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Abstract—Partial MDS (PMDS) and sector-disk (SD) codes are
classes of erasure codes that combine locality with strong erasure
correction capabilities. We construct PMDS and SD codes where
each local code is a bandwidth-optimal regenerating MDS code.
The constructions require significantly smaller field size than the
only other construction known in literature.

I. INTRODUCTION

Distributed data storage is ever increasing its importance
with the amount of data stored by cloud service providers
and data centers in general reaching staggering heights. The
data is commonly spread over a number of nodes (servers
or hard drives) in a distributed storage system (DSS), with
some additional redundancy to protect the system from data
loss in the case of node failures (erasures). The resilience of
a DSS against such events can be measured either by the
minimal number of nodes that needs to fail for data loss to
occur, i.e., the distance of the storage code, or by the expected
time the system can be operated before a failure occurs that
causes data loss, referred to as the mean time to data loss.
For both measures the use of maximum distance separable
(MDS) codes provides the optimal trade-off between storage
overhead and resilience to data loss (note that replication is a
trivial MDS code). The downside of using MDS codes is the
cost of recovering (replacing) a failed node. Consider a storage
system with k information nodes and s nodes for redundancy.
If an MDS code is used for the recovery of a node by means
of erasure decoding, it necessarily involves at least k nodes
(helpers) and, if done by straight-forward methods, a large
amount of network traffic, namely the download of the entire
content from k nodes. To address these issues, the concepts
of locally repairable codes (LRCs) [1]–[7] and regenerating
codes [8]–[10] have been introduced.

To lower the amount of network traffic in recovery, regen-
erating codes allow for repairing nodes by accessing d > k
nodes, but only retrieve a function of the data stored on each
node. This significantly decreases the repair traffic. Lower
bounds on the required traffic for repair have been derived
in [8], [9] which lead to two extremal code classes, namely
minimum bandwidth regenerating (MBR) and minimum stor-
age regenerating (MSR) codes. MBR codes offer the lowest
possible repair traffic, but at the cost of increased storage
overhead compared to MDS codes. In this work we consider
d-MSR codes, which require more network traffic for repair
than MBR codes, but are optimal in terms of storage overhead,
i.e., they are MDS.

To address the other downside of node recovery in MDS
codes, namely the large number of required helper nodes,
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LRCs introduce additional redundancy to the system, such
that in the (more likely) case of a few node failures the
recovery only involves less than k helper nodes, i.e., can be
performed locally. This subset of helper nodes is referred to
as a local code. Recently several constructions of LRCs which
maximize the distance have been proposed. However, when
considering the mean time to data loss as the performance
metric, distance-optimal LRCs are not necessarily optimal, as
it is possible to tolerate many failure patterns involving a larger
number of nodes than the number that can be guaranteed,
while still fulfilling the locality constraints [11], [12]. Partial
MDS (PMDS) codes [13]–[15], also referred to as maximally
recoverable codes [16], [17], are a subclass of LRCs which
guarantee to tolerate all failure patterns possible under these
constraints and thereby maximize the mean time to data
loss. Specifically, an (r, s)-PMDS code of length µn can be
partitioned into µ local groups of size n, such that any erasure
pattern with r erasures in each local group plus any s erasures
in arbitrary positions can be recovered.

However, the local recovery of nodes still induces a large
amount of network traffic, as the entire content of the helper
nodes needs to be downloaded when considering straight-
forward use recovery algorithms. To circumvent this bottle-
neck, several regenerating local codes [8] have been proposed
[2]–[7]. In [18] it was shown that the LRC construction of [3] is
in fact a PMDS code, implicitly giving the first construction of
PMDS codes with local regeneration1. However, these PMDS
codes require a field size exponential in the length of the code.

