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Abstract—A covering code is a set of codewords with the
property that the union of balls, suitably defined, around these
codewords covers an entire space. Generally, the goal is to find the
covering code with the minimum size codebook. While most prior
work on covering codes has focused on the Hamming metric, we
consider the problem of designing covering codes defined in terms
of insertions and deletions. First, we provide new sphere-covering
lower bounds on the minimum possible size of such codes. Then,
we provide new existential upper bounds on the size of optimal
covering codes for a single insertion or a single deletion that are
tight up to a constant factor. Finally, we derive improved upper
bounds for covering codes using R ≥ 2 insertions or deletions. We
prove that codes exist with density that is only a factor O(R logR)
larger than the lower bounds for all fixed R. In particular, our
upper bounds have an optimal dependence on the word length, and
we achieve asymptotic density matching the best known bounds
for Hamming distance covering codes.

I. INTRODUCTION

Covering codes are a core object of study in coding theory
and discrete mathematics. While previous work has mostly
studied covering codes with respect to substitutions, recently,
due to the large amount of textual and biological data, there
has been a resurgence of interest in the Levenshtein distance
and in channels with insertion and deletion errors (e.g., [1], [2],
[3], [4], [5], [6], [7]). In this paper, we study covering codes for
insertions and deletions. Loosely speaking, we aim to cover a
space of words by the union of balls around a minimum number
of codewords. This means that the covering problem for R
insertions deals with finding a small set of codewords of length
n such that each word of length n + R is a supersequence of
some codeword. Similarly, for the case of deletions, each word
of length n−R must be a subsequence of some codeword. In
both cases, the codewords can be viewed as the centers of balls
with radius R under the Levenshtein distance. Notice, however,
that the codewords and the covered words reside in different
spaces as they have different lengths.

Although there is a rich literature on covering codes for
the Hamming distance [8], as well as recent improvements for
insertion/deletion error-correcting codes (e.g., [9], [10], [11],
[12], [13]), much less is known about covering codes using
insertions or deletions. Two key challenges are the (ir)regularity
of the balls and the asymmetry of the covering problem.
Insertion balls are regular, the number of words obtainable by
inserting R symbols into x (cf. [14]) only depends on the length
of x. In contrast, deletion balls are irregular, and their sizes
depend on many properties of their center x, such as the number

A. Lenz acknowledges support from the German-American Fulbright Com-
mission for funding the visit to UCSD. E. Yaakobi acknowledges support
from the Center for Memory and Recording Research at UCSD. This work
is also funded by the European Research Council under the EU’s Horizon 2020
research and innovation programme (grant No. 801434), by NSF grant CCF-
BSF-1619053 and by the United States-Israel BSF grant 2018048.

of runs. This irregularity means that, compared to the Hamming
distance, it is inherently more challenging to derive bounds on
the minimum covering code size.

Covering codes for insertions or deletions are similar in
spirit to asymmetric covering codes for substitutions [19] since
they share the irregularity of the balls. Afrati et al. have
studied covering codes for insertions and deletions, motivated
by designing MapReduce algorithms for similarity joins under
the Levenshtein distance [17], [20]. Over an alphabet of size q,
they show the existence of single-insertion-covering codes with
size O( q

n logn
n ), while they prove a lower bound stating that

such codes must have at least qn

(q−1)n+1 codewords.
In this paper we provide new upper and lower bounds on

the minimum size of insertion-covering and deletion-covering
codes. We primarily consider the size of such codes for fixed
alphabet size q and covering radius R. Table I summarizes
our results. The bounds are stated separately for R = 1 and
general R ≥ 1 because we obtain tighter bounds in the former
case. The first two rows of Table I also recap the best known
bounds for substitution-covering codes. Regarding R-insertions-
covering codes, we provide nearly matching upper and lower
bounds that differ only by a factor of seven for R = 1. This
improves upon the upper bound result of Afrati et al. [17] by
a Θ(log n) factor. For R ≥ 2 insertions, we prove that R-
insertion-covering codes exist with size that is off by a factor
of O(R logR) from the lower bound (the dependence on the
dimension n and alphabet size q are optimal). We remark that
the gap between upper and lower bounds matches the state-
of-the-art for R-substitution-covering codes [16], and it seems
beyond our current techniques to obtain a tighter bound.

