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Abstract—Three new constraints are introduced in this paper.
These constraints are characterized by limitations on the Ham-
ming weight of every subword of some fixed even length /. In
the (¢, 0)-locally-balanced constraint, the Hamming weight of ev-
ery length-¢ subword is bounded between ¢/2 — ¢ and ¢/2 + 6.
The strong-(¢, §)-locally-balanced constraint imposes the locally-
balanced constraint for any subword whose length is at least /.
Lastly, the Hamming weight of every length-¢ subword which sat-
isfies the (¢, §)-locally-bounded constraint is at most £/2 — . It is
shown that the capacity of the strong-(¢, §)-locally-balanced con-
straint does not depend on the value of ¢ and is identical to the
capacity of the (26 + 1)-RDS constraint. The latter constraint lim-
its the difference between the number of zeros and ones in every
prefix of the word to be at most 26 + 1. This value is also a lower
bound on the capacity of the (¢, J)-locally-balanced constraint,
while a corresponding upper bound is given as well. Lastly, it is
shown that if § is not large enough, namely for § < /¢ /2, then
the capacity of the (¢, §)-locally-bounded constraint approaches
1 as ¢ increases.

I. INTRODUCTION

This paper initiates the study of a few constraints which
impose limitations on binary words in the form of the Ham-
ming weight of their subwords. For an even positive integer ¢
and a nonnegative integer d, a binary word @ is said to satisfy
the (¢, 9)-locally-balanced constraint if the Hamming weight
of each of its length-¢ subwords is between £/2—¢ and £/2+4.
Furthermore, x satisfies the strong-(¢, 6)-locally-balanced con-
straint if the Hamming weight of each of its length-¢ sub-
words is between ¢/ /2 — § and ¢’ /2 + 6, for all even ¢/ > £. In
the third constraint, « satisfies the (¢, §)-locally-bounded con-
straint if the Hamming weight of every length-¢ subword is at
most £/2 — §, while § can be both negative and positive. The
main goal of this paper is studying the capacity values of these
three constraints for several values of the parameters of ¢ and
0. First notice that if § = 0 then the capacity of the locally-
balanced and strong-locally-balanced constraints is 0. Thus, in
order to allow non-zero capacity values, strict balanced con-
straints cannot be achieved and one has to allow every subword
to be almost balanced.

For every fixed values of ¢ and § the locally-balanced and
locally-bounded constraints can be represented by a graph of
a constrained system and thus the capacity in these two cases
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can be solved by calculating the largest eigenvalue of the adja-
cency matrix of the graph. For example, for = 4 and § = 1, in
the locally-balanced constraint the forbidden patterns are 0000
and 1111, while for the locally-bounded constraint the only
permitted length-4 subwords are 0000, 1000, 0100, 0010, 0001.
See Table I for the capacity values of the locally-balanced con-
straint when 4 < ¢ < 14 and 6 = 1, 2. However, the strong-
locally-balanced constraint cannot be solved by this method
and furthermore we will be mostly interested in studying the
capacity values of these constraints when ¢ increases. Hence,
representing the constraints by a graph is no longer a feasible
solution.

In studying these constraints we will draw a close con-
nection between the capacity of the first two constraints and
the one of the well-studied running digital sum (RDS) con-
straint. The RDS of a binary word @ = (z1,22,...,2,) is
given by the word s = (so,$1,...,5,), where so = 0 and
8; = Z;Zl(—l)l_“’i. Given some § > 0, a word is said to
satisfy the J-RDS constraint if the difference between the
values of maxog;<n{s;} and mingc; <, {s;} is at most 4.

In this work, we completely solve the capacity of the strong-
locally-balanced constraint for all ¢ and §. It is shown that for
a given value of ¢, the capacity does not depend on the value
¢ and equals the capacity of the (26 + 1)-RDS constraint. This
result clearly provides also a lower bound on the capacity of
the locally-balanced constraint. On the other hand, it is shown

log(2+2°"75 %) RDS : :
that ==~~5——, when C (26) is the capacity of the
26-RDS constraint, is an upper bound on the capacity of the
(¢, 0)-locally-balanced constraint for ¢ large enough. In the lo-
cally bounded constraint, it is shown that for § < N/ /2, the
capacity of the (¢, §)-locally-bounded constraint approaches 1
when ¢ increases.

