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Abstract—This paper studies a model, which was first presented
by Bunte and Lapidoth, that mimics the programming operation
of memory cells. Under this paradigm it is assumed that the cells
are programmed sequentially and individually. The programming
process is modeled as transmission over a channel, while it
is possible to read the cell state in order to determine its
programming success, and in case of programming failure, to
reprogram the cell again. Reprogramming a cell can reduce the
bit error rate, however this comes with the price of increasing the
overall programming time and thereby affecting the writing speed
of the memory. An iterative programming scheme is an algorithm
which specifies the number of attempts to program each cell.
Given the programming channel and constraints on the average
and maximum number of attempts to program a cell, we study
programming schemes for maximizing the number of bits that can
be reliably stored in the memory. We extend the results by Bunte
and Lapidoth and study this problem when the programming
channel is either the BSC, the BEC, or the Z channel, where
we focus on a specific broad family of programming schemes.
For the BSC and the BEC our analysis is also extended for the
case where the error probabilities on consecutive writes are not
necessarily the same. Lastly, we also study a related model which
is motivated by the synthesis process of DNA molecules.

I. INTRODUCTION

Many of the current and future memories, such as DRAM,
SRAM, phase-change memories, STT-MRAM, flash memories,
consist of memory cells. The information in these memories
is stored in cells that can store one or multiple bits. The
state of each cell can be changed in several ways depending
on the memory technology. The process of changing the cell
state, called programming, is crucial in the design of these
memories as it determines the memory’s characteristics such
as speed, reliability, endurance, and more. Hence, optimizing
the programming process has become an important feature in
the development of these memories.

Two of the more important goals when programming mem-
ory cells are speed and reliability. In this work we aim to
understand the relation between these two figure of merits.
Namely, we consider a model in which the cells are pro-
grammed sequentially, one after the other [2], [3]. Assume n
binary cells are programmed. The cell programming process
is modeled as transmission over some discrete memoryless
channel (DMC), for example the binary symmetric channel
(BSC), the binary erasure channel (BEC), or the Z channel. It
is assumed that when a cell is programmed we can check the
success of its programming operation and in case of failure
we may choose to program it again. If there is no time
restriction for programming the cells, an optimal solution is
to program each cell until it reaches its correct value. For
example, if the programming operation is modeled as the BSC
with crossover probability p, then the expected number of
programming attempts until success is 1/(1 − p). If p = 0.1,
this increases the programming operation time by roughly 11%.
However, if the system allows to increase the programming
time by only 5%, then a different strategy is required.

Previous works considered programming schemes mostly for
flash memory cells. In [11], an optimal programming algorithm

was presented to maximize the number of bits that can be
stored in a single cell, which achieves the zero-error storage
capacity under a noisy model. In [12], an algorithm was shown
for optimizing the expected cell programming precision, when
the programming noise follows a random distribution. In [22],
algorithms for parallel programming of flash memory cells
were studied which were then extended in [17]. Other works
studied the programming schemes with continuous-alphabet
channels, see [6], [14], [15], [20] and references therein.

Our point of departure in this paper is the programming
model which was first presented in [2], [3] by Bunte and
Lapidoth for discrete alphabet memory channels (DMC). In
particular, in [2] the case of symmetric channels with focus on
the BSC was studied. We extend the results from [2] and study
the problem for the BEC and the Z channel, where the last is
applicable in particular for flash memories. Furthermore, we
also study the case when the error probabilities on consecutive
programming operations are not the same. Even though we
follow the model from [2], we note that we propose a slightly
different formulation to the problem and model, which we
found to be more suitable to the cases we solve in this paper
that are motivated by common programming techniques. The
proposed programming schemes in the paper are rather basic
but at the same time are simple to implement, which increases
their practicality.

Yet another model studied in this work is motivated by
DNA-based storage systems [1], [5], [9]. DNA synthesis is the
process of artificially creating DNA molecules such that arbi-
trary single stranded DNA sequences of length few hundreds
bases can be generated chemically. When synthesizing DNA
strands, the bases are added one after the other to form the
long sequence [13]. Since the bases are added in a sequential
manner it is possible to check the success of each step and
thereby to correct failures or repeat the attachment of the bases.
In particular, in case the attachment of a specific base does
not succeed, it is possible to add another different base which
indicates a synthesis failure in this location.

