQ|M ∈ Pret.

A. The Download-Leakage Function for Single-Server WPIR

To characterize the optimal achievable pairs of download
cost and information leakage, we define two functions that
describe the boundary of the download-leakage region.

Definition 3. The download-leakage function D(·)(%) for
single-server WPIR is the minimum of all possible download
costs D for a given information leakage constraint % such that
(D, %) is achievable, i.e.,

D(·)(%) , min
PQ|M : ρ(·)(PQ|M )≤%

EPMPQ|M [L(Q)].

Accordingly, the single-server WPIR capacity is C(·)(%) =[
D(·)(%)

]−1
.

It is known that the single-server PIR capacity is CM = 1
M

[1].

Definition 4. The leakage-download function ρ(·)(D) for
single-server WPIR is the minimum of all possible information
leakages % for a given download cost constraint D such that
(D, %) is achievable.

Lemma 1. The MI download-leakage function

D(MI)(%) = min
PQ|M : I(PQ|M )≤%

EPMPQ|M [L(Q)]

is convex in %, while the MaxL download-leakage function

D(MaxL)(%) = min
PQ|M : MaxL(PQ|M )≤%

EPMPQ|M [L(Q)]

is not a convex function, but D(MaxL)(log2(%)) is convex in %.

The convexity of D(MI) can help to describe the download-
leakage region if some achievable pairs are known. This
observation can be summarized in the following corollary.

Corollary 1. Assume that both pairs (D1, %1) and (D2, %2)
are achievable. Then, for any λ ∈ [0, 1], the pair

(
Dλ =

(1−λ)D1 +λD2, %λ = (1−λ)%1 +λ%2

)
is achievable under

MI leakage, while the pair
(
Dλ = (1 − λ)D1 + λD2, %λ =

log2 [(1− λ)2%1 + λ2%2 ]
)

is achievable for MaxL.

B. Connection to Rate-Distortion Theory

Consider an information source sequence with independent
and identically distributed components according to PX and
a distortion measure d(x, x̂) between the source sequence x
and the reconstructed sequence x̂. The optimal rate-distortion
region is characterized by the rate-distortion function, defined
as the minimum achievable compression rate I(X ;X̂) under a
given constraint on the average distortion EPXPX̂|X

[
d(X, X̂)

]
,

where X̂ represents the reconstructed source.
To relate the leakage-download function to the rate-

distortion function, the desired file index m needs to be added
as an argument to the answer-length function L, without
changing the download cost in (4). Then, the leakage and
the download cost play similar roles as the compression rate
and the average distortion, respectively. This can be achieved
by letting L(m, q) , L(q) for all m ∈ [M] for which
PQ|M (q|m) > 0, and L(m, q) ,∞ otherwise (i.e., an infinite
length for a given m and query realization q indicates that q
is never sent when requesting the m-th file). Below, we will
equivalently use either L(q) or L(m, q) (as defined above).

IV. PARTITION WPIR SCHEME

In [11], a WPIR scheme based on partitioning was proposed.
The scheme is formally described as follows. The files are first
partitioned into η equally-sized partitions, each consisting of
Mη files, where Mη = M/η ∈ N. Assume that the requested
file X(m) belongs to the j-th partition, where j ∈ [η]. Then,
the query Q is constructed as

Q =
(

rQ, j
)
∈ Q̃ × [η], (6)

where rQ is the query of an existing Mη-file WPIR scheme.
The following theorem states the achievable download-

leakage pairs of the partition scheme.

Theorem 1. Consider a single server that stores M files
and let Mη = M/η ∈ N, η ∈ N. Assume that an Mη-
file WPIR scheme C̃ with achievable download-leakage pair(

rD, %̃
)

exists. Then, the download-leakage pair(
D(C ), ρ(·)(C )

)
=
(

rD, %̃+ log2 η
)

(7)

is achievable by the M-file partition scheme C constructed
from C̃ as described in (6).

We refer to the partition scheme that uses a PIR scheme as
the underlying subscheme and the query generation in (6) as a
basic scheme and denote it by C basic (it achieves the pair in (7)
with %̃ = 0). It can be seen that for the single-server setting,
the basic scheme simply retrieves all the files in the partition
that includes the requested file. This idea will be extended to
our capacity-achieving scheme presented in Section VI, where
for any subset M ⊆ [M] that includes the requested file, all
files in M are downloaded.

V. THE CAPACITY OF SINGLE-SERVER WPIR
The main result of this work is the characterization of the

optimal tradeoff between the download cost and the informa-
tion leakage for single-server WPIR for an arbitrary number
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Fig. 1. An illustration of the function D(MI)(%), which is defined by many
linear functions.

of files for the MI and MaxL privacy metrics. The optimal
download-leakage region for the MI privacy metric is stated in
the following theorem. For the sake of illustration, we consider
the normalized leakage-download function ρ̄(·) , ρ(·)

log2 M
.

