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Abstract—The sequence reconstruction problem, introduced by Lev-
enshtein in 2001, considers a communication scenario where the
sender transmits a codeword from some codebook and the receiver
obtains multiple noisy reads of the codeword. The common setup
assumes the codebook to be the entire space and the problem is to
determine the minimum number of distinct reads that is required
to reconstruct the transmitted codeword.

Motivated by modern storage devices, we study a variant of the
problem where the number of noisy reads N is fixed. Specifically,
we design reconstruction codes that reconstruct a codeword from
N distinct noisy reads. We focus on channels that introduce single
edit error (i.e. a single substitution, insertion, or deletion) and their
variants, and design reconstruction codes for all values of N . In
particular, for the case of a single edit, we show that as the number
of noisy reads increases, the number of redundant bits required can
be gracefully reduced from logn + O(1) to log logn + O(1), and
then to O(1), where n denotes the length of a codeword. We also
show that the redundancy of certain reconstruction codes is within
one bit of optimality.

I. INTRODUCTION

As our data needs surge, new technologies emerge to store these
huge datasets. Interestingly, besides promising ultra-high storage
density, certain emerging storage media rely on technologies that
provide users with multiple cheap, albeit noisy, reads. In this
paper, we leverage on these multiple reads to increase the infor-
mation capacity of these next-generation devices, or equivalently,
reduce the number of redundant bits.

Before we formally state our problem, we list two storage
scenarios where multiple cheap reads are available to the user.
(a) DNA-based data storage. In these systems [1]–[3], digital

information is stored in native or synthetic DNA strands and
to read the information, a user typically employs a sequencing
platform like the popular Illumina sequencer or more recently,
a nanopore sequencer. In most sequencers, a DNA strand un-
dergoes polymerase chain reaction (PCR) and multiple copies
of the same strand are created. The sequencer then reads all
copies and provides multiple (possibly) erroneous reads to
the user (see Figure 1). In nanopore sequencers, these reads
are often inaccurate and high-complexity read-alignment and
consensus algorithms are required to reconstruct the original
DNA strand from these noisy reads.
To reduce the read-alignment complexity and improve the
read accuracy, one may employ various coding strategies to
design DNA information strands. Yazdi et al. [4] proposed a
simple coding strategy and verified it experimentally. Later,
Cheraghchi et al. [5] provided a marker-based coding strategy
that has provable reconstruction guarantees.

(b) Racetrack memories. Based on spintronic technology, a
racetrack memory, also known as domain wall memory, is
composed of cells, also called domains, which are positioned
on a tape-like strip and are separated by domain walls
[6], [7]. The magnetization of a domain is programmed to
store a single bit value, which can be read by sensing its
magnetization direction. The reading mechanism is operated

by a read-only port, called a head, together with a reference
domain. Since the head is fixed, a shift operation is required
in order to read all the domains and this is accomplished
by applying shift current which moves the domain walls in
one direction. Multiple heads can also be used in order to
significantly reduce the read access latency of the memory.
When these heads read overlapping segments, we have mul-
tiple noisy reads. Recently, Chee et al. [8] leveraged on these
noisy reads to correct shift errors in racetrack memories. They
designed an arrangement of heads and devised a correspond-
ing coding strategy to correct such errors with a constant
number of redundant bits.

Motivated by these applications, we study the following coding
problem in a general setting. Consider a data storage scenario
where N distinct noisy reads are provided. Our task is to design a
codebook such that every codeword can be uniquely reconstructed
from any N distinct noisy reads. Hence, our fundamental problem
is then: how large can this codebook be? Or equivalently, what
is the minimum number of redundancy?

In this paper, we study in detail the case where the reads are
affected by a single edit (a substitution, deletion, or insertion) and
its variants. In particular, for the case of a single edit, we show that
as the number of noisy reads increases, the number of redundant
bits required can be gracefully reduced from log n + O(1) to
log log n + O(1), and then to O(1), where n denotes the length
of a codeword. Due to space limitations, certain technical proofs
are omitted. Detailed proofs are in the arXiv version [9].