For the case of R-deletion-covering codes, we first provide a
new lower bound on the minimum size of R-deletion-covering
codes. Then, for words over a q-ary alphabet with q > 2, we
provide a new explicit construction of single-deletion-covering
codes, where the number of codewords is within a factor of two
from optimal. Finally, for a fixed number R ≥ 2 of deletions,
we prove that, R-deletion-covering codes exist with size that is
tight up to a factor of O(R logR) compared to the lower bound.

We note that our upper bounds for R insertions (resp. R
deletions) will depend upon the size of covering codes for a
single insertion (resp. single deletion). In particular, establishing
a better upper bound for a single insertion/deletion would
immediately lead to smaller codes for radii R > 1.

II. NOTATIONS, DEFINITIONS, AND PRELIMINARIES

For an integer q ≥ 2, let Σq denote the q-ary alpha-
bet {0, 1, . . . , q − 1} and Σ∗q =

⋃
`≥0 Σ`q . We use len(x)

to denote the length of x. For x = (x1, . . . , xn) ∈ Σnq ,
we let ρ(x) denote the number of runs in x, that is,723978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020



Table I. Upper and lower bounds for covering codes C ⊆ Σn
q using substitutions, insertions, and deletions. We let c denote a universal constant. We denote the

size of a radius-R Hamming ball by V q
H (n,R) =

∑R
i=0

(n
i

)
(q − 1)i, and the size of a radius-R insertion ball by V q

I (n,R) =
∑R

i=0

(n+R
i

)
(q − 1)i. Entries

marked with “(∞)” are asymptotic results for fixed R and large n, where a factor of 1± o(1) has been omitted for readability.

Covering Code Type Existence Size Lower Bound Reference

1-substitution
qn

(q − 1)n + 1
(∞) qn

(q − 1)n + 1
[15]

R-substitution
cR logR · qn

V q
H (n,R)

(∞) qn

V q
H (n,R)

[16]

1-insertion
7 · qn+1

(n + 1)(q − 1) + 1

qn+1

(n + 1)(q − 1) + 1
Theorem 4, Theorem 1

R-insertion
cR logR · qn+R

V q
I (n,R)

(∞) qn+R

V q
I (n,R)

Theorem 7, Theorem 1

1-deletion (binary)
2n

n + 1

2n

n + 1
(∞) [17], [18]

1-deletion
qn

(n + 1)bq/2c
qn(n− 2)

(q − 1)n(n + 1)
Theorem 3, Theorem 2

R-deletion
cR logR · qnR!

nR(q − 1)R
(∞) qnR!

nR(q − 1)R
(∞) Theorem 12, Theorem 2

ρ(x) := 1 + |{1 ≤ i < n : xi 6= xi+1}|. For x,y ∈ Σ∗q , the
notation xy denotes the concatenation of x and y, where
len(xy) = len(x) + len(y). For x ∈ Σnq , we abbreviate the
radius-t insertion ball obtained after exactly t insertions by
BallqI (x, t) and its size is denoted by V qI (x, t). Similarly, the
radius-t deletion ball obtained after exactly t deletions is
denoted by BallqD(x, t) and its size is V qD (x, t). It is well known,
see e.g. [14], that insertion balls are regular, i.e., only depend
on len(x), q, and t. Thus, we denote by V qI (n, t) the insertion
ball size of length-n words over Σq . We will consider two sub-
problems, namely covering words with only insertions or only
deletions. Formally, we have the following definitions.

Definition 1. A code C ⊆ Σnq is an R-insertion-covering
code, if for every y ∈ Σn+R

q , there exists a codeword c ∈ C
such that y ∈ BallqI (c, R). That is,

⋃
c∈C Ball

q
I (c, R) = Σn+R

q .
Analogously, a code C ⊆ Σnq is an R-deletion-covering code,
if for every y ∈ Σn−Rq , there exists a codeword c ∈ C such that
y ∈ BallqD(c, R). That is,

⋃
c∈C Ball

q
D(c, R) = Σn−Rq .

The insertion (resp. deletion) radius of a code C is defined
to be the smallest R such that C is an R-insertion-covering (resp.
R-deletion-covering) code. We also denote by KqI (n,R) (resp.
KqD(n,R)) the smallest cardinality of an R-insertion-covering
(resp. R-deletion-covering) code, of length n over Σq . When
discussing the binary case, i.e., q = 2, we will typically remove
q from the above notations.