The rest of the paper is organized as follows. In Section II,
we formally present the definitions and the problem. We study
the BSC and the BEC in Section III and the Z channel in Sec-
tion IV. We generalize in Section V this problem for the setup
where consecutive programmings of a cell do not necessarily
behave the same with respect to the error probability. A new
model motivated by DNA is studied in Section VI. Due to lack
of space, most of the proofs and several details are omitted and
can be found in the extended version of this paper in [10].

II. DEFINITIONS AND BASIC PROPERTIES

Let W be a discrete memoryless channel (DMC). We model
the process of programming a cell as transmission over a
channel W , with the distinction that after every programming
attempt, it is possible to check the cell state and to decide, in
the case of an error, whether to leave the cell erroneous, or
reprogram it again. We assume that there are n cells which are
programmed individually. An iterative programming scheme,
or in abbreviation a programming scheme, is an algorithm



which states the rules to program the n cells. Its average
delay over a channel W is defined to be the ratio between the
expected number of programming attempts and the number
of cells, and the maximum delay is the maximal number of
attempts to program a cell. Our primarily goal in this work is
to reliably store a large number of bits into the cells, while
constraining the average and the maximum delay.

We define a natural class of programming schemes. For t≥0,
the strategy of the programming scheme PSt is to program
the cell until its programming succeeds, that is, it stores its
correct value or the number of attempts is t. Hence, after the
t-th attempt the success is not verified and the cell may be
left programmed erroneously. Applying PS0 means that the
cell is not programmed, while PS−1 denotes the programming
scheme where the cell is programmed until it stores the correct
value. For notational purposes, we denote this programming
scheme by PS−1 instead of PS∞.

In this paper we focus on programming schemes that consist
of combinations of several schemes from {PSt}t≥−1. Let
PS ((β1, t1), (β2, t2), . . . , (β`, t`)) be a programming scheme
of n cells which works as follows. For all 1 ≤ i ≤ `, βin of the
cells are programmed according to the programming scheme
PSti

1. Formally, for T ≥ 0, the maximum number of attempts
to program a cell, we define the following set of programming
schemes.

PT =

{
PS ((β1, t1), (β2, t2), . . . , (β`, t`)) : (1)

0 ≤ t1, . . . , t` ≤ T, 0 < β1, . . . , β` ≤ 1,
∑̀
i=1

βi = 1

}
,

The set of programming schemes P−1 is defined similarly
where −1 ≤ t1, . . . , t`.
Remark 1. We focus here on this specific family of iterative
programming schemes. A higher rate may be achieved by
resorting to programming schemes outside this family, for
example, schemes which allow accumulating delay, random-
ized strategies, or defining more general stopping rules [2].
However, we find this family of programming schemes more
practical as it mimics common techniques for programming
cells in flash and other memories.

For asymmetric channels the average delay of PSt may
depend also on the programmed words. For example in the
Z channel the average delay depends on the number of zeros
in the programmed word. Thus, for the rest this section we
refer only for symmetric channels2, while these concepts will
be defined similarly in Section IV for the Z channel.

For t ≥ −1 and a symmetric channel W , we denote by
D(W, t) the average delay of the programming scheme PSt
when the programming process is modeled by the channel W .
When a cell is programmed according to a programming
scheme PSt, we can model this process as a transmission
over t copies of the channel W and there is an error if and
only if there is an error in each of the t channels. We denote
this as a new channel Wt. Note that a programming scheme
has no effect on the types of the errors, but it may change
the error probability. We denote the capacity of the channel
Wt by C(W, t). Note that for every channel W , it holds that
C(W, 0) = 0 and D(W, 0) = 0.

For T ≥ −1, it can be readily verified that for a pro-
gramming scheme PS = PS ((β1, t1), . . . , (β`, t`)) ∈ PT
over a symmetric channel W , the average delay, denoted by

1We assume here and in the rest of the paper that n is sufficiently large so
that βin is an integer number for all i.