In this work, we propose the first constructions of locally
regenerating PMDS codes with field size that is not exponential
in the length. Our first construction gives (r, s = 2)-PMDS
codes where each local code is a d-MSR code by a non-
trivial combination of the (r, s = 2)-PMDS codes of [14]
and the MSR codes of [10], over a field of size O(rn).
The second construction of (r, s)-PMDS codes with local d-
MSR codes, which is valid for any value of s, combines the
(r, s)-PMDS construction of [15] with the MSR codes of [10]
and requires a field size of O((µn)s(r+1)), when r = O(1)
and s = O(1). The number of field elements stored at each
node (subpacketization) is ` = O(rn), and thus equal to the
subpacketization in the MSR code construction of [10].

II. PRELIMINARIES

A. Notation

We write [a, b] for the set of integers {a, a + 1, ..., b} and
[b] if a = 1. For a set of integers R ⊆ [n] and a code C of
length n we write C|R for the code obtained by restricting C
to the positions indexed by R, i.e., puncturing in the positions
[n] \R. For an element α ∈ F we denote its order by O(α).

1The construction in [3] consists of two encoding stages, where in the
second stage an arbitrary linear MDS code can be used to obtain the local
codes. In [18] it was shown that the construction in fact gives a PMDS code,
independent of the explicit choice of the MDS code in the second encoding
stage. It follows that using a regenerating MDS code in the second encoding
stage results in a PMDS code with local regeneration.628978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020



We denote a code of length n, dimension k, and distance
dmin by [n, k, dmin]. For a code over Fq` that is linear over
Fq we write [n, k, dmin; `]. The parameter ` is referred to as
the subpacketization of the code and as each codeword of this
code can be viewed as an array over Fq with n columns and
` rows, we also refer to such codes as array codes. If the
distance dmin is clear from context or not of interest, we omit
it from the notation.

This work is largely based on the constructions of PMDS
codes in [14], [15] and the construction of MSR codes in [10].
Since the notations in these works are conflicting, i.e., the
same symbols are used for different parameters of the codes,
Table I provides an overview of the notation used in this work
compared to these works.

TABLE I
OVERVIEW OF THE NOTATION USED IN THIS WORK COMPARED TO THE

NOTATION USED IN [10], [14], [15]. AS WE ARE CONSTRUCTING PMDS
CODES WITH LOCAL MSR CODES IN THE FOLLOWING, THE LENGTH AND

NUMBER OF PARITIES IN THE MSR CODE CONSTRUCTION OF [10] ARE
MATCHED WITH THE PARAMETERS OF THE LOCAL CODES IN OUR WORK.

Description [14] [15] [10] This work
Number of local groups r m - µ
Length of local MSR code n n n n
Number of local parity symbols m r r r
Number of global parity symbols s s - s
Code length rn mn - µn
Subpacketization - - l `
Number of nodes needed for repair - - d d

B. Definitions

We begin by formally defining PMDS codes in our notation.

Definition 1 (Partial MDS array codes). Let µn, µ, n, r, s, ` ∈
Z>0 such that r ≤ n and s ≤ (n− r)µ.

Let C ⊂ F`×µnq be a linear [µn, (n− r)µ− s; `] code. The
code C is a PMDS(µn, µ, n, r, s; `) partial MDS array code if
there exists a partition W = {W1,W2, ...,Wµ} of [µn] with
|Wi| = n for all i ∈ [µ] such that
• the code C|Wi

is an [n, n− r, r + 1; `] MDS code for all
i ∈ [µ] and

• the code C|[µn]\∪µi=1Ei
is an [n− rµ, n− rµ− s, s+ 1; `]

MDS code, where Ei ⊂Wi with |Ei| = r for all i ∈ [µ].

We refer to the code C|Wi
as the i-th local code.

Remark 1. In [14], [15] each codeword of the PMDS and SD
codes is regarded as an µ× n array, where for PMDS codes
each row can correct r erasures and for SD codes r erased
columns can be corrected. As we will construct PMDS and SD
codes with local MSR codes, we will require subpacketization,
i.e., each node will not store a symbol, but a vector of multiple
symbols. To avoid having different types of rows, we adopt the
terminology commonly used in the LRC literature and view the
codewords of a PMDS or SD code as vectors, and what we
refer to as local codes is equivalent to the rows of [14], [15].