Theorem 2. For a single server that stores M files, the single-
server WPIR capacity for the MI leakage metric ρ(MI) is

C(MI)(%̄) =

[
w +

log2
M
w

log2
w
w−1

− %̄ log2 M

log2
w
w−1

]−1

,

for 1− log2 w

log2 M
≤ %̄ ≤ 1− log2 (w − 1)

log2 M
, w ∈ [2 : M].

Theorem 3. For a single server that stores M files, the single-
server WPIR capacity for the MaxL metric ρ(MaxL) is

C(MaxL)(%̄) =

[
(2w − 1)− 2%̄log2 M

M
w−1 −

M
w

]−1

,

for 1− log2 w

log2 M
≤ %̄ ≤ 1− log2 (w − 1)

log2 M
, w ∈ [2 : M].

It is worthwhile noting that the download-leakage function[
C(·)(·)

]−1
is a piecewise continuous function. For the MI

privacy metric,
[
C(MI)(%)

]−1
is a piecewise linear function as

demonstrated in Fig. 1 (without normalization). Note also that,
when Mη = M/η ∈ N, the basic scheme C basic achieves the
capacity for both the MI and MaxL privacy metrics.

Next, we consider the asymptotic capacity of single-server
WPIR, i.e., the capacity as the number of files M tends to
infinity. An upper bound on the single-server WPIR capacity
for any number of files is given in the following theorem.

Theorem 4. For a single server that stores M files, the single-
server WPIR capacity under both the MI metric ρ(MI) and the
MaxL metric ρ(MaxL) is upperbounded as

C(·)(%̄) ≤ CUB(%̄) ,
1

M1−%̄ , 0 ≤ %̄ ≤ 1.
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CUB(¯̺),M = 102, 103, 104, 106

Fig. 2. The capacity C(·)(%̄) and its upper bound CUB(%̄) for a number of
files M = 102, 103, 104, and 106 with privacy metrics ρ(MI) and ρ(MaxL).

In Fig. 2, the capacity C(·)(%̄) and the upper bound CUB(%̄)
are plotted for M = 102, 103, 104, and 106, which illustrates
the asymptotic behavior of C(·)(%̄) as M tends to infinity.
Observe that from Theorems 2 and 3, we have C(·)(1) = 1
for either a finite or infinite number of files M. Hence, by
Theorem 4 it can be shown that as M tends to infinity, the
asymptotic capacity is equal to

C(·)
∞(%̄) =

{
0 if 0 ≤ %̄ < 1,

1 if %̄ = 1.

This indicates that the asymptotic capacity is still equal to zero,
unless the server exactly knows the index of the requested file.

VI. ACHIEVABILITY OF THEOREMS 2 AND 3

Throughout this section, for simplicity, we set β = 1, i.e.,
H(X(m)) = 1, ∀m ∈ [M]. In fact, our proposed single-server
WPIR capacity-achieving scheme works for an arbitrary file
size β, which indicates that subpacketization does not improve
the performance of single-server WPIR.

A. Motivating Example: M = 3 Files

Before describing the achievable scheme in detail for the
general case of M files, we present an example for M = 3.
We start by considering three achievable download-leakage
pairs (D1, %1) = (1, log2 3), (D2, %2) = (2, log2

3
2 ), and

(D3, %3) = (3, log2
3
3 = 0). In terms of the MI or MaxL

privacy metrics, one can check that the pair (Dw, %w) is
achieved by the conditional distribution PQw|M , w ∈ [3],
listed in Table I. Moreover, it is clear that the retrievability
condition in (1) is satisfied for any convex combination of the
three PMFs.

Now, construct two conditional query distributions as fol-
lows,

PQλ1
|M = (1− λ1)PQ2|M + λ1PQ1|M , (8)

PQλ2
|M = (1− λ2)PQ3|M + λ2PQ2|M , (9)

1056



TABLE I
THE CONDITIONAL PMFS PQw|M , w ∈ [3].

Q1 PQ1|M (q | 1) PQ1|M (q | 2) PQ1|M (q | 3) A PQ1
(q)

(1, 0, 0) 1 0 0 X
(1)
1

1

3

(0, 1, 0) 0 1 0 X
(2)
1

1

3

(0, 0, 1) 0 0 1 X
(3)
1

1

3

Q2 PQ2|M (q | 1) PQ2|M (q | 2) PQ2|M (q | 3) A PQ2
(q)

(1, 1, 0)
1

2

1

2
0

{
X

(1)
1 , X

(2)
1

} 1

3

(1, 0, 1)
1

2
0

1

2

{
X

(1)
1 , X

(3)
1

} 1

3

(0, 1, 1) 0
1

2

1

2

{
X

(2)
1 , X

(3)
1

} 1

3

Q3 PQ3|M (q | 1) PQ3|M (q | 2) PQ3|M (q | 3) A PQ3
(q)