We now turn to establishing lower bounds on the size of
insertion- and deletion-covering codes based on a sphere cov-
ering argument. As in the case of substitution-covering codes,
the argument relies on the union bound and on the number of
words a codeword can cover. For the case of insertions, the ball
size is known and is independent of the center and we directly
obtain the following theorem.

Theorem 1. For all n and R, it holds that

KqI (n,R) ≥ qn+R

V qI (n,R)
=

qn+R∑R
i=0

(
n+R
i

)
(q − 1)i

.

Furthermore, for fixed R and large n,

KqI (n,R) ≥ R!qn+R

nR(q − 1)R
(1− o(1)).

For the case of deletions, deriving a sphere-covering lower
bound is more involved due to the fact that the size of the
deletion ball BallD(x, R) can be different for words of the same
length. To overcome this difficulty, we use a technique due to
Applegate et al. [21] that enables the computation of a bound
even though the ball sizes are irregular by bounding the solution
of a linear program. We state the resulting lower bound on
deletion-covering codes in the following theorem.

Theorem 2. For all n and 0 < R < n, it holds that

KqD(n,R) ≥ q
n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

) .

In particular, for R = 1 we get that

KqD(n, 1) ≥ qn(n− 2)

(q − 1)n(n+ 1)
.

Furthermore, for fixed R and large n, we have

KqD(n,R) ≥ R!qn

nR(q − 1)R
(1− o(1)) .

The proof of this theorem is omitted for brevity and can be
found in the full version of this paper [22].

III. SINGLE-INSERTION/DELETION-COVERING CODES

Having lower bounds on the sizes of R-insertion- and R-
deletion-covering codes in hand, we now prove existence of
these codes for single deletions and insertions for both binary
and non-binary alphabets. For the case of deletions, we prove
the existence of codes using explicit constructions. For the case
of insertions, due to the lack of small explicit constructions,
we resort to proving the existence of codes based on a random
construction and a recursive construction.724



A. Single-Deletion-Covering Codes
The well-known Varshamov-Tenengolts (VT) [18] codes are

perfect binary single-deletion-correcting codes and thus also
single-deletion-covering codes. VT codes have a non-binary
extension, presented by Tenengolts in [23], which can correct
a single deletion in the non-binary case. However, this family
of codes is no longer perfect and therefore not single-deletion-
covering. Our main result in this section is another non-binary
extension of the binary VT codes, which does satisfy the single-
deletion covering property.

Definition 2. For all positive n, q ≥ 2, 0 ≤ a ≤ n, and
0 ≤ b < bq/2c, let CqNBVT(n; a, b) ⊆ Σnq be the code

CqNBVT(n; a, b) =

{
c ∈ Σnq |

n∑
i=1

i(ci)2 ≡ a mod (n+ 1),

n∑
i=1

⌊ci
2

⌋
≡ b mod

(⌊q
2

⌋)}
,

where for m ∈ N0, we denote by (m)2 the value (m mod 2).

For q = 2 and b = 0 this definition is equivalent to that of
the VT code and we abbreviate CVT(n; a)

def
= C2

NBVT(n; a, 0).
The following theorem proves that CqNBVT(n; a, b) is indeed a
non-binary single-deletion-covering code.

Theorem 3. For all positive n, q ≥ 2, 0 ≤ a ≤ n, and 0 ≤
b < bq/2c, the code CqNBVT(n; a, b) is a single-deletion-covering
code. Furthermore,

KqD(n, 1) ≤ qn

(n+ 1)bq/2c
.

The theorem is based on the fact that the VT-code is a
single-deletion covering code and can be found in full detail in
[22]. Lastly, we note that this construction improves upon the
construction in [17]1, which provides single-deletion-covering
codes of size qn/n.

B. Single-Insertion-Covering Codes
In this section, we study single-insertion-covering codes.

Interestingly, in contrast to the case of a single deletion, the VT
code is not a perfect code for a single insertion. In fact, this
can be verified by simple counting arguments using that the VT
code has size only roughly half the size required by Theorem 1.
This missing factor of two can intuitively be explained from
the point of view of the covered space Σn+1

2 . Let y ∈ Σn+1
2

be a word with checksum b ≡
∑n+1
i=1 i(yi)2 mod (n + 1) that

shall be covered by the VT-code CVT(n; a). Then, y is covered
by CVT(n; a) if there exists a deletion position j such that the
resulting checksum, after deleting bit j, is equal to a. Now,
it is known that most words y have only roughly n

2 possible
results after a single deletion. However, there are n+1 possible
checksums b for y, which means that roughly half the words y
will not be covered by CVT(n; a).