In the following we will construct both PMDS and SD codes
with local regeneration, but since the concepts and proofs are
mostly the same, we provide them in less detail for SD codes.

Remark 2. Sector-Disk codes are defined similar to PMDS
codes as in Definition 1, except that E1 = E2 = . . . = Eµ
holds.

Definition 2 (Regenerating code [8], [9]). Let F ,R ⊂ [n] be
two disjoint subsets with F ≤ r and R ≥ n− r. Let C be an
[n, n−r; `] MDS array code C over Fq . Define M(C,F ,R) as
the smallest number of symbols of F one needs to download
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Fig. 1. Illustration of locally regenerating PMDS array codes as constructed
in this work, with n = 5, µ = 3 and each symbol of the code alphabet
represented by a small rectangle. The shown erasure pattern can be corrected
by an (r = 2, s = 2)-PMDS code.

from the surviving nodes indexed by R to recover the erased
nodes indexed by F . Then

M(C,F ,R) ≥ |F||R|`
|F|+ |R| − n+ r

. (1)

We say that the code C is an (h, d)-MSR code if

max
|F|=h,|R|=d
F∩R=∅

M(C,F ,R) =
|F||R|`

|F|+ |R| − n+ r
.

If h = 1 we say the code is a d-MSR code.

Definition 3 (Locally (h, d)-MSR PMDS array codes). Let C
be a PMDS(µn, µ, n, r, s; `) code with partition W . We say
that the code C is locally (h, d)-MSR if C|Wi is an (h, d)-MSR
code for all i ∈ [µ]. If h = 1 we say the code is a locally
d-MSR PMDS code.

Figure 1 shows an illustration of a locally regenerating
PMDS array code. Assuming it to be an (r = 2, s = 2)-
PMDS code, the erasures in the first local code can be cor-
rected locally, but without taking advantage of the regenerating
property, as the number of available helper nodes is only n−r.
The erasure in the second local code can be corrected from the
remaining n− r+ 1 nodes in the local group using the locally
regenerating property, and the erasures in the third local code
can be recovered by accessing nodes of the other local groups.
Note that the example was chosen specifically to illustrate these
different cases, the case of a single erasure in a local code, for
which the locally regenerating property decreases the repair
bandwidth, is far more likely than the other cases.

C. Ye-Barg Regenerating Codes
We repeat [10, Construction 2] in the slightly different

notation which will be used in this work.

Definition 4 (Ye-Barg d-MSR codes [10, Construction 2]). Let
C ⊂ Fq be an [n, n− r; `] array code over Fq , where q ≥ bn
and b = d + 1 − n + r. Let {βi,j}i∈[n],j∈[b] be a set of bn
distinct elements of Fq . Then each codeword is an array with
` = bn rows and n columns, where the i-th row fulfills the
parity check equations

H(a) =

 1 1 ... 1
β1,a1

β2,a2
... βn,an...

...
...

βr−1
1,a1

βr−1
2,a2

... βr−1
n,an

 ,

for a ∈ [0, `− 1] and a =
∑n
i=1 aib

i−1.

Remark 3. The constructions presented in Section III and IV
can also be applied to obtain locally (h, d)-MSR PMDS codes,
where each local code is an (h, d)-MSR code as in [10,
Construction 3], which is very similar in structure to [10,629



Construction 2] given in Definition 4. However, as the required
subpacketization is larger for the former, we focus on d-MSR
codes in this work.

Remark 4. In Definition 4 we define each row of the array
code by a set of parity check equations independent of the
other ` − 1 rows of the array. Note that this is not possible
for array codes in general. However, for the existence of such
a description it is sufficient that the matrices Ai, as defined
in [10], are diagonal matrices. This simplifies the notation for
the cases considered in this work, as this notation makes it
obvious that each row is an [n, n − r] RS code, and thereby
MDS.