One of the prominent motivations to study these constraints
originates from DNA storage, an area which attracted signif-
icant interest lately due to the extreme density and durability
of DNA [13]. The DNA storage channel can be divided into
three main phases: synthesis, storage, and sequencing. In the
synthesis phase, data is converted into a set of DNA strands,
which are sequences over the nucleotide alphabet A, T,C,G.
In the storage phase, the strands are kept in a container with
compartments; notably, the arrangement or order of the strands
in the set is not preserved. Finally, in the sequencing phase,
the strands are collected, and the original data is (hopefully)
recovered.
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ticular breaks, can arise in DNA due to factors that include
radiation, humidity, and high temperatures. In [7], the authors
proposed to encapsulate the stored DNA in a silica substrate
and then to employ custom error-correcting codes to mitigate
the effects of these errors. Another approach to dealing with
media degradation is to generate strands of DNA that have
approximately balanced GC-content!, and this approach has
been leveraged in several existing works such as [5], [17], [18].
However, in some cases it may be desirable to have more strin-
gent GC-balancing requirements in order to prolong the life-
time of the DNA strands. In fact, naturally occurring DNA
strands have approximately balanced GC-content for short k-
mers, i.e., subwords, of length at most 10, and it has been
postulated that this balancing is necessary to ensure the sta-
bility of the DNA structure over time [2]-[4], [9], [12], [14].
This motivates the need to design DNA strands that are locally
GC-balanced.

We note that designing locally balanced DNA strands is re-
lated to constructing codes with an equal number of zeros and
ones, which is one of the more well-studied problems in coding
theory [8], [10]. The key feature of our problem is that the bal-
ancing constraint is enforced locally. In another context, codes
satisfying the locally-bounded constraints were studied to fa-
cilitate the simultaneous energy and information transfer in low
power devices [6], [15], [16]. These codes were referred to as
sliding window codes and of significance to this work is [16]
where the authors provided lower bounds on the capacity of
the locally-bounded constraint when § = €/.

The rest of the paper is organized as follows. In Sec-
tion II the three constraints studied in the paper are formally
defined together with several preliminary results and ob-
servations. In Section III we calculate the capacity of the
strong-locally-balanced constraint for all ¢ and §. In Sec-
tion IV an upper bound on the capacity of the locally-balanced
constraint is presented. Section V presents our results on the
locally-bounded constraint. Lastly, Section VI concludes the
paper and lists several open problems.

II. DEFINITIONS AND PRELIMINARIES

For a positive integer n, the set {1,2,...,n} is denoted by
[n]. For a word @, its subword starting at the i-th index of
length ¢ is denoted by x[é;¢]. The length of the word x is
denoted by |x|. The Hamming distance between two words
@ and y of the same length is denoted by d(x,y) and the
Hamming weight of = is wit(x). Denote ¥ = {0,1}. The
families of constraints which will be studied in this paper are
formally defined in the next definition.

Definition 1.

1) Let ¢ be an even positive integer and ¢ a nonnegative inte-
ger. A word x is said to satisfy the (¢, ¢)-locally-balanced
constraint (or is (¢, §)-locally balanced) if for all 1 < i <
|x| — £+ 1, it holds that

0/2 — 6 < wt(x[i;l]) < L/2+ 6.

I'A strand of DNA is said to have approximately balanced GC-content if, in
every substring of a prescribed length, approximately half the bases are either
guanine or cytosine.

2) Let ¢ be an even positive integer and § a nonnegative inte-
ger. A word x is said to satisfy the strong-(¢, J)-locally-
balanced constraint (or is strong-(¢, §)-locally balanced)
if for all even ¢’ > (¢, the word x satisfies the (¢', §)-locally-
balanced constraint.

3) Let ¢ be a positive integer and § an integer. A word x is
said to satisfy the (¢, d)-locally-bounded constraint (or is
(¢,9)-locally bounded) if for all 1 < i < |x| — ¢+ 1, it
holds that

wt(x(i; 0]) < L£/2 — 0.

The set of all words (of any finite length) that are (¢, §)-locally-
balanced, strong-(¢, ¢)-locally-balanced, (¢, )-locally-bounded
is denoted by SY(¢,6), S*U(¢,6), S*(¢,5), respectively.
The capacity of the (¢,0)-locally-balanced, strong-(¢,¢)-
locally-balanced, (¢,0)-locally-bounded constraint is defined
to be

(Cbl ([7 5) — lim sup 1Og("sbl <£;l6) n Z?') ’

n—oo

1 sbl s
(Csbl(g7 (S) — limsup Og(|8 (67 6) N 2 ‘)7

n— 00 n

(0. 5) = lim sup 2815 (4:0) N 25)

n— 00 n

respectively.