It can further be seen that, while the tasks of correcting a fixed
number of insertions, deletions, or a combination of insertions
and deletions are all equivalent [24], this sort of equivalence
does not extend to covering codes. This makes the problem
of finding good single-insertion-covering codes an intriguing

1The result is stated in Corollary 5.5 in [17]. However, note that the authors
of this paper refer to deletion-covering codes as insertion-covering codes and
also note that their result is stated over length-(n + 1) codes.

question that will be addressed in the following. Our main result
is stated in the following theorem

Theorem 4. For all n ≥ 1 and q ≥ 2 it holds that

KqI (n, 1) ≤ µI
qn+1

(n+ 1)(q − 1) + 1
,

where µI ≤ 7.

Note that our result is stated as a fraction of the sphere-
covering lower bound in Theorem 1 and implies that the size
of optimal single-insertion covering codes is at most a factor of
7 from the theoretical lower limit. Our proof is inspired by and
follows the strategy of the existential construction of asymmetric
covering codes due to Cooper, Ellis, and Kahng [19]. The
argument proceeds in two main steps. First, we use a random
subset S ⊆ Σn1

q of an appropriate size to cover all but a
small fraction of words T ⊆ Σn1+1

q with a single insertion.
(This is analogous to the patched covering code in [19].) Then,
we “fix up” the set S using a “good” single-insertion-covering
code to generate a covering code of larger codeword length. By
picking the size of S and T appropriately and using good codes
inductively, we show that we will not have to pay too much in
efficiency in this process.

We begin by introducing the set operation that will be used in
the “fixing up” operation. The main utility of this tensorization
is that it allows us to handle the uncovered words efficiently.

Lemma 5. Let S ⊆ Σn1
q , T ⊆ Σn1+1

q be such that
S covers Σn1+1

q \ T with a single insertion. Let Cn2 ⊆
Σn2
q be a single-insertion-covering code. Then, the code

(S ⊗ Σn2+1
q ) ∪ (T ⊗ Cn2) is a single-insertion-covering code of

length n1 + n2 + 1 and of size at most |S| · qn2+1 + |T | · |Cn2
|,

where A⊗B = {ab | a ∈ A, b ∈ B} is the tensor product of
two sets and ab is the concatenation of a and b

We next find a suitable (S, T ) pair by randomly selecting the
subset S. The words in S are non-uniformly sampled from Σn1

q ,
which reduces the overall code size by a constant factor com-
pared to uniform sampling. The motivation for this is that some
words in Σn1+1

q are harder to cover because their single-deletion
balls are smaller. Non-uniform sampling ensures that the words
in S cover words in Σn1+1

q in a more equitable fashion.
The following lemma provides a bound on the sizes of S and

T . Although we could bound the sizes of S and T directly, the
formulation in the lemma scales the size of the uncovered set
T by µI/V

q
I (n2, 1) because this is the factor saved by the use

of induction later in the construction.
Lemma 6. For all n ≥ 1 there exist integers n1, n2 with n1 +
n2 + 1 = n and sets S ⊆ Σn1

q , T ⊆ Σn1+1
q such that S covers

Σn1+1
q \ T , that is, T = Σn1+1

q \
⋃

s∈S Ball
q
I (s, 1), while the

sizes of S and T satisfy

|S|+ µI|T |
V qI (n2, 1)

≤ µIq
n1+1

V qI (n, 1)
,

where µI ≤ 7.
Proof. For n ≤ qµI−q

q−1 , the statement is fulfilled by S = Σn1
q

and T = ∅. Assume that n > qµI−q
q−1 . We prove the existence

of an (S, T ) pair with sizes satisfying the lemma by means of
a random construction. Include each word x ∈ Σn1

q in S with
probability qx

def
= cV qD (x, 1)−1 for a constant c > 0 to be set

later. Let T be all remaining words that are not covered by S,
i.e., T = Σn1+1

q \
⋃

s∈S Ball
q
I (s, 1).725



For a fixed word y ∈ Σn1+1
q , we have that y is covered by S

unless all of the words covering y fail to be included in S. The
number of words that can cover y is exactly V qD (y, 1), the size
of the single-deletion ball. Note that V qD (y, 1) = ρ(y) [25], and
observe that for any x ∈ BallqD(y, 1) the number of runs cannot
increase as a result of the deletion, i.e., ρ(x) ≤ ρ(y). Hence,
qx = cV qD (x, 1)−1 = cρ(x)−1 ≥ cρ(y)−1 def

= qy . We bound the
probability that S misses y as follows:

P[y is uncovered] =
∏

x∈BallqD(y,1)

(1− qx)
(a)

≤ (1− qy)V
q
D (y,1),

where (a) uses that qx ≥ qy , as discussed above.
We now compute the expected weighted size of S and T

under the above random selection.