2We refer to the definition of symmetric DMCs as defined in [7] which
are also called partitioned symmetric [8], where the set of the outputs can
be partitioned into subsets in such a way that for each subset the matrix of
transitions probabilities (using inputs as rows and outputs as columns) has the
property that within each partition the rows are permutations of each other
and the columns are permutations of each other.

D(W,PS), is given by D(W,PS) =
∑`
i=1 βiD(W, ti). Sim-

ilarly, the capacity3 of the the channel W using programming
scheme PS is denoted by C(W,PS) and is defined to be
C(W,PS) =

∑`
i=1 βiC(W, ti).

The main problem we study in this paper is formulated
in Problem 1 for symmetric channels. The motivation of this
problem is to maximize the number of information bits that can
be reliably stored in n cells when n is sufficiently large, where
the average delay, that is, the average number of attempts to
program a cell, is at most some prescribed value D, and the
number of attempts to program a cell is at most T , i.e., the
maximum delay is at most T . The case of T = −1 corresponds
to having no constraint on the maximum delay.

Problem 1. Given a symmetric channel W , an average
delay D, and a maximum delay T , find a programming
scheme, PS ∈ PT , which maximizes the capacity C(W,PS),
under the constraint that D(W,PS) ≤ D. In particular,
given W ,D, and T , find the value of F1(W,D, T ) ,
maxPS∈PT :D(W,PS)≤D{C(W,PS)}.

Assume that for a given symmetric channel W , an
average delay D, and a programming scheme PS =
PS ((β1, t1), . . . , (β`, t`)) ∈ PT , it holds that D(W,PS) > D.
In order to meet the constraint of the average delay D by
using the programming scheme PS, we program only D

D(W,PS)
fraction of the cells with the programming scheme PS, and
the remaining cells are not programmed. Hence, we define the
programming scheme PS(W,D) as follows:

PS(W,D)=

{
PS, if D(W,PS) ≤ D
PS((1−β, 0), (ββ1, t1), . . . , (ββ`, t`)), otherwise,

(2)
where β = D

D(W,PS) . It can be readily verified
that D(W,PS(W,D)) = min{D(W,PS), D} and
C(W,PS(W,D)) = min

{
1, D
D(W,PS)

}
· C(W,PS). Note that

D(W,PS) = 0 if and only if PS = PS((1, 0)), and then we
define C(W,PS(W,D)) = C(W,PS) which is equal to zero
by the definition of PS0.

We next state another concept which will be helpful in
solving Problem 1. The normalized capacity of a symmetric
channel W using a programming scheme PS is defined to be

C(W,PS) =

{
C(W,PS)
D(W,PS) , if D(W,PS) > 0,

C(W,PS), otherwise.
(3)

The normalized capacity is the ratio between the maximum
number of information bits that can be reliably stored and the
average number of programming attempts.

Proposition 2 presents a strong connection between the
normalized capacity and the capacity of a channel W using
a programming scheme PS under a constraint D.

Proposition 2. For a symmetric channel W , an average delay
D, and a programming scheme PS, the following holds
C(W,PS(W,D)) = min{D,D(W,PS)} · C(W,PS).

For clarity and readability, Table I summarizes the notations
used throughout the paper.

III. THE BSC AND THE BEC
In this section we study Problem 1 for the BSC and the BEC.

Note that the results for the BSC have already been presented
in [2], however we state them here in order to compare with
the BEC and since these results and techniques will be used
in Section V for the case of programming with different error
probabilities, and in Section VI for a new model. Additionally,

3The use of the terminology “capacity” here is abuse of terminology since
it depends on both the channel and the programming scheme. However, this
term is used to indicate the achievable maximum information rate when the
programming scheme PS is used over the channel W .



TABLE I: Summary of notations.