II. PROBLEM STATEMENT AND CONTRIBUTIONS

Consider a data storage scenario described by an error-ball
function. Formally, given an input space X and output space Y,
an error-ball function B maps a word x ∈ X to a subset of
noisy reads B(x) ⊂ Y. Given a code C ⊆ X, we define the read
coverage of C, denoted by ν(C;B), to be the quantity

ν(C;B) , max
{
|B(x) ∩B(y)| : x,y ∈ C, x 6= y

}
. (1)

In other words, ν(C;B) is the maximum intersection between the
error-balls of any two codewords in C. The quantity ν(C;B) was
introduced by Levenshtein [10], where he showed that the number
of reads1 required to reconstruct a codeword from C is at least
ν(C;B) + 1. The problem to determine ν(C;B) is referred to as
the sequence reconstruction problem.

The sequence reconstruction problem was studied in a variety
of storage and communication scenarios [5], [8], [11]–[15]. In
these cases, C is usually assumed to be the entire space (all binary
words of some fixed length) or a classical error-correcting code.

However, in most storage scenarios, the number of noisy reads
N is a fixed system parameter and when N is at most ν(C;B),
we are unable to uniquely reconstruct the codeword. This work

1In the original paper, Levenshtein used the term “channels”, instead of reads.
Here, we used the term “reads” to reflect the data storage scenario.
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Fig. 1: Noisy reads from a nanopore sequencer. A DNA strand undergoes PCR and multiple copies of the same strand are created. The sequencer then reads all
copies and provides multiple errononeous reads. Here, the basepairs coloured in blue were deleted, the basepairs coloured in magenta were inserted, while those
coloured in red have substitution errors.

looks at this regime where we design codes whose read coverage
is strictly less than N . Specifically, we say that C is an (n,N ;B)-
reconstruction code if C ⊆ {0, 1}n and ν(C;B) < N .

This gives rise to a new quantity of interest that measures the
trade-off between codebook redundancy and read coverage. Given
N and an error-ball function B, we study the quantity

ρ(n,N ;B) , min
{
n− log |C| : C ⊆ {0, 1}n, ν(C;B) < N

}
. (2)

Note that the case N = 1 is the classical model which has
been studied in the design of error-correcting codes. Thus, the
framework studied in this work can be viewed as a natural
extension of this classical model.

For a word x ∈ {0, 1}n, we consider the following error-ball
functions. Let BI(x), BD(x), and BS(x) denote the set of all
words obtained from x via one insertion, one deletion, and at most
one substitution, respectively. In this work, we study in detail the
following error-balls:

B
SD(x) , B

S(x) ∪ B
D(x), B

SI(x) , B
S(x) ∪ B

I(x),

B
ID(x) , B

I(x) ∪B
D(x), B

edit(x) , B
S(x) ∪ B

I(x) ∪B
D(x).

Example 1. We consider the single-deletion error-ball BD and
two different codebooks. First, let Call = {0, 1}n. Levenshtein
in his seminal work [10] showed that ν

(
Call;B

D
)

= 2. In other
words, three distinct noisy versions of x allow us to uniquely
reconstruct x. Hence, ρ(n,N ;BD) = 0 for N > 3.

In contrast, to correct a single deletion, we have the classical
Varshamov-Tenengolts (VT) code VT(n; a) whose redundancy
is at most log(n + 1) [16] (see also Theorem 4). In this case,
ν
(
VT(n; a);BD

)
= 0 and one noisy read is sufficient to recover

a codeword. Furthermore, it can be shown that VT(n; a) is
asymptotically optimal, or, ρ

(
n, 1;BD

)
= log n + Θ(1) (see

Theorem 2). A natural question is then: how should we design
the codebook when we have only two noisy reads? Or, what is
the value of ρ

(
n, 2;BD

)
?