For § = 0, there are exactly ( 652) words which satisfy the
(¢,0)-locally-balanced constraint for any length greater than
¢—1. Hence, for all £, C*(¢,0) = C**'(¢,0) = 0. On the other
hand, if 6 > ¢/2 then every word satisfies the (¢, d)-locally-
balanced constraint and therefore C% (¢, §) = 1. Similarly, for
§ < —£/2, C*(¢,8) = 1. For any fixed /, the locally bal-
anced constraint eliminates all subwords having either low or
high weight. For example, for £ = 4 and 6 = 1, the Hamming
weight of every length-four subword has to be between one and
three, that is, the forbidden subwords are 0000 and 1111. Simi-
larly, for £ = 6, the forbidden subwords are the length-6 words
of Hamming weight 0, 1,5, and 6. Hence, for any fixed val-
ues of ¢ and ¢ this problem can be described as a constrained
system that can be represented by a graph Gy 5. The graph in
this case will be strongly connected, so the constrained system
is irreducible. Therefore, by the Perron-Frobenius theorem, the
capacity is given by log(\), where A is the largest eigenvalue
of the adjacency matrix Ag, ; of the graph Gy [11, Th. 3.4].
According to this analysis, we were able to calculate the ca-
pacity results for 4 < ¢ < 14 and § = 1,2, which are listed
in Table 1. Similar calculations can be carried for the locally-
bounded constraint.

TABLE I: Capacity Results for the Locally-Balanced Con-
straint

[ 4 6 8 10 12 14
0=1 0.879 | 0.841 | 0.824 | 0.815 | 0.811 | 0.807
0=2 1 0.975 | 0958 | 0.947 | 0.939 | 0.933

While calculating the capacity of the locally-balanced and
locally-bounded constraints can be accomplished for any fixed
values of £ and ¢, it will no longer be feasible when / increases
since the number of the states in the graph Gy s grows expo-

665nentially with /. More than that, the strong-locally-balanced



constraint cannot be solved this way since it has to satisfy the
locally-balanced constraint for infinite values of £. In the rest of
the paper we will mostly be interested in studying the capacity
of these constraints when the value of ¢ is large enough.

A simple construction of words satisfying both the locally-
balanced and strong-locally-balanced constraints works as fol-
lows. Let us start with the code B = {01,10} and let C =
B* = |J;2, B'. The asymptotic rate of the code C is 0.5 and
all its codewords are (¢, 1)-locally balanced for all ¢ > 4. The
next theorem summarizes several simple observations on the
capacity values of these constraints, some of which have been
explained above.

Theorem 2.

1) Forall ¢ > 2,CP(¢,0) = 0.

2) If§ > £/2 then C* (¢,6) = 1 and C*¥(¢, —-5) = 1.

3) Forall{ > 4,Cb(¢,1) > C**'(¢,1) > 0.5.

4) If §; < 0o then CP(£,61) < CP(¢,4,), CP(,61) <
C*¥(¢,85), and C*4(£, 65) < C¥(¢,61).

5) For all £,0, and t, C*(t£,t5) > CP(¢,6), C*(tl,t0) >
C*¥(¢,5), and C*(te,15) > Cb(¢,6).

A special family of words which will play an important
role in our construction and analysis is the set of words with
bounded running digital sum (RDS). The RDS of a binary
word @ = (x1,%2,...,x,) is denoted by s = RDS(x) =
(S0,81,---,8n), where s = 0 and for all 1 < i < n, s; is
defined by

i
s; = Z(—l)l_%‘ = 2wt((x1,...

j=1

For a word x, let RDS™®(x) = maxogign{s;} and sim-
ilarly RDS™"(x) = minggi<n{si}. The disbalance of the
word @, denoted by dis(x), is defined by the value dis(x) =
RDS™*(g) — RDS™n(x). For a given positive integer J, a
word « is said to satisfy the §-RDS constraint (or is called a
d-RDS word), if dis(x) < ¢. The set of all finite length words
satisfying the 5-RDS constraint is denoted as S¥P9(§) and the
capacity of this constraint is

1 Ti)) — i

CRPS(§) = lim sup log(|S"P%(d) N 3) .

n—00 n

The value of CFP5(§) is related to the well-known problem
of counting the number of Dyck paths of bounded height (for
a complete survey of related problems, see Chapter 10 of [1]).
It has been proved that for § > 0, CP9(§) = log(2 cos 513)-
For example, C*P%(2) = 0.5 and C*P%(3) = log(y), where
¢ = (14 +/5)/2 is the golden ratio and thus C#P5(3) =
log((1++/5)/2) ~ 0.694. In the next section it will be studied
how §-RDS words can be used to generate locally-balanced
and strong-locally-balanced words.