Notation Description
PSt Programming scheme with at most t attempts
PT The set of programming schemes with maximum delay T
D(W,PS) The average delay of PS over the channel W
D(W, t) The average delay of PSt over the channel W
D(p, t) The average delay of PSt over the BSC(p) or the

BEC(p)
C(W,PS) The capacity of channel W using PS
C(W, t) The capacity of channel W using PSt

F1(W,D, T )
Problem 1

The maximum capacity of channel W using PS ∈ PT
under an average delay constraint D

PS(W,D) Adjusted PS to meet the constraint D for channel W
C(W,PS) The normalized capacity of channel W using PS
C(W, t) The normalized capacity of channel W using PSt

BSC(p) The binary symmetric channel with crossover probabil-
ity p, 0 ≤ p ≤ 0.5

BEC(p) The binary erasure channel with erasure probability p, 0 ≤
p ≤ 1

Z(p) The Z channel with error probability p, 0 ≤ p ≤ 1
Z(p, α) The Z channel with error probability p and probability α

for occurrence of 1, 0 ≤ p, α ≤ 1
PSt,q PSt where in the last attempt a question-mark is written

with probability 1− q
C(W, t, q) The capacity of channel W using PSt,q

the translation between the notations by Bunte and Lapidoth [2]
and our formulation, is not immediate, and hence we found this
repetition to be important for the readability and completeness
of the results in the paper.

According to well known results on the capacity of the BSC
and the BEC, the following is proved. In this paper h(x) is the
binary entropy function where 0 ≤ x ≤ 1.

Lemma 3. For the programming scheme PSt, t ≥ −1, and
error probability p for the BSC and the BEC, the following
properties hold:

1) For all t ≥ 1, C(BSC(p), t) = 1− h(pt).
2) For all t ≥ 1, C(BEC(p), t) = 1− pt.
3) C(BSC(p),−1) = C(BEC(p),−1) = 1.
4) For all t ≥ 0,

D(p, t) , D(BSC(p), t) = D(BEC(p), t) =
1− pt

1− p
.

5) D(p,−1) , D (BSC(p),−1) = D(BEC(p),−1)= 1
1−p .

The next theorem compares between the normalized capacity
when using PSt and PSt+1 for each t ≥ 1. This result is used
next in Corollary 5 which establishes the solution to Problem 1.

Theorem 4. For all t ≥ 1 the following properties hold:
1) C (BSC(p), PSt) ≤ C (BSC(p), PSt+1),
2) C (BEC(p), PSt) = 1− p.

Note that if D ≥ 1
1−p then the average delay is not

constrained, since the average delay of any PS does not exceed
the average delay of PS−1 which equals to 1

1−p (see also [2]).

Corollary 5. For T ≥ −1, denote D′ = min{D(p, T ), D}.
The solution to Problem 1 for the BSC and the BEC is as
follows.

1) If T ≥ 0 then

a) F1(BSC(p), D, T ) = D′ · (1−p)(1−h(pT ))
1−pT and

this value is obtained by the programming scheme
PST (BSC(p), D).

b) F1(BEC(p), D, T ) = D′ · (1−p) and this value is ob-
tained by the programming scheme PSt(BEC(p), D)
for any t such that 0 ≤ t ≤ T and D(W, t) ≥ D′.

2) F1(BSC(p), D,−1) = F1(BEC(p), D,−1) = D′ · (1−
p) and this value is obtained by the programming scheme
PS−1(BEC(p), D) for the BSC, and by the programming
scheme PSt(BEC(p), D) for any t such that D(W, t) ≥
D′ for the BEC.

Remark 6. The results in Lemma 3 and in Corollary 5
regarding the BSC were presented in Proposition 3 and in

Proposition 5 in [2], respectively. We note that in Proposition 3
in [2], ε, ζ are equivalent to p,D − 1 in our notations,
respectively. Furthermore, the gap in the solution from [2]
and our result stems from the fact that we let cells to be not
programmed at all, while in [2] a cell has to be programmed at
least once. Thus, the translation between these two approaches
can be done by substituting the average delay constraint D
with ζ + 1.

IV. THE Z CHANNEL
In this section we study programming schemes for Z(p),

the Z channel with error probability p, i.e., 0 is flipped to
1 with probability p, where 0 ≤ p ≤ 1. The capacity of
Z(p) was well studied in the literature; see e.g. [19], [21]. We
denote by Z(p, α) the Z channel where α is the probability
for occurrence of 1 and p is the crossover 0 → 1 probability.
The capacity of Z(p, α) was shown for example in [19], [21],
and is denoted here by C(Z(pt, α)).