Recently, Chee et al. constructed a (n, 2;BD)-reconstruction
code with log log n + O(1) redundant bits [8]. Hence,
ρ
(
n, 2;BD

)
6 log log n + O(1). In other words, even though

there are only two noisy reads, we can employ a coding strategy
that encodes approximately log n− log log n bits of information
more than that of the VT code. In this paper, we extend this
analysis and design reconstruction codes for other error-balls.

A. Related Work

We first review previous work related to our problem when
there is only one noisy read, i.e. N = 1. In this case, we recover
the usual notion of error-correcting codes. For the error-ball
functions studied in this paper, the following results are classical.

Theorem 2. For n > 0,
(i) log(n+ 1) 6 ρ(n, 1;BS) 6 dlog(n+ 1)e [17], [18];

(ii) log(n− 1) 6 ρ(n, 1;BD) = ρ(n, 1;BI) 6 log(n+ 1) [16], [19];
(iii) log(n+ 1) 6 ρ(n, 1;Bedit) 6 1 + logn [16].

Hence, ρ(n, 1;B) = logn+ Θ(1) for B ∈ {BS,BD,BI,Bedit}.

For completeness, we present the families of single error-
correcting codes provided by Levenshtein [16]. Crucial to these
constructions is the concept of syndrome.

Definition 3. The VT syndrome of a binary sequence x ∈ {0, 1}n
is defined to be Syn(x) ,

∑n
i=1 ixi.

Theorem 4 (Levenshtein [16]).
(i) For a ∈ Zn+1, let

VT(n; a) , {x ∈ {0, 1}n : Syn(x) = a (mod n+ 1)} . (3)

Then, the code VT(n; a) is an (n, 1;B)-reconstruction code
for B ∈ {BD,BI,BID}.

(ii) For a ∈ Z2n, let

L(n; a) , {x ∈ {0, 1}n : Syn(x) = a (mod 2n)} . (4)

Then, the code L(n; a) is an (n, 1;B)-reconstruction code
for B ∈ {BSI,BSD,Bedit}.

When there is more than one noisy read, previous works usually
focus on determining the maximum intersection size between
two error-balls. When C = {0, 1}n and the error-balls involve
insertions only, deletions only and substitutions only, the value
of ν(C;B) was first determined by Levenshtein [10]. Later,
Levenshtein’s results were extended in [11] for the case where the
error-ball involves deletions only and C is a single-deletion error-
correcting code. Recently, the authors of [20] investigated the case
where errors are combinations of single substitution and single
insertion. Furthermore, they also simplified the reconstruction
algorithm when the number of noisy copies exceeds the minimum
required, i.e. N > ν(C;B) + 1.

Another recent variant of Levenshtein’s sequence reconstruc-
tion problem was studied by the authors in [21]. Similar to our
model, the authors consider the scenario where the number of
reads is not sufficient to reconstruct a unique codeword. As with
classical list-decoding, they determined the size of the list of
possible codewords.

As mentioned above, the sequence reconstruction problem has
been studied by Levenshtein and others for several error channels
and distances. In many cases, such as for substitutions, the size
of the set B(x) ∩ B(y) does not depend on the specific choice
of x and y, but only on their distance. In the substitutions case,
for any length-n code C of minimum Hamming distance d and
B = BS

t , which is the radius-t substitution ball, it holds that [10]

ν(C;BS
t ) = NS

n (t, d) ,

t−d d2 e∑
i=0

(
n− d
i

) t−i∑
h=d−t+i

(
d

h

)
. (5)

Therefore, the quantity ρ(n,N ;BS
t ) can be computed by find-

ing the minimum Hamming distance of the corresponding code.
Specifically, if we denote by A(n, d) the size of the largest length-
n code of minimum Hamming distance d, the following holds.677



N \ B BS BI, BD BID BSI BSD Bedit

1 dlog(n+ 1)e log(n+ 1) log(n+ 1) 1 + logn 1 + logn 1 + logn

2 dlog(n+ 1)e log logn+ Θ(1) ? log(n+ 1) ? 1 + logn ? 1 + logn ? 1 + logn

3 0 0 log logn+ Θ(1) ? log logn+ Θ(1) ? log logn+ Θ(1) ? log logn+ Θ(1) ?