III. THE STRONG-LOCALLY-BALANCED CONSTRAINT

In this section, we completely solve the capacity of the
strong-locally-balanced constraint for all values of ¢ and 4.
More specifically, it is established that every (20 + 1)-RDS
word is (¢, d)-locally balanced for all § > 0 and ¢ > 4. Thi

%66

already provides a lower bound for the locally-balanced and
the strong-locally-balanced constraints. However, it was sur-
prising to observe that even though the opposite direction
does not hold, we established that this lower bound is indeed
asymptotically tight for the strong-locally-balanced constraint.

In the following theorem, it is proved that the capacity of
the RDS constraint serves as a lower bound on the capacity of
both the locally-balanced and the strong-locally-balanced con-
straints.

Theorem 3. Forall § > 0,¢ > 4,
SEPS(26 + 1) € S (¢, 6) € SY(¢,9),
and thus
Ch(0,6) > C* (L, 6) = CRPS (25 +1).
In particular, C*'(¢,1) > C**(¢£,1) > CFP5(3) ~ 0.694.

Proof: By definition we have S*%/(¢,) C S®(¢,6). Let
x € STP9(2§ 4+ 1) and assume in the contrary that it does not
satisfy the (¢, §)-locally-balanced constraint for some even inte-
ger ¢ > 4. Then it has a subword x[i; £] of weight wt(x[i; £]) <
/2 — 6 —1 or wt(x[i;£]) > £/2 + 6 + 1. Then in its corre-
sponding RDS sequence, for

S;i—1 — 2wt((l‘1, PN ,xi_l)) — (7, - 1)

and

Si—14e = 2wt((w1, ..., 2i-140)) — (i — 1+ 4)

it holds that
A=5;_140—5i1

= 2wt((331, ey a)‘l‘,lJr()) — th((acl, ..
= 2wt (x[i; £]) — ¢,

which leads to either A < —2§ — 2 or A > 26 + 2. How-
ever, since x is a (2 + 1)-RDS word it holds that |s;_14¢ —
$i—1| < 20 + 1, which results with a contradiction. Therefore,
SEPS(25 4 1) C S**(¢,6) and the theorem follows. ]

Theorem 3 assures that every (20 + 1)-RDS word is also
a strong-(¢, §)-locally-balanced word. Hence, every code for
the RDS constraint can also be used in the construction of
codes for the strong-locally-balanced and locally-balanced con-
straints. The next theorem shows that, for the strong-(¢,0)-
locally-balanced constraint, the set of (2§ 4+ 1)-RDS words is
indeed asymptotically optimal.

.,.’[71;1)) — g

Theorem 4. For all § > 0,¢ > 4, C*%(¢,5) = CEPS (25 + 1).
In particular, C*%'(£,1) = CFPS5(3) ~ 0.694.

Proof: According to the previous theorem, C*% (¢, §)
CFEP3(26 +1). Thus we only need to show that C** (¢, §)
CEDPS(25 4 1). For convenience we only prove for § = 1. T
proof for a general J is essentially the same.

1) When ¢ = 4, for any x € SSbl(4, 1), in its correspond-
ing s = RDS(x) there are never two symbols s; and
s; of difference 4 and hence x satisfies the 3-RDS con-
straint. That is, S*%!(4,1) C SEP9(3) and C**'(4,1) =
CRDS (3)

g AWV



2) When ¢ = 6, compared to the previous case, now we
may have consecutive 0000 or 1111 inside a word = €
S*%(6,1). The key is that the number of occurrences of
0000 and 1111 is at most once each. Suppose otherwise,
say a word & € S*Y/(6,1) is of the form

(- ,0000, 2441,

y Ltk 00007 Lttk+5;, " )

Note that since every subword of length 6 is locally bal-

anced then we must have z;11 = Zy49 = Tyyp—1 =
T4, = 1. If & < 5, then the only possible choices of
(Teg1, , Teqr) are (11),(111),(1111),(11011), (11111),

where each choice will lead to a subword violat-
ing the strong-(6,1)-locally-balanced constraint; if
k > 6 is even, then the weight of the subword
(Te41, -+, Terk) 1S at most g + 1 and thus the sub-
word (0000, 2441, - ,Z¢1k,0000) has weight at most
Er1< i
straint of length k + 8; if £ > 6 is odd, then the weight
of the subword (2441, -+ ,Z¢4k) is at most k L +92and
thus the subword (0000, Ti41y " s Ltk 0000 .’17t+k+5)
has weight at most £5% + 2+ 1 < &89 — 1, thus violat-
ing the locally-balanced constraint of length k& + 9. To
sum up, there is at most one subword 0000 inside a word
x € S°°(6,1). Similarly there is at most one subword
1111.