In the Z channel, the average delay of programming a zero
cell is exactly as in the BSC and the BEC cases, but a cell with
value one is programmed only once. Therefore, the average
delay depends on the number of cells which are programmed
with zero, and hence we define D(Z(p, α), t) as the average
delay of the programming scheme PSt when the programming
process is modeled by the channel Z(p) and α is the fraction
of ones in the programmed words. The capacity C(Z(p, α), t)
is defined to be the capacity of the channel Z(p) when α is the
probability for occurrence of one and the programming scheme
PSt is applied. The following lemma is readily proved.

Lemma 7. For the programming scheme PSt and the channel
Z(p, α), the following properties hold:

1) For all t ≥ 0, C(Z(p, α), t) = C(Z(pt, α)).
2) C(Z(p, α),−1) = h(α).
3) For all t ≥ 1, D(Z(p, α), t) = (1−α)(1−pt)

1−p + α.
4) D(Z(p, α),−1) = 1−α

1−p + α, D(Z(p, α), 0) = 0.

Let PS ((β1, t1), (β2, t2), . . . , (β`, t`)) be a programming
scheme, and α = (α1, α2, . . . , α`) where 0 ≤ αi ≤ 1,
for all 1 ≤ i ≤ `. Then, we define C(Z(p,α), PS) =∑`
i=1 βi · C(Z(p, αi), ti), that is C(Z(p,α), PS) is the ca-

pacity of Z(p) using the programming scheme PS and the
parameter α. Similarly, we define the average delay of the
programming scheme PS for Z(p) using the parameter α
as D(Z(p,α), PS) =

∑`
i=1 βi · D(Z(p, αi), ti). Thus, we

formulate Problem 1 for the Z channel as follows.
Problem 1 - Z channel. Given the Z channel Z(p), an
average delay D, and a maximum delay T , find a pro-
gramming scheme, PS ∈ PT , and a vector α which maxi-
mize the capacity C(Z(p,α), PS), under the constraint that
D(Z(p,α), PS) ≤ D. In particular, given Z(p), D, and T ,
find the value of
F1(Z(p), D, T ) , max

PS∈PT ,α :D(Z(p,α),PS)≤D
{C(Z(p,α), PS)}.

In order to solve Problem 1 for the Z channel, we use
the normalized capacity of Z(p, α) using a programming
scheme PSt, denoted by C(Z(p, α), t), which is defined as
in Equation (3). Given p and t, the maximum normalized ca-
pacity using PSt is C(Z(p), t) = max0≤α≤1

{
C(Z(p, α), t)

}
,

and we denote by α∗(p, t) any value of α which achieves
this capacity. That is, C(Z(p), t) = Ct(Z(p, α∗(p, t))) =
max0≤α≤1

{
C(Z(p, α), t)

}
, and the average delay D(Z(p), t)

is defined by D(Z(p), t) = D(Z(p, α∗(p, t)), t).
Next, we define the programming scheme PSt(Z(p), D)

similarly to the definition in Equation (2). Given T , a
constraint on the maximum delay, we define t∗(T ) =
arg max0≤t≤T {C(Z(p), t)} for T ≥ 0 and t∗(−1) =
arg max−1≤t{C(Z(p), t)}. Thus, we can conclude the fol-
lowing corollary which is proved in a similar technique to
Corollary 5.



Corollary 8. F1(Z(p), D, T ) = min{D(Z(p), T ), D} ·
C(Z(p), PSt∗(T )) = C(Z(p), PSt∗(T )(Z(p), D)) and this
value is obtained by PSt∗(T )(Z(p), D) with parameter
α∗(p, t∗(T )).

An explicit solution for the Z channel can be obtained by
finding the value of t∗(T ) and α∗(p, t∗(T )). In Fig. 1 we
present plots of the normalized capacity C(Z(p), t) for t ∈
{−1, 1, 2, 3, 4}. The x-axis is p, and each plot represents the
value of C(Z(p), t) for a specific t. We also add the plot of the
function 1−p to compare between C(Z(p), t) and 1−p which
is the maximum normalized capacity for the BSC(p) and the
BEC(p). We note that 1 − p is smaller than C(Z(p), t) for
almost all values of t. Following these computational results,
we conjecture that C(Z(p), t) ≤ C(Z(p), t + 1)) for all t ≥ 0
and thus, F1(Z(p), D, T ) = min{D,D(Z(p), T )}·C(Z(p), T ).