III. REGENERATING PMDS AND SECTOR-DISK CODES
WITH TWO GLOBAL PARITIES

We construct array codes from the PMDS and SD codes of
[14] using the ideas of [10] to obtain locally d-MSR PMDS
codes.

A. Generalization of known PMDS construction
To apply the ideas of [10] when constructing locally d-MSR

PMDS and SD codes we need the local codes to be RS codes
with specific code locators. The construction of PMDS codes
given in [14] has the property that the local codes are RS codes,
but the code locators are fixed to be the first n powers of some
element β of sufficient order. We generalize this construction
to allow for different choices of code locators for the local
codes.

Let β ∈ F2w be an element of order O(β) ≥ µN . The
[µn, µ(n−r)−2] code C(µ, n, r, 2,L, N) is given by the (rµ+
2)× µn parity-check matrix

H =


H0 0 ... 0
0 H0 ... 0

...
...

. . . ···
0 0 ... H0

H1 H2 ... Hµ


where

H0 =


1 1 ... 1
βi1 βi2 ... βin

β2i1 β2i2 ... β2in

...
...

. . .
...

β(r−1)i1 β(r−1)i2 ... β(r−1)in


for L = {i1, i2, ..., in} and, for 0 ≤ j ≤ µ− 1,

Hj+1 =
[

βri1 βri2 ... βrn

β−jN−i1 β−jN−i2 ... β−jN−in

]
.

Note that this generalization includes both [14, Construc-
tion A] and [14, Construction B] as special cases

CA(µ, n, r, 2, {0, 1, ..., n− 1}, n)

and
CB(µ, n, r, 2, {0, 1, ..., n− 1}, NB)

for NB = (r + 1)(n− 1− r) + 1, respectively.
We now derive a general, sufficient condition on N , based

on the set L, such that the code is a PMDS code.

Lemma 1. Let L be any set of non-negative integers with
|L| = n, then the code C(µ, n, r, 2,L, N) is a PMDS code for
any N ≥ (r + 1)(maxi∈L i− r) + 1

Proof. We follow the proof of [14, Theorem 5]. Assume r
positions in each local group (row of the PMDS code) have
been erased and in addition there are 2 random erasures. If the
two erasures occur in the same local group z, all local groups
except for this one will be corrected by the local codes. Since
all points in L are distinct, by the same argument as in [14], the
matrix corresponding to the erased positions is a Vandermonde
matrix and the erasures can be corrected.

Now consider the case of two local groups (horizontal codes)
with r+ 1 erasures each, where the erased positions are given
by {j1, ..., jr+1} ⊂ L and {j′1, ..., j′r+1} ⊂ L, respectively. By
the same arguments as in [14, Theorem 7] we obtain, that such
an erasure pattern is correctable if

Nz +

r+1∑
u=1

j′u −
r+1∑
u=1

j′u 6= 0 mod O(β) .

Since all ju are distinct, we have

r(r + 1)

2
=

r∑
u=0

u ≤
r+1∑
u=1

ju

and
r+1∑
u=1

ju ≤
r∑

u=0

(max
j∈L

j − r) + u

= (r + 1)(max
j∈L

j − r) +

r∑
u=0

u = N − 1 +
r(r + 1)

2
.

The remaining steps are exactly the same as in [14, Theorem 7]
and we obtain

1 ≤ Nz +

r+1∑
u=1

j′u −
r+1∑
u=1

ju ≤ Nµ− 1 < O(β)

and the lemma statement follows.

By similar arguments we also give a general, sufficient
condition on N for the code to be an SD code.