Thus the number of strong-(6, 1)-locally-balanced words
can be upper bounded as follows: 1) we first select the
positions of the unique 0000 and 1111, for which the
number of choices is at most n?; 2) then the word is of
the form (x1,0000,x, 1111, x3), where x1,xo, T3 are
strong-(4, 1)-locally-balanced words of lengths 11, ns, n3
(since initially they are strong-(6, 1)-locally-balanced and
furthermore there is no subword 0000 or 1111 inside
them). If any n; if finite, then the number of choices for
x; is only a constant. If n; goes to infinity (no matter
how slow compared to the growth of n), then asymptot-
ically the number of choices for ; is 296947 To sum
up, the number of strong-(6, 1)-locally-balanced words is
upper bounded by C - n? - 20-6%94" where (' is a constant,
and thus C*%(6,1) = CEPS(3).

3) Due to lack of space we only briefly describe the idea of
the case with arbitrary ¢, which is essentially similar as
the previous case. Inside a word = € S**/(¢,1) we may
have subwords of length ¢ € {4,6,...,¢—2} with weight
less than & 5 — 1 and we call these subwords as negative
subwords. We may also have some subwords of length

"€ {4,6,...,0 — 2} with weight more than % + 1 and
we call these subwords as positive subwords. The key is
again the limitations on these negative and positive sub-
words, in the sense that two negative subwords (or two
positive subwords) can only have less than ¢ coordinates
between them. Thus again most part of the word should
behave as strong-(4, 1)-locally-balanced words of some
certain length and the asymptotic result follows.

IV. THE LOCALLY-BALANCED CONSTRAINT

This section presents an upper bound on the capacity of
the locally-balanced constraint that holds for all values of /.
Let us consider the set of all length-(2¢) (¢, 1)-locally-balanced
words, which will be denoted by Asp. That is,

Agp = S0, 1) N 22,

First, the following lemma is shown.

Lemma 5. Forall ¢ > 4

|A2@‘ < 3. (2510g(2+\/§) + 23£;1> ~ 21.776.

Proof: We will consider every word a in Agy both
as a length-2/ word as well as a 2 x ¢ array of the
form a = (ai,a2), where ai,as denotes the first, sec-
ond row of the array, respectively. Clearly, it holds that
/2 — 1 < wit(ar),wt(az) < ¢/2 + 1. Furthermore, for

1 <7< /¢+1, we have that
; i—1 ,
5 — 1< wilafi; f) = wtlar) + Y (a2, —a1y) < 5 +1,

j=1

where the subtraction ay ; — ay,; is over the integers. Let d
be the difference word between the words as and aj, over
the integers, that is, d = ay — a; € {—1,0,1}%. If we extend
the definition of the RDS constraint also for non-binary words,
we get that the word d satisfies the 2-RDS constraint. Further-
more, if d; € {—1,1} then the value of a;;,az; is uniquely
determined, while for d; = 0, these two bits have two options.
Assume that the number of 2-RDS words with 0 < 7 < ¢ ze-
ros is n;, then we conclude that the size of the set Aoy is at

most
Y4
Z 2" . ;.
i=0

Hence, we are only left with finding the value of n;.

Assume that the word d has i zeros and let I C [¢] be the
set of the zero positions in d. Let d’ be the projection of d
on the set I¢ = [¢]\ I, so d' = d;c. Now, we can consider
d’ as a length-(¢ — i) binary word that satisfies the 2- RDS

constraint. The number of such words is at most 3 - 2[ 7
ie., n; <3() 2[ “1. Next, since

2. p; < 2l3<£> Lol = 3(6) 95+(3],
i i

we get that

¢
¢ :
Aoy <3 95+131 = 3. 9% ol]
Agy| () g 30 (1) 2

i= =0
3. 24( 14+ v2)f +20709)
3. (2§ Clog(1+v2) | o5t 1)
=3-(

34—1

2[10g(2+\/7 _|_ 27)

|
According to Lemma 5, the following corollary derives an

B Apper bound on the capacity of the locally-balanced constraint.