Fig. 1: The normalized capacity of Z(p) using PSt for some values
of t, comparing to 1 − p, the maximum normalized capacity for the
BSC(p) and the BEC(p).

V. DIFFERENT ERROR PROBABILITIES

In this section we generalize the programming model for the
BSC and the BEC. We assume that it is possible to reprogram
the cells, however the error probabilities on different program-
ming attempts may be different. For example, for hard cells
in flash memories [16], [18], i.e., cells that their programming
is more difficult, if the first attempt of a cell programming has
failed, then the probability for failure on the second trial may
be larger since the cell is hard to be programmed. In other
cases, the error probability in the next attempt may be smaller
since the previous trials might increase the success probability
of the subsequent programming attempts.

Let P = (p1, p2, . . . ) = (pi)
∞
i=1 be a probabilities sequence,

where pt is the error probability on the t-th programming
attempt. We model the programming process as a transmission
over the channel sequence, W (P) = W (pi)

∞
i=1, where on the

i-th trial, the programming is modeled as transmission over the
channel W (pi). That is, all the channels in W (P) have the
same type of errors, but may have different error probabilities.
Recall that for the BSC we assume that 0 ≤ pi ≤ 0.5 for all
i ≥ 1, while for the BEC, 0 ≤ pi ≤ 1.

For t ≥ −1 and a channel sequence W (P), we denote by
D(W (P), t) the average delay of the programming scheme
PSt, which is the expected number of times to program a cell
when the programming process is modeled by W (P).

When a cell is programmed according to a programming
scheme PSt, we can model this process as transmission over
the set of channel sequence W (pi)

t
i=1, and an error occurs if

and only if there is an error in each of the t channels. We denote
this as a new channel Wt(P), and the capacity of this channel is
denoted by C(W (P), t). Define Qi = Πi

j=1pj for i ≥ 1. Then,
for example, for the BSC we get BSCt(P) = BSC(Qt), and

the capacity of this channel for t ≥ 1 is C(BSC(P), t) =
C(BSC(Qt)) = 1− h(Qt).

We focus on the set PT of the programming schemes
that was defined in (1). It can be readily verified that the
average delay of a programming scheme PS ∈ PT , PS =
PS((α1, t1), . . . , (α`, t`)), over the channel sequence W (P) is
given by D(W (P), PS) =

∑t
i=1 αiD(W (P), ti), and the def-

inition of the capacity is extended as follows C(W (P), PS) =∑t
i=1 αiC(W (P), ti).
We are now ready to formally define the problem we study

in this section.

Problem 1 - Different probabilities. Given a probabili-
ties sequence P with a channel W ∈ {BSC,BEC}, an
average delay D, and a maximum delay T , find a pro-
gramming scheme PS ∈ PT , which maximizes the capacity
C(W (P), PS), under the constraint that D(W (P), PS) ≤
D. In particular, find the value of F2(W (P), D, T ) ,
maxPS∈PT :D(W (P),PS)≤D{C(W (P), PS)}.

For P = (p1, p2, . . .) and Qi = Πi
j=1pj , define Yt ,∑t−1

i=1 Qi for t ≥ 1 (Y1 = 0), and Y−1 ,
∑∞
i=1Qi. The next

lemma establishes the basic properties on the average delay
and the capacity of these channels.

Lemma 9. For the programming scheme PSt, and P =
(p1, p2, . . .), the following properties hold:

1) For t ≥ 1, C(BSC(P), t) = 1− h(Qt),
2) For t ≥ 1, C(BEC(P), t) = 1−Qt,
3) C(BSC(P),−1) = C(BEC(P),−1) = 1,
4) For t 6= 0,
D(P, t) , D(BSC(P), t) = D(BEC(P), t) = 1 + Yt,

5) D(P, 0) , D(BSC(P), 0) = D(BEC(P), 0) = 0,

For this generalization of the problem, given a programming
scheme PS ∈ PT , the programming scheme PS(W,D) and
the normalized capacity are defined in a similar way as in the
original definitions in Equations (2) and (3), respectively. The
following proposition is a generalization of Proposition 2.
Proposition 10. Given a channel sequence W ′ = W (P), an
average delay D, and a programming scheme PS, it holds that
C(W ′, PS(W ′, D)) = min{D,D(W ′, PS)} · C(W ′, PS).