4 0 0 log logn+ Θ(1) ? 2 ? 1 ? log logn+ Θ(1) ?

5 0 0 0 ? 0 ? 0 ? 2 ?

6 0 0 0 ? 0 ? 0 ? 1 ?

> 7 0 0 0 ? 0 ? 0 ? 0 ?

TABLE I: Asymptotically exact estimates on ρ(n,N ;B) for various error-ball functions. Highlighted in blue are entries that are optimal to one bit. Specifically,
if the entry is U , then U − 1 6 ρ(n,N ;B) 6 U . Marked with ? are entries derived in this work.

Theorem 5. For all N ≥ 1, it holds that

ρ(n,N ;BS
t ) = n− log(A(n, d)),

where d is smallest integer such that NS
n (t, d) < N .

For odd values of d it holds that NS
n (t, d) = NS

n (t, d − 1)
(see [18, Theorem 10]) and therefore it is enough to consider
only odd values of d. Furthermore, for d = 2t − 1 it holds that
NS

n (t, d = 2t− 1) =
(
2t
t

)
[10], which implies that for all t ≥ 1,

ρ

(
n,N =

(
2t

t

)
+ 1;BS

t

)
= n− log(A(n, 2t− 1)),

and for all 1 ≤ N ≤
(
2t
t

)
, ρ
(
n,N ;BS

t

)
= n− log(A(n, 2t+1)).

B. Main Contributions

In this work, we focus on the case where 2 6 N 6
ν({0, 1}n;B) with B ∈ {BS,BI,BD,BID,BSI,BSD,Bedit}.
When N = 2 and B = BD, we have a recent code construction
by Chee et al. [8] (see Example 1 and Theorem 16). Specifically,
in Section IV, we make suitable modifications to this code
construction and show that the resulting codes are (n,N ;B)-
reconstruction code for the error-balls of interest.

To do so, in Section III, we study in detail the intersection of
certain error-balls and derive the necessary and sufficient condi-
tions for the size of an intersection. Using these characterizations,
we not only design the desired reconstruction codes, we also
obtain asymptotically tight lower bounds in Section V and in
our companion paper [22]. We summarize our results in Table I
and observe that all values of ρ(n,N ;B) have been determined
asymptotically.

III. COMBINATORIAL CHARACTERIZATION OF THE
INTERSECTION OF ERROR-BALLS

In this section, we set C = {0, 1}n and compute the
read coverage ν(C;B) for the error-ball function B ∈
{BS,BD,BI,BSI,BSD,BID,Bedit}. In addition to determining
the read coverage or maximum intersection size, we also charac-
terize when the error-balls of a pair of words have intersection of a
certain size. This combinatorial characterization will be crucial in
the code construction in Section IV. We provide a detailed proof
for the case B ∈ {BD,BI}. Proofs for the other characterizations
are deferred to the arXiv version [9].

First, we recall a result from Levenshtein’s seminal work.

Theorem 6 (Levenshtein [10, Theorem 1, Eq. (26)]). Let B ∈
{BS,BI,BD}. If x and y are distinct binary words of length n,
then |B(x) ∩ B(y)| 6 2. Therefore, if we set C = {0, 1}n, we
have that ν(C;B) = 2 and ρ(n,N ;B) = 0 for N > 3.

Next, we characterize when the error-balls of a pair of words
have intersection of size two. The case for single substitution is
straightforward consequence of (5).

Lemma 7 (Levenshtein [10]). Let x and y be distinct binary
words of length n. We have that

(i) |BS(x) ∩ BS(y)| = 2 if and only if the Hamming distance
of x and y is at most two.

(ii) |BS(x) ∩ BS(y)| = 0 if and only if the Hamming distance
of x and y is at least three.