Corollary 6. For all ¢ > 4 it holds thst

(2v2-2)*
log(2 + V2) j"g(“ 73

5 57 ) ~ (0.885.

c(£,1) <

This last result can also be extended for other values of 6,
as proved in the next theorem.

Theorem 7. For any fixed § > 1 it holds that

loe (2 QCRDS(Q(;)
lim sup CH (¢, 8) < 282 )
£—00 2
10g(2 + 210g(2 cos Tﬁrz))
B 2

<1

Proof: Following the proof of Lemma 5, we first define
Asps = SU(¢,5) NX3 and repeat the same steps in the proof.
Now we conclude that the word d satisfies the 20-RDS con-
straint and the size of the set Ay s is at most

o3 (e

for some constant C'. Finally, it is concluded that

log(|A2e,s|)  log(C(2+ 2CRDS(2§))Z)
b < D _
ch(e,5) < B2 < B
log(2 4 2C777@9) g C

- 2 o

which verifies the statement in the theorem. ]

It is concluded from Theorem 7 that for any fixed & the
capacity of C%(¢,§) cannot approach 1 even when / is large
enough. On the hand, in case ¢ is not fixed and can grow with
¢ then this capacity value indeed approaches 1. This property
is proved in the next theorem.

=02+ 2@’“”(25))@’

Theorem 8. Iflimy_,, §(¢) = oo then

limsup CY(¢,6(£)) = 1

£— 00

Proof: For simplicity of the proof, we assume that ¢ is a
multiple of 2§(¢). In this case, we let

= {x e 239 | wi(z) = 5(0)}

and C;, = Bj. The Hamming weight w of every length-¢ word
in C, satisfies

and therefore w € [(/2 — §({),£/2 + §(¢)], that is, the word x
s (¢,6(0))-locally balanced. Lastly, the asymptotic rate of the
code Cy is

1) 5(0) +26(0),

log (255(%))

25(¢)
which approaches 1 for any §(¢) such that lim,_, o, 6(¢) = oo.

V. THE LOCALLY-BOUNDED CONSTRAINT

In this section we study the locally-bounded constraint. Our
main result is proved in the following theorem. Note that a
similar technique has been applied in [16] when studying this
constraint by using subwords of fixed weight. Despite these
similarities, this construction is presented here for the com-
pleteness of the capacity results of this constraint.

Theorem 9. Forall § < /¢ /2 (negative or nonnegative) it holds
that

lim C*(¢,6) = 1.

£—r 00

Proof For simplicity of the proof, let us assume that /¢
is an integer. For all £ and n, which is a multiple of Ve, we
construct the following code

X o1,1<i< —
2 Vi

We will show that every codeword ¢ € C,, is (¢, d)-locally
bounded. For all ¢ € [n — £ + 1], the subword ¢[i; £] contains
at least v/ — 1 complete blocks from c. Thus, it holds that

wt(eli; ) < (VI-1) (?—1>+\f_£—*[+1 5370

On the other hand, for ¢ large enough, the cardinality of the
code (), is at least

C’n:{c:(cl,..., %)|wt(cl)<\/z < ”}

(2V42)e

and thus it holds that

Vi-2\7;
i 108G gV o
n—o00 n n—o00 n \/Z
Hence, we conclude that lim,_,, C*¥(¢,§) = 1. [ |

VI. CONCLUSION

The study of constraints with local limitations on the Ham-
ming weight of subwords has been initiated in this paper. We
showed how to fully solve the strong-locally-balanced con-
straint. For the locally-balanced constraint we showed upper
and lower bounds on the capacity which hold for all values of
£. Lastly, it was shown that the capacity of the locally-bounded
constraint approaches 1 when £ increases and § < ///2. While
the results in the paper already established many of the capac-
ity values of these constraints, there are still several interest-
ing problems which are left open. In particular, an interesting
observation from the capacity values listed in Table I, indi-
cates that for fixed & the capacity C* (¢, §) decreases when /
increases. Under this assumption we can deduce that the ca-
pacity sequence C;(¢,d) converges to some value, which will
be denoted by C(§), that is,

C"(8) = lim C"(¢,0).
{— 00
Proving that indeed C%(¢,6) decreases with ¢ and studying
this capacity limit are among the problems we aim to continue

l668901ving as part of our future research.
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