Next we study the relation between C(W (P), PSt) and
C(W (P), PSt+1) both for the BSC and the BEC, and for
arbitrary probabilities sequence P.
Theorem 11. For t ≥ 1 and P, the following holds:

1) C(BSC(P), PSt) ≤ C(BSC(P), PSt+1) for all P such
that i, 0 ≤ pi ≤ 0.5,

2) C(BEC(P), PSt) ≤ C(BEC(P), PSt+1) if and only if
pt+1 ≤ Yt+1

Yt+1 .

By the previous theorem we conclude the following corol-
lary, which its proof is similar to the proof of Corollary 5.

Corollary 12. The solution for Problem 1 - Different
probabilities is as follows:

1) F2(BSC(P), D, T ) = C(BSC(P), PST (BSC(P), D))
and it is obtained by PST (BSC(P), D),

2) if 1 ≥ p1 ≥ p2 ≥ p3 ≥ · · · then F2(BEC(P), D, T ) =
C(BEC(P), PST (BEC(P), D)) and it is obtained by
PST (BEC(P), D)

VI. COMBINED PROGRAMMING SCHEMES FOR THE BSC
AND THE BEC

In this section, we study programming schemes for the BSC,
in which on the last programming attempt it is possible to
either try to reprogram the failed cell again with its value or
instead program it with a special question mark to indicate
a programming failure. This model is motivated by several



applications. For example, when synthesizing DNA strands, if
the attachment of the next base to the strand fails on multiple
attempts, it is possible to attach instead a different molecule
to indicate this base attachment failure [13]. In flash memories
we assume that if some cell cannot reach its correct value,
then it will be possible to program it to a different level (for
example a high voltage level that is usually not used) in order
to indicate a programming failure of the cell.

We denote by PSt,q the programming scheme in which on
the t-th programming attempt, which is the last one, the cell is
programmed without verification with probability q, and with
probability 1 − q it is programmed with the question mark
symbol ′?′.

The average delay of programming a cell with PSt,q over
the BSC(p) does not depend on q, and hence equals to D(p, t).
However the capacity is clearly influenced by the parameter q,
and is denoted by C(BSC(p), t, q)

Let p be the programming error probability. Then, the
probability that a cell will be erroneous after t−1 programming
attempts is pt−1. Therefore, programming with PSt,q over
BSC(p) can be represented by a channel which combines
the BSC and the BEC, where its capacity is well known [4,
Porblem 7.13].

Let PS = PS ((β1, t1), (β2, t2), . . . , (β`, t`)) ∈ PT be a
programming scheme, and q = (q1, q2, . . . , q`) where 0 ≤ qi ≤
1, for all 1 ≤ i ≤ `. Then, we define C(BSC(p), PS, q) =∑`
i=1 βi · C(BSC(p), ti, qi). That is, C(BSC(p), PS, q) is the

capacity of BSC(p) using the programming scheme PS with
the parameter q. Similarly, we define the average delay of the
programming scheme PS for BSC(p) using the parameter q
as D(BSC(p), PS, q) =

∑`
i=1 βi · D(BSC(p), ti, qi). Note

that D(BSC(p), PS, q) = D(BSC(p), PS) for all q. For this
model, Problem 1 will be formulated as follows.

Problem 1 - Combined channel. Given a channel BSC(p),
an average delay D, and a maximum delay T , find a
programming scheme, PS ∈ PT , and q which maximize
the capacity C(BSC(p), PS, q), under the constraint that
D(BSC(p), PS, q) ≤ D. In particular, given BSC(p), D,
and T , find the value of

F3(BSC(p), D, T ) , max
D(BSC(p),PS,q)≤D

{C(BSC(p), PS, q)}.

For this generalization of the model we prove that the best
programming scheme is PST,q(BSC(p), D) for q=1 or q=0,
where PST,q(BSC(p), D) is defined in a similar way as in
Equation (2). That is, the best programming scheme is the
standard PST or the new PST in which in the last attempt all
the erroneous cells are programmed with a question mark.

Theorem 13. Denote by D′