When B ∈ {BD,BI}, we define the following notion of
confusability.

Definition 8. Two words x and y of length n are said to be Type-
A-confusable if there exists subwords a, b, and c such that the
following holds.

(A1) x = acb and y = acb, where c is the complement of c.
(A2) c is one of the following forms: (01)m, (01)m0, (10)m,

(10)m1 for some m > 1.

Type-A-confusability characterizes when the intersection size
of single-deletion (and single-insertion) balls is two.

Proposition 9. Let B ∈ {BD,BI} and x and y be distinct binary
words of length n. If the Hamming distance of x and y is at
least two, we have that |B(x) ∩ B(y)| = 2 if and only if x and
y are Type-A-confusable. On the other hand, if the Hamming
distance of x and y is one, we have |BD(x) ∩BD(y)| = 1 while
|BI(x) ∩BI(y)| = 2.

Proof. We first consider the case that the Hamming distance of x
and y is at least two and show that |B(x)∩B(y)| = 2 if and only if
x and y are Type-A-confusable. We present the proof for the case
where B = BD and the case for B = BI can be similarly proved.
Let x = x1x2 · · ·xn, y = y1y2 · · · yn and BD(x) ∩ BD(y) =
{z, z′}. Since x and y have Hamming distance at least two, we
set i and j be the smallest and largest indices, respectively, where
the two words differ.

We first consider z ∈ BD(x)∩BD(y). Let z be obtained from x
by deleting index k and from y by deleting index `. We first claim
that either k 6 i or k > j. Suppose otherwise that i < k < j and
we have two cases.
• When ` < j, we consider the (j − 1)th index of z. On one

hand, since k < j and we delete xk from x, the (j − 1)th
index of z is xj . On the other hand, since we delete y` from
y, the (j − 1)th index of z is yj . Hence, xj = yj , yielding
a contradiction.

• When ` > j, we consider the ith index of z. Proceeding as
before, we conclude that xi = yi, which is not possible.

Without loss of generality, we assume that k 6 i. A similar
argument shows that ` > j. Therefore, we have that yt = xt+1 for678



k 6 t 6 `−1. Recall that xt = yt whenever t 6 i−1 or t > j+1.
Hence, we have that xk = xk+1 = · · · = xi, yk = yk+1 =
· · · = yi−1, xj+1 = xj+2 = · · · = x`, yj = yj+1 = · · · = y`.
In summary, if we set a = x1x2 · · ·xi−1 = y1y2 · · · yi−1 and
b = xj+1xj+2 · · ·xn = yj+1yj+2 · · · yn, then

z = axi+1xi+2 · · ·xjb = ayiyi+1 · · · yj−1b.

Now, we consider z′, the other word in BD(x)∩BD(y). Since
z′ is distinct from z and proceeding as before, we have that

z′ = axixi+1 · · ·xj−1b = ayi+1yi+2 · · · yjb.

Hence, xt = yt+1 = xt+2 for i 6 t 6 j − 2. Since z 6= z′, we
have that xi 6= xi+1 and yiyi+1 · · · yj = xixi+1 · · ·xj . Therefore,
x and y are Type-A-confusable.

Conversely, suppose that x and y are Type-A-confusable.
Hence, there exist subwords a, b, c that satisfy conditions (A1)
and (A2). We further set c1 and c2 to be words obtained by
deleting the first and last index from c, respectively. Then ac1b
and ac2b are two distinct subwords that belong to BD(x)∩BD(y).
Since |BD(x) ∩ BD(y)| 6 2, we have that the intersection size
must be exactly two.

When the Hamming distance of x and y is one, i.e. x = aαb
and y = aβb where α 6= β, we have BD(x) ∩ BD(y) = {ab}
and BI(x) ∩BI(y) = {aαβb,aβαb}. �

Proposition 9 can be extended to characterize the intersection
sizes for error-balls involving either a single insertion or deletion.