Lemma 2. Let L be any set of non-negative integers with
|L| = n, then the code C(µ, n, r, 2,L, N) is an SD code for
any N ≥ maxj∈L j + 1

Proof. The case of r + 2 erasures in the same local group
(horizontal code) is the same as in Lemma 1 and [14, The-
orem 5/7]. Now consider the case of r column erasures in
positions j1, ..., jr ∈ L and two random erasures in distinct
rows z and z′ in positions j, j′ ∈ L \ {j1, ..., jr}. We assume
without loss of generality that z < z′. By the same argument as
in [14] we need to show that β−j+β−N(z−z′)−j′ is invertible.
With 1 ≤ z, z′ ≤ µ and 0 ≤ j, j′ ≤ N − 1 we get

N(z′ − z) + j′ − j ≥ N + j′ − j ≥ N − (N − 1) > 0

and

N(z′ − z) + j′ − j ≤ N(µ− 1) +N − 1 = Nµ− 1 < O(β) .

Combining these we get 1 ≤ N(z′− z) + j′− j ≤ Nµ−1, so

N(z′ − z) + j′ − j 6= 0 mod O(β)

and it follows that β−j ⊕ β−N(z−z′)−j′ is invertible.

With these generalizations of [14, Construction A/B] we are
now ready to construct PMDS and SD codes, where each local
code is a d-MSR code.

Construction 1 (Locally d-MSR PMDS/SD array codes). Let
s = 2 and q, µ, n, r, d,N ∈ Z>0 be positive integers with
• r ≤ n
• q a power of 2
• q ≥ max{µN, bn}, where b = d+ 1− (n− r)
• ` = bn

For an element β ∈ Fq with O(β) ≥ max{µN, nb} denote
βi,j = βi−1+(j−1)n, 1 ≤ i ≤ n, 1 ≤ j ≤ b.

We define the following [µn, µ(n− r)− 2; `]qM array code
C(µ, n, r, 2, N, d; `)q asC =

 c(0)

c(1)

...
c(`−1)

 ∈ F`×µnq : H(a)c(a) = 0∀ a = 0, . . . , `− 1

 ,

630



The matrix H(a) is defined as

H(a) =


H

(a)
0 0 ... 0

0 H
(a)
0 ... 0

...
...

. . . ···
0 0 ... H

(a)
0

H
(a)
1 H

(a)
2 ... H(a)

µ

 ∈ Frµ+2×µn
q ,

where

H
(a)
0 =

 1 1 ... 1
β1,a1

β2,a2
... βn,an...

...
...

βr−1
1,a1

βr−1
2,a2

... βr−1
n,an

 ∈ Fr×nq , (2)

with a ∈ [0, `− 1] and a =
∑n
i=1 aib

i−1. For 0 ≤ j ≤ µ− 1
let

H
(a)
j+1 =

[
βr1,a1

βr2,a2
... βrn,an

β−jNβ−1
1,a1

β−jNβ−1
2,a2

... β−jNβ−1
n,an

]
∈ F2×n

q .

It remains to show that the local codes are MSR codes and
the conditions under which the code is a PMDS or SD code.

Theorem 1. Let µ, n, r, d be fixed and q ≥ max{µN, bn} with

N = (r + 1)(rn− 1− r) + 1 .

Then the code C(µ, n, r, 2, N, d; `)q as in Construction 1 is a
locally d-MSR PMDS(µn, µ, n, r, 2; bn) code over Fq , as in
Definition 3.

Proof. First, note that the βi,j in Construction 1 are the
(distinct) elements β0, β1, ..., βrn−1. Now consider the j-th
local group. The a-th row fulfills the parity check equations
given in (2) and since all elements βi,j are distinct, it is
immediate that the local group is an [n, n − r; bn] Ye-Barg
code as in Definition 4.

For the PMDS property, observe that the a-th row, i.e.,
the row fulfilling the parity-check equations H(a), is a code
C(µ, n, r, 2,L(a), N) as in Section III-A, where L(a) = {i −
1 + (ai − 1)n | i ∈ [n]} by definition of the βi,j . For any a it
holds that

max
i∈L(a)

i ≤ max
i∈L(a)

a∈[0,`−1]

i = rn− 1 .

By Lemma 1 a code as in Section III-A is PMDS if N ≥
(r+1)(maxi∈L i−r)+1 and the lemma statement follows.