W
def
= E

[
|S|+ µI|T |

V qI (n2, 1)

]
= E[|S|] +

µIE[|T |]
V qI (n2, 1)

=
∑

x∈Σ
n2
q

qx +
µI

V qI (n2, 1)

∑
y∈Σ

n2+1
q

P[y is uncovered].

Plugging in the bound for P[y is uncovered] and recalling that
qx = cρ(x)−1, we obtain

W ≤
∑

x∈Σ
n1
q

c

ρ(x)
+

µI

V qI (n2, 1)

∑
y∈Σ

n1+1
q

(1− qy)V
q
D (y,1).

It is well-known [25] that the number of words x ∈ Σn1
q with

ρ(x) = r is given by q
(
n1−1
r−1

)
(q − 1)r−1, which allows us to

group terms in the first sum by ρ(x) = r. Using 1−z ≤ e−z for
all z ∈ R, we have (1− qy)V

q
D (y,1) ≤ e−c and we bound W by

W ≤ qc
n1∑
r=1

(
n1−1
r−1

)
(q − 1)r−1

r
+

µI

V qI (n2, 1)

∑
y∈Σ

n1+1
q

e−c

=
qc

n1(q − 1)

n1∑
r=1

(
n1

r

)
(q − 1)r +

qn1+1µIe
−c

V qI (n2, 1)
.

Finally, we use
∑n
k=0

(
n
k

)
xk = (1 + x)n and obtain

W ≤ cqn1+1

n1(q − 1)
+
qn1+1µIe

−c

V qI (n2, 1)

=
µIq

n1+1

V qI (n, 1)

(
cV qI (n, 1)

µIn1(q − 1)
+
V qI (n, 1)e−c

V qI (n2, 1)

)
.

Abbreviating the term in round brackets by γ and setting n1 =
bβnc for some 0 ≤ β ≤ 1, we derive the upper bound

γ =
V qI (n, 1)

n(q − 1)

(
cn

µIn1
+

e−cn

n− n1

)
(b)

≤ µI

µI − 1

(
cn

µIbβnc
+

e−cn

n− bβnc

)
,

where we used in equality (b) that V qI (n, 1)/(n(q − 1)) is
monotonically decreasing in n and thus V qI (n, 1)/(n(q− 1)) ≤
µI/(µI− 1) for all n > (qµI− q)/(q− 1). Note that this bound
is convenient to handle as it is independent of q. To conclude,
we find the smallest µI such that there exist some c > 0 and
0 ≤ β ≤ 1 for which γ ≤ 1 for all n > (qµI − q)/(q − 1). A
quick computer search yields that µI = 7, c = 3 and β = 3

4
fulfills this requirement. By definition of the random sets S and
T , any realization of them will have the desired property that
S covers Σn1+1

q \ T . As the expected weighted size W is at
most µIq

n1+1/V qI (n, 1), it follows that there exists an (S, T )
pair satisfying the desired bound.

Putting everything together, we prove Theorem 4 for single-
insertion-covering codes.

Proof of Theorem 4. We proceed by induction on n. As the
base case, for all n ≤ qµI−q

q−1 , it suffices to take Cn = Σnq .
Assume now that the statement is correct for all lengths up
to n − 1, so that there exist codes Cn2

with size at most
µIq

n2+1/V qI (n2, 1) for all 1 ≤ n2 ≤ n−1. Let n1 +n2 +1 = n
and S ⊆ Σn1

q and T ⊆ Σn1+1
q denote sets guaranteed by

Lemma 6. Note that clearly n2 < n in Lemma 6, which will
be useful later. As these sets S and T fulfill the requirement of
Lemma 5, we define Cn = (S ⊗Σn2+1

q ) ∪ (T ⊗ Cn2
), which is

a single-insertion-covering code Cn ⊆ Σnq of size

|Cn| ≤ qn2+1|S|+|T | · |Cn2
|

(c)

≤ qn2+1

(
|S|+ µI

V qI (n2, 1)
|T |
)
,

where in (c) we used the existence of a covering code of
length n2 < n and size µIq

n2+1/V qI (n2, 1) by the induction
hypothesis. Using the existence of good sets S and T from
Lemma 6, we obtain the desired bound on the code size

|Cn| ≤ qn2+1 µIq
n1+1

V qI (n, 1)
=

µIq
n+1

V qI (n, 1)
.