Proposition 10 (Single ID). Let x and y be distinct binary words
of length n. Then |BID(x)∩BID(y)| ∈ {0, 2, 3, 4}. Furthermore,
we have |BID(x) ∩ BID(y)| = 4 if and only if x and y are
Type-A-confusable. Therefore, when C = {0, 1}n, we have that
ν(C;BID) = 4 and ρ(n,N ;BID) = 0 for N > 5.

When the error-balls include single substitutions, we require
the following notion of confusability.

Definition 11. Two words x and y of length n are said to be
Type-B-confusable if there exists subwords a, b, c and c′ such
that the following hold:
(B1) x = acb and y = ac′b;
(B2) {c, c′} is one of the following forms: {01m, 1m0},

{10m, 0m1} for some m > 1.

We use Type-B-confusability to characterize the intersection of
error-balls B where B ∈ {BSD,BSI}.

Proposition 12 (Single SD/SI). Let B ∈ {BSD,BSI} and x and
y be distinct binary words of length n. Then |B(x)∩B(y)| 6 4.
Furthermore, we have the following characterizations.
• If the Hamming distance of x and y is two, then
(i) |B(x) ∩ B(y)| = 4 if and only if x and y are Type-B-

confusable with condition (B2) satisfied with m = 1.
(ii) |B(x) ∩ B(y)| = 3 if and only if x and y are Type-B-

confusable with condition (B2) satisfied with m > 2.
• If the Hamming distance of x and y is one, then |BSI(x) ∩

BSI(y)| = 4 while |BSD(x) ∩BSD(y)| = 3.
Therefore, when C = {0, 1}n, we have ν(C;B) = 4 and

ρ(n,N ;B) = 0 for N > 5.

Finally, we characterize the intersection sizes when the error-
balls arise from single edits.

Proposition 13 (Single Edit). Let x and y be distinct binary
words of length n. Then |Bedit(x)∩Bedit(y)| 6 6. Furthermore,
we have the following characterizations.

(i) |Bedit(x) ∩ Bedit(y)| = 6 if and only if x and y are Type-
B-confusable with condition (B2) satisfied with m = 1.

(ii) |Bedit(x) ∩ Bedit(y)| = 5 if and only if the Hamming
distance of x and y is one.

(iii) |Bedit(x)∩Bedit(y)| = 4 if and only if x and y are Type-A-
confusable with |c| > 3 or Type-B-confusable with condition
(B2) satisfied with m > 2.

Therefore, when C = {0, 1}n, we have ν(C;Bedit) = 6 and
ρ(n,N ;Bedit) = 0 for N > 7.

IV. RECONSTRUCTION CODES WITH o(log n) REDUNDANCY

An (n,N ;B)-reconstruction code is also an (n,N ′;B)-
reconstruction code for N ′ > N . Hence, Theorem 2 states that
there exists an (n,N ;B)-reconstruction code with log n + O(1)
redundant bits for all B ∈ {BD,BI,BID,BSD,BSI,Bedit} and
N > 1. In this section, we provide reconstruction codes with
redundancy o(log n) when N > 1.

We recall a recent construction of an (n, 2;BD)-reconstruction
code provided in [8] in the context of racetrack memories. Crucial
to this construction is the notion of period.

Definition 14. Let ` and t be two positive integers where ` < t.
Then the word u = u1u2 · · ·ut ∈ {0, 1}t is said to have period `
if ui = ui+` for all 1 6 i 6 t− `. We use R(n, `, t) to denote the
set of all words c of length n such that the length of any subword
of c with period 6 ` is at most t.

In [8], a lower bound on the size of R(n, `, t) is given.

Proposition 15 ([8]). For ` ∈ {1, 2}, if t > dlog ne+ `, we have
that the size of R(n, `, t) is at least 2n−1.

We are now ready to present the following construction of an
(n, 2;BD)-reconstruction code from [8]. Here, we demonstrate its
correctness for completeness and also because the key ideas are
crucial to the constructions in Theorems 18 and 20. Furthermore,
we improve the construction from [8] and reduce the redundancy
by approximately one bit.