Theorem 2. Let µ, n, r, d be fixed and q ≥ max{rnµ, bn}.
Then the code C(µ, n, r, 2, rn, d; `)q as in Construction 1 is a
locally d-MSR SD(µn, µ, n, r, s; bn) code over Fq .

Proof. The proof follows immediately from the proof of The-
orem 1 and Lemma 2.

IV. PMDS CODES WITH LOCAL REGENERATION AND ANY
NUMBER OF GLOBAL PARITIES

We now consider the more general problem of constructing
locally d-MSR PMDS and SD codes for any number of local
and global parities, based on the construction of PMDS and
SD codes in [15] and the construction of d-MSR codes in [10].

A. Recapitulation and Generalization of the PMDS Construc-
tion in [15, Section III]

We first rephrase the construction of the PMDS codes of
[15, Section III] in our notation and slightly generalize it.

Let q be a prime power and M be a positive integer.
Furthermore, let H0 ∈ Fr×nq be a parity-check matrix of an
[n, n − r]q MDS code and αi,j be elements of the extension
field FqM for i = 1, . . . , µ and j = 1, . . . , n. We write
Γ := (α1,1, α1,2, ..., αµ,n). The [µn, µ(n − r) − s] code

C(µ, n, r, s,H0,Γ) is given by the (rµ+ s)×µn parity-check
matrix

H =


H0 0 ... 0
0 H0 ... 0

...
...

. . . ···
0 0 ... H0

H1 H2 ... Hµ


where for 1 ≤ j ≤ µ,

Hj =


αj,1 αj,2 ... αj,n
αqj,1 αqj,2 ... αqj,n

...
...

. . .
...

αq
s−1

j,1 αq
s−1

j,2 ... αq
s−1

j,n

 .

Whether this code is PMDS/SD depends on the choice of Γ.
In [15] the authors present multiple methods of finding such a
sequence and in this work we will focus on their main result
given in [15, Section IV-A].

The original construction in [15] used for H0 a parity-check
matrix of a specific Reed–Solomon code. It can be seen from
the proof of [15, Lemma 2] that this restriction is not necessary
in general and that an arbitrary MDS parity-check matrix gives
a PMDS code as well. This slight generalization is necessary
for the construction in the next subsection.

B. New Construction of d-MSR PMDS Array Codes
In the following, we construct PMDS array codes, in which

each row constitutes a, possibly different, PMDS code as in
[15] (cf. Subsection IV-A) and the local array codes are Ye–
Barg codes [10].

Construction 2. Let q,M, µ, n, r, s, d be positive integers
where
• r ≤ n
• s ≤ (n− r)µ
• q a prime power
• q ≥ bn, where b = d+ 1− (n− r)
• ` = bn .

Let Fq be a finite field and let αi,j ∈ FqM for i = 1, . . . , µ
and j = 1, . . . , n, and write Γ := (α1,1, α1,2, . . . , αµ,n).
Furthermore, let βi,j for i = 1, . . . , n and j = 1, . . . , b be
distinct elements of Fq and write B := (β1,1, β1,2, . . . , βn,b).

We define the following [µn, µ(n− r)− s; `]qM array code
C(µ, n, r, s, d,B,Γ; `)qM asC =

 c(0)

c(1)

...
c(`−1)

 ∈ F`×µn
qM

: H(a)c(a) = 0∀ a = 0, . . . , `− 1

 ,

where the matrix H(a) is defined as

H(a) :=


H

(a)
0 0 ... 0

0 H
(a)
0 ... 0

...
...

. . . ···
0 0 ... H

(a)
0

H1 H2 ... Hµ

 ∈ Frµ+s×µn
qM

,

and for each a ∈ [0, `− 1] with a =
∑n
i=1 aib

i−1, we have

H
(a)
0 =

 1 1 ... 1
β1,a1

β2,a2
... βn,an...

...
...

βr−1
1,a1

βr−1
2,a2

... βr−1
n,an

 ∈ Fr×nq , (3)

Further, for 1 ≤ j ≤ µ, define

Hj :=


αj,1 αj,2 ... αj,n
αqj,1 αqj,2 ... αqj,n

...
...