(1, 1, 1) 1 1 1
{
X

(1)
1 , X

(2)
1 , X

(3)
1

}
1

where 0 ≤ λ1, λ2 ≤ 1.
Using (4), (2), and (3), respectively, and the conditional

PMFs listed in Table I (or, alternatively, Corollary 1), it
follows that the WPIR scheme defined by (8)–(9) achieves
the download cost

D(C ) =

{
(1− λ1)D2 + λ1D1 = 2− λ1, 0 ≤ λ1 ≤ 1,

(1− λ2)D3 + λ2D2 = 3− λ2, 0 ≤ λ2 ≤ 1,

the MI leakage

ρ(MI) =

{
(1− λ1) log2

3
2 + λ1 log2

3
1 , 0 ≤ λ1 ≤ 1,

(1− λ2) log2
3
3 + λ2 log2

3
2 , 0 ≤ λ2 ≤ 1,

and the MaxL

ρ(MaxL) =

{
log2

(
(1− λ1) 3

2 + λ1
3
1

)
, 0 ≤ λ1 ≤ 1,

log2

(
(1− λ2) 3

3 + λ2
3
2

)
, 0 ≤ λ2 ≤ 1.

In terms of the MI or MaxL privacy metrics, it can be verified
that the download cost corresponds to the single-server WPIR
capacity for M = 3.

B. Arbitrary Number of Files M

We describe the achievable scheme for the general case of
M files. From Corollary 1, it follows that it is sufficient to
show that the download-leakage pairs

(Dw, %w) =

(
w, log2

M

w

)
, w ∈ [M],

are achievable.
1) Query Generation: Consider M random queries Qw,

w ∈ [M], whose alphabet is Qw , {q = (q1, . . . , qM) ∈
{0, 1}M : wH(q) = w}. Each query q ∈ Qw sent to the
server is generated by the conditional PMF

PQw|M (q|m) =

{
1

(M−1
w−1)

if m ∈ χ(q),

0 otherwise.

This is a valid query design, since for each m ∈ [M], we have∑
q∈Qw PQw|M (q|m) =

∑
q∈Qw : m∈χ(q) PQw|M (q|m) = 1.

2) Answer Construction: The answer function ϕ maps the
query q ∈ Qw onto A = ϕ(q,X [M]) = X

χ(q)
1 . The answer

length is L(q) = w.
3) Download Cost and Information Leakage: Clearly, the

download cost is equal to EPMPQw|M
[L(Qw)] = w. The MI

leakage is

ρ(MI)(PQw|M ) = I(M ;Qw) = log2 M− log2 w = log2

M

w
and the MaxL is

ρ(MaxL)(PQw|M ) = log2

∑
q∈Qw

max
m∈[M]

1(
M−1
w−1

) = log2

M

w
.

Notice that the presented capacity-achieving WPIR scheme
can be seen as a generalization of the basic WPIR scheme
C basic. If M/η = w ∈ N, it can be shown that the download-
leakage pair (w, log2 η) = (w, log2

M
w ) is also achievable by

C basic for both the MI and MaxL privacy metrics.

VII. CONVERSE OF THEOREMS 2 AND 3
The converse proofs for the MI and MaxL privacy metrics

are fully elaborated in the extended version [16, Secs. VII and
VIII]. Here, we briefly outline the main steps of the converse
proof for MI leakage.

Consider a single-server WPIR scheme where the leakage
at the server is measured by I(M ;Q). A general converse
for Theorem 2 can be derived from the download-leakage
function of a given leakage constraint %, or equivalently,
from the leakage-download function of a given download cost
constraint D. Similar to (5), the leakage-download function
can be formulated by the convex minimization problem

min
PQ|M : E[L(M,Q)]≤D

I(M ;Q). (10)

The proof consists of two parts as described below.
Part 1: With some technical efforts, we can prove that (10)

is bounded from below by

ρ(MI)(D) , min
PU|M : E[L(M,U)]≤D

I(M ;U), (11)

where U is a length-M binary random vector and the length
function L(m,u) is constructed for any u ∈ {0, 1}M by

L(m,u) =

{
wH(u) if m ∈ χ(u),

∞ otherwise.

Part 2: Since (11) can be related to the rate-distortion
function with a certain distortion measure, we use a useful
result from the rate-distortion theory (see [16, Lem. 3]) to
prove a lower bound on (11). It can be shown that the pair
(%̄,D(MI)(%̄)) of Theorem 2 lies on the lower bound of (11).

VIII. CONCLUSION

We characterized the capacity of single-server WPIR with
an arbitrary number of files for the MI and MaxL privacy
metrics. We showed that, interestingly, the optimal download
rate is higher than the single-server PIR capacity. Moreover,
we showed that if the server can not determine the identity
of the requested file, then the capacity tends to zero as the
number of files goes to infinity.
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