Theorem 16 (Single Deletion, N = 2 [8]). For n, P > 0 with
P even, let c ∈ Z1+P/2 and d ∈ Z2. Define CD(n; c, d) to be the
set of all words x = x1x2 · · ·xn such that the following holds.

(i) Syn(x) = c (mod 1 + P/2).
(ii)

∑n
i=1 xi = d (mod 2).

(iii) x belongs to R(n, 2, P ).
Then CD(n; c, d) is an (n, 2;BD)-reconstruction code. Further-
more, if we set P = dlog ne + 2, the code CD(n; c, d) has
redundancy 1 + log(dlog ne + 4) = log log n + O(1) for some
choice of c and d.

Proof. We prove by contradiction. Suppose that x and y are two
distinct words in CD(n; c, d) with |BD(x) ∩ BD(y)| = 2. Then
Proposition 9 states that x and y are Type-A-confusable. In other
words, there exist substrings a, b, c such that x = acb, y = acb
and c has period at most two.

Note that since the weights of x and y have the same parity,
we have c ∈ {(01)m, (10)m} for some m > 1. First, suppose that
c = (01)m. Then by construction,

Syn(x)− Syn(y) = 0 (mod 1 + P/2). (6)679



On the other hand, since x = acb and y = acb, the left-hand
side of (6) evaluates to m. However, since c is a subword of x
with period at most two, we have that 2m 6 P , and so, m 6= 0
(mod 1+P/2), arriving at a contradiction. When c = (10)m, the
left-hand side of (6) evaluates to −m 6= 0 (mod 1 + P/2). �

We can similarly show that the code CD(n; c, d) is capable
of reconstructing codewords from noisy reads affected by single
insertions or deletions. We omit the proof due to space constraints.

Corollary 17 (Single Insertion/Deletion, N ∈ {3, 4}). Let
CD(n; c, d) be as defined in Theorem 16. Then CD(n; c, d) is an
(n,N ;BID)-reconstruction code for N ∈ {3, 4}.

When B ∈ {BSD,BSI}, we make suitable modifications to the
code CD(n; c, d) to correct (possibly) a single substitution.

Theorem 18 (Single Substitution/Deletion, N = 3). For n, P >
0, let c ∈ Z1+P and d ∈ Z2. Define CSD(n; c, d) to be the set of
all words x = x1x2 · · ·xn such that the following holds.

(i) Syn(x) = c (mod 1 + P ).
(ii)

∑n
i=1 xi = d (mod 2).

(iii) x belongs to R(n, 1, P ).
Then CSD(n; c, d) is an (n, 3;B)-reconstruction code for B ∈
{BSD,BSI}. Furthermore, if we set P = dlog ne + 1, the code
CD(n; c, d) has redundancy 2 + log(dlog ne + 1) = log log n +
O(1) for some choice of c and d.

Proof. We prove for the error-ball function BSD and prove by
contradiction. Suppose that x and y are two distinct words in
CSD(n; c, d) with |BSD(x) ∩ BSD(y)| > 3. Since x and y have
the same parity, the Hamming distance of x and y is at least two.
Then Proposition 12 states that x and y are Type-B-confusable.
Without loss of generality, let x = a01mb, y = a1m0b. As before,
we have

Syn(x)− Syn(y) = 0 (mod 1 + P ). (7)

Now, the left-hand side of (7) evaluates to m. However, since x
belongs to R(n, 1, P ), we have that m 6 P , a contradiction. �

To correct a single edit with three or four reads, we make a
small modification to CSD(n; c, d). The proof is omitted due to
space constraints.

Corollary 19 (Single Edit, N ∈ {3, 4}). For n, P > 0, let c ∈
Z1+P and d ∈ Z2. Define Cedit(n; c, d) to be the set of all words
x = x1x2 · · ·xn such that the following holds.

(i) Syn(x) = c (mod 1 + P ).
(ii)

∑n
i=1 xi = d (mod 2).