. . .
...

αq
s−1

j,1 αq
s−1

j,2 ... αq
s−1

j,n

 ∈ Fs×n
qM

.

By the choice of the βi,j , the local codes of the codes given
by Construction 2 are Ye–Barg codes. As in [15], we need to
choose the vector Γ in a suitable way to obtain PMDS array
codes.631



Lemma 3. Let α1,1, . . . , αµ,n be chosen such that any subset
of (r + 1)s elements of the αi,j is linearly independent over
Fq . Then, C(µ, n, r, s, d,B,Γ; `)qM from Construction 2 is a
d-MSR PMDS array code.

Proof. The proof combines the ideas of [15, Lemma 2], [15,
Corollary 5], and [15, Lemma 7]. Let

C =


c
(0)
1 c

(0)
2 ... c(0)

µ

c
(1)
1 c

(1)
2 ... c(1)

µ

...
...

. . .
...

c
(`−1)
1 c

(`−1)
2 ... c(`−1)

µ

 ∈ F`×µn
qM

be a codeword of C(µ, n, r, s,L, δ,Γ) (here, we group the rows
of the codeword in blocks of length n, i.e., c(a)

i ∈ FnqM ). By
definition, for all i = 1, . . . , µ and a = 0, . . . , `− 1, we have

H(a)c
(a)
i

>
= 0, (4)

where H(a) is the parity-check matrix of an [n, n − r] MDS
code. Furthermore, with αi := [αi,1, αi,2, . . . , αi,n], we have

µ∑
i=1

αq
j

i c
(a)
i

>
= 0, (5)

for all j = 0, . . . , s− 1 and a = 0, . . . , `− 1.
Let S := [s1, . . . , sµ] be of the form

si = [si,1, . . . , si,r] ∈ [n]r, si,1 < si,2 < · · · < si,r.

Denote by s̄i the vector in [n]n−r that contains, again in
increasing order, the entries of [n] that are not contained in
si. The positions si correspond to the puncturing patterns Ei
in the definition of PMDS array codes (cf. Definition 1). We
need to show that for each such vector S, the array code
punctured at these positions in each local group, gives an
[n− rµ, n− rµ− s; `] MDS array code.

For a vector x of length n, let xsi and xs̄i be the vectors
of length r and n − r containing the entries of x indexed by
the entries of si and s̄i, respectively. Furthermore, for a vector
y = [y1, . . . ,yµ] of length nµ, let yS denote the puncturing
of y at all entries of S, i.e.,

yS =
[
(y1)s̄1 , . . . , (yµ)s̄µ

]
.

Let H be a parity-check matrix of an MDS code of length n
and dimension n− r. Then, the columns of H indexed by si,
denoted by Hsi , are invertible and we have for any codeword
x of the code

0 = Hx> = Hsix
>
si + Hs̄ix

>
s̄i ⇒ x>si = H−1

si Hs̄ix
>
s̄i

Hence, it directly follows from (4) that

(ci)
(a)
si

>
= H(a)

si

−1
H

(a)
s̄i (ci)

>
s̄i ,

and by (5) that (note that H(a) has entries in Fq , so H(a) =

H(a)q
j

for any j)

0 =

µ∑
i=1

αq
j

i c
(a)
i

>
=

µ∑
i=1

(αi)
qj

si (ci)
(a)
si

>
+ (αi)

qj

s̄i (ci)
(a)
s̄i

>

=

µ∑
i=1

[
(αi)siH

(a)
si

−1
H

(a)
s̄i + (αi)s̄i︸ ︷︷ ︸

=:γ
(a)
si

]qj
(ci)

(a)
s̄i

>
.