Together with our existence result from Theorem 4, we can
infer that the size of the smallest single-insertion-covering code
lies between qn+1/V qI (n, 1) and 7qn+1/V qI (n, 1) and thus is
known up to a constant factor of 7.

IV. MULTIPLE-INSERTION/DELETION-COVERING CODES

We now turn to multiple-insertion/deletion covering codes.
We begin by defining the optimal density of insertion- and
deletion-covering codes, by analogy with the notion of density
often used in the context of classical covering codes.

Definition 3. For R-insertion-covering codes of length n, the
optimal density µqI (n,R) is defined as

µqI (n,R) =
KqI (n,R)V qI (n,R)

qn+R
.

For R-deletion-covering codes of length n, we define the opti-
mal density µqD(n,R) as

µqD(n,R) =
KqD(n,R)nR(q − 1)R

qnR!
.

Finally, for fixed R, we define the corresponding asymp-
totic optimal densities µq,∗I (R) and µq,∗D (R) as µq,∗I (R) =
lim supn→∞ µqI (n,R) and µq,∗D (R) = lim supn→∞ µqD(n,R).

Note that we define the optimal density of deletion-covering
codes slightly differently than that of insertion-covering codes
since the deletion balls are non-uniform and the density is thus
defined with respect to the lower bound obtained in Theorem 2
for large n. A powerful tool in building covering codes of larger
radius is to take the tensor product of two short covering codes
of small radius. For example, taking the tensor product of two
covering codes of length n and radius 1 gives a covering code of
length 2n and radius 2. However, a straightforward application
of this technique only gives covering codes whose density is
at least exponential in R. We therefore refine this technique to
obtain codes that have a density that is almost linear in R. In
the following sections we prove our results for binary words for
simplicity. The proofs for q > 2 are obtained by only a slight
modification and are omitted for brevity.726



A. Multiple-Insertion-Covering Codes

Our main result about R-insertion-covering codes is stated in
the following theorem.

Theorem 7. For any fixed R ≥ 2 and q ≥ 2,

µq,∗I (R) ≤ e(R logR+
√

2R logR+ 1)µq,∗I (1).

Recall that according to Theorem 4, we have that µq,∗I (1) ≤ 7.
Before proving the theorem, we give a short outline of the proof,
along with the intuition behind it. As in the proof of the upper
bound for single-insertion-covering codes, we start by proving
in Lemma 8 the existence of a small almost-covering code S,
i.e., a code that covers all words in {0, 1}n+R except for a small
subset T . Then, in Lemmas 9 and 10, we combine this code
with small covering codes to recursively build larger codes. By
computing the size of the resulting codes, we can then prove
Theorem 7. The following lemma gives an upper bound on the
sizes of the almost-covering code S and the complement T of
its coverage.

Lemma 8. For every n ≥ R and every positive constant c > 0
there exists a set S ⊆ {0, 1}n−R of size at most

|S| ≤ c2n

VI(n−R,R)
fn,R

such that S covers {0, 1}n \ T with R insertions for some set
T ⊆ {0, 1}n of size at most |T | ≤ e−c2n, for some function
fn,R with limn→∞ fn,R = 1.

The proof of Lemma 8 is, similarly to that of Lemma 6, based
on a random choice of S and T , where in our random selection
of codewords, we favor codewords that cover words with small
VD(y, R) to ensure that each word is covered with high enough
probability. For a detailed outline the reader is referred to the
full version of the paper [22]. Analogous to Lemma 9, we
define the operation that allows to assemble covering codes
given shorter covering codes.

Lemma 9. Let S ⊆ {0, 1}n1−R1 , T ⊆ {0, 1}n1 be such that
S covers {0, 1}n1 \ T with R1 insertions. Denote by C1 ⊆
{0, 1}n2+R1 an R2-insertion-covering code of length n2 + R1

and by C2 ⊆ {0, 1}n2 an R-insertion-covering code of length
n2. We have that (S ⊗ C1) ∪ (T ⊗ C2) is an R = R1 + R2-
insertion-covering code of length n = n1 +n2 with size at most
|S| · |C1|+ |T | · |C2|.