(iii) x belongs to R(n, 2, P ).
Then Cedit(n; c, d) is an (n,N ;Bedit)-reconstruction code for
N ∈ {3, 4}. Furthermore, if we set P = dlog ne + 2, the code
Cedit(n; c, d) has redundancy 2 + log(dlog ne+ 2) = log log n+
O(1) for some choice of c and d.

Our final code constructions introduce one and two bits of
redundancy, respectively. Instead of taking the parity bit of all
coordinates, we take the parity of all even coordinates.

Theorem 20 (Single Substitution/Deletion, N = 4). Let

C1 =

x1x2 · · ·xn ∈ {0, 1}n :

bn/2c∑
i=1

x2i = 0 (mod 2)

 .

Then C1 is an (n, 4;BSD)-reconstruction code with one redundant bit.

Proof. We prove by contradiction. Suppose that x and y are two
distinct words in CSD(n; c, d) with |BSD(x)∩BSD(y)| = 4. Then
Proposition 12 states that x and y are Type-B-confusable with
m = 1. Without loss of generality, let x = a01b, y = a10b.
Then

∑bn/2c
i=1 x2i − y2i = 1 6= 0 (mod 2), a contradiction. �

The next construction takes another bit of redundancy, that is,
the parity bit of all coordinates.

Theorem 21 (Single Substitution/Insertion, N = 4). Let

C2 =

x1x2 · · ·xn ∈ {0, 1}n :

n∑
i=1

xi =

bn/2c∑
i=1

x2i = 0 (mod 2)

 .

Then C2 is an (n, 4;BSI)-reconstruction code with two redundant bits.

Finally, it can be shown that C1 can correct a single edit
whenever we have at least five noisy reads.

Corollary 22 (Single Edit, N ∈ {5, 6}). Let C1 and C2 be
as defined in Theorems 20 and 21, respectively. Then C2 is
an (n, 5;Bedit)-reconstruction code and C1 is an (n, 6;Bedit)-
reconstruction code.

V. LOWER BOUNDS FOR THE REDUNANCY OF
RECONSTRUCTION CODES

In this section, we state without proof some straightforward
lower bounds for the redundancy of reconstruction codes when
N = 2. Detailed proofs can be found in [9] and [22].

The first theorem demonstrates that the codes from Theorem 2
are essentially optimal.

Proposition 23. Let n > 0.
(i) ρ(n, 2;BS) = ρ(n, 1;BS).

(ii) ρ(n, 2;BID) = ρ(n, 1;BD).
(iii) ρ(n, 2;BSD) > ρ(n, 1;BS).
(iv) ρ(n, 2;BSI) > ρ(n, 1;BS).
(v) ρ(n, 2;Bedit) > ρ(n, 1;BS).

Therefore, we have that ρ(n, 2;B) = log n + Θ(1) for B ∈
{BS,BID,BSD,BSI,Bedit}.

The next proposition shows that we need at least one bit of
redundancy for certain instances.

Proposition 24. ρ(n, 4;BSI) > 1 and ρ(n, 5;Bedit) > 1.

Finally, with the following proposition, we completely deter-
mined the asymptotic values of ρ(n,N ;B) for all our error-balls
of interest.

Proposition 25. For (N,B) ∈
{

(2,BD), (2,BI), (3,BID),

(4,BID), (3,BSI), (3,BSD), (3,Bedit), (4,Bedit)
}

, we have that
ρ(n,N ;B) > log log n−O(1).

VI. CONCLUSION

We studied the sequence reconstruction problem in the context
when the number of noisy reads N is fixed. Specifically, for a
variety of error-balls B, we designed (n,N ;B)-reconstruction
codes for 2 6 N 6 ν({0, 1}n;B) and derived their correspond-
ing lower bounds. Of significance, our code constructions use
o(log n) bits of redundancy and in certain cases are within one
bit of optimality. Our results for ρ(n,N ;B) are summarized in
Table I.680
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