Thus, the vector cS =
[
(c1)

(a)
s̄1 , (c2)

(a)
s̄2 , . . . , (cµ)

(a)
s̄µ

]
, which is

the a-th row of a codeword punctured at the positions in S, is
contained in a code with parity-check matrix

H(a)
γ :=


γ

(a)
S

q0

γ
(a)
S

q1

...
γ

(a)
S

qs−1

 ,

where

γ
(a)
S :=

[
γ(a)
s1 ,γ

(a)
s2 , . . . ,γ

(a)
sµ

]
∈ Fµ(n−r)

qM
.

By definition, we have

γ(a)
si = (αi)siH

(a)
si

−1
H

(a)
s̄i + (αi)s̄i .

Since H
(a)
si

−1
H

(a)
s̄i is an r × (n − r) matrix, each entry of

γ
(a)
si , and thus each entry of γ

(a)
S , is linear combination of

at most r + 1 of the αi,j . Furthermore, each such linear
combination contains, non-trivially, one element from αi,j
(namely the corresponding entry in (αi)s̄i ) that appears only
in this linear combination. Any set of s entries from γ

(a)
S

depend on at most s(r + 1) of the αi,j , which are linearly
independent by the independence assumption. Hence, the s

entries from γ
(a)
S are also linearly independent over Fq . This

means that any s columns of the parity-check matrix H
(a)
γ are

linearly independent and H
(a)
γ is a parity-check matrix of an

[nµ− rµ, nµ− rµ− s]qM MDS code. Thus, the overall code
is a PMDS array code.

It remains to show that the local codes are d-MSR codes.
The proof is equivalent to the proof of the locally d-MSR prop-
erty of Theorem 1. First, note that the βi,j in Construction 2
are the (distinct) elements β0, β1, ..., βrn−1. Now consider the
j-th local array code. The a-th row fulfills the parity check
equations given in (3) and since all elements βi,j are distinct,
it is immediate that the local group is an [n, n−r; bn] Ye-Barg
d-MSR code as in Definition 4.

Similar to Construction 1 in the previous section, we give
the following upper bound on the minimal field size for which
d-MSR PMDS codes of the form as in Construction 2 exist.

Theorem 3. Let µ, n, r, s be fixed. There is a d-MSR PMDS
array code as in Construction 2 of field size

qM ≤ 2n(d+ 1− (n− r))(2nµ)s(r+1)−1

and subpacketization

` =
[
d+ 1− (n− r)

]n
.

Proof. We choose q and M large enough such that we can
ensure that suitable sequences αi,j and βi,j exist. A sufficient
condition for the existence of the βi,j is q ≥ n(d+1−(n−r)).
Thus, we can choose q to be the smallest prime power greater
or equal to n(d+ 1− (n− r)), which is at most q ≤ 2n(d+
1− (n− r)) by Bertrand’s postulate.

For the αi,j , it is a bit more involved. By Lemma 3, it
suffices to find nµ elements from FqM of which any subset
of s(r+ 1) elements is linearly independent. We use the same
idea as in [15, Lemma 7]: take the columns of a parity-check
matrix of a C[nµ, nµ−M, s(r+1)+1]q code and interpret each
column FMq as an element of FqM . The independence condition
is then fulfilled due to the choice of minimum distance.

The remaining question is for which M and q a code with
parameters [nµ, nµ−M, s(r+1)+1]q exists. We use the result
in [19, Problem 8.9], which we can reformulate in our terms
as: For any n′ = qa − 1, there exists a code with parameters
[n′, n′ −M, s(r + 1) + 1]q , where

M ≤ 1 +
[
s(r + 1)− 1

]
a.

Choose a to be the smallest integer with n′ = qa − 1 ≥ nµ.
Note that there is such an a with qa − 1 ≤ 2nµ − 1, i.e.,
a ≤ logq(2nµ). Hence, there is an [n′, n′ −M, s(r+ 1) + 1]q
code with M ≤ 1 +

[
s(r + 1) − 1

]
logq(2nµ). Shortening

the codes gives an [nµ, nµ − M, s(r + 1) + 1]q code with
M ≤ 1 +

[
s(r + 1)− 1

]
logq(2nµ).632
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