Based on Lemmas 8 and 9 we can now derive a recursive
bound on the optimal density µI(n,R).

Lemma 10. For any n ≥ R and c > 0,

µI(n,R) ≤ ceµI(n/R+R− 1, 1)
(1 + 2R/n)R

1−R2/n
fR−1

R n,R−1

+RRe−cµI(n/R,R)(1 + 2R/n)R.

Proof. Let S ⊆ {0, 1}n1−R1 , T ⊆ {0, 1}n1 with n1 ≥ R1 be
such that S covers {0, 1}n1 \ T with R1 insertions. Denote by
C1 ⊆ {0, 1}n2+R1 an R2-insertion-covering code of length n2+
R1 and by C2 ⊆ {0, 1}n2 an R-insertion-covering code of length
n2, where n1+n2 = n, n1 = y−1

y n, n2 = n
y , and R1+R2 = R.

We compute the size of the tensorization (S ⊗ C1) ∪ (T ∪ C2),
which, by Lemma 9, is an R-insertion covering code of length
n. To begin with, |(S ⊗C1)∪ (T ⊗C2)| ≤ |S| · |C1|+ |T | · |C2|.

Using Lemma 8 and optimal codes C1 and C2, we can bound
the size of S and T to obtain

|(S ⊗ C1) ∪ (T ⊗ C2)| ≤ c2n+Rfn1,R1
µI(n2 +R1, R2)

VI(n1 −R1, R1)VI(n2 +R1, R2)

+
e−c2n+RµI(n2, R)

VI(n2, R)
.

Since (S ⊗ C1) ∪ (T ⊗ C2) is a covering code of length n and
covering radius R, we obtain

µI(n,R)≤ cVI(n,R)fn1,R1
µI(n2+R1, R2)

VI(n1−R1, R1)VI(n2+R1, R2)
+
VI(n,R)µI(n2, R)

ecVI(n2, R)
(a)

≤ cnRµI(n2 +R1, R2)

nR1
1 nR2

2

(
R
R1

) (1 + 2R/n)R

1−R2
1/n1

fn1,R1

+ e−c
(
n

n2

)R
(1 + 2R/n)RµI(n2, R),

where in (a) we used the well-known inequalities
(
n+R
R

)
≤

VI(n,R) ≤
(
n+2R
R

)
and (n − R)R/R! ≤

(
n
R

)
≤ nR/R! .

Inserting R1 = R−1, R2 = 1, and y = R yields the lemma.

With this recursive expression, we are ready to prove the
theorem with the help of the following lemma.

Lemma 11 (cf. [16]). Let (µn), (µ′n), (an) and (bn), n ∈ N be
sequences of positive numbers with

lim sup
n→∞

µ′n ≤ µ′, lim sup
n→∞

an ≤ a, lim sup
n→∞

bn ≤ b,

and
µn ≤ anµ′n/R + bnµn/R,

where R > 1. Then

lim sup
n→∞

µn ≤
aµ′

1− b
.

One convenient property of this lemma is that it incorporates
the recursive assembly of the covering codes, without having to
perform a thorough analysis of the induction start. We are now
in a position to prove Theorem 7.

Proof of Theorem 7. Using Lemma 10 and 11, we obtain
µ∗I (R) ≤ ce

1−RRe−cµ
∗
I (1). Minimizing ce

1−RRe−c over c, we can
directly verify that minc

ce
1−RRe−c = e(c0 + 1), where c0 is the

solution to c + 1 = ecR−R. Using standard bounds on c0, we
obtain the theorem.

B. Multiple-Deletion-Covering Codes
Proving the existence of small covering codes for deletions

follows basically the same steps as the proof for the case of
insertions. However, there are some subtle differences, such as
the different definition of density for deletion-covering codes.
Our main result is as follows.

Theorem 12. For any fixed R ≥ 2 and q ≥ 2,

µq,∗D (R) ≤ e(R logR+
√

2R logR+ 1)µq,∗D (1).

In particular, for q = 2,

µ∗D(R) ≤ e(R logR+
√

2R logR+ 1).

The outline of the proof is similar to that of insertions and
is omitted for brevity. Details can be found in [22]. Note that
compared to the case of insertions, we could use in Theorem
12 that for the binary case µ∗D(1) = 1, which results in a tighter
bound also for the case of R > 1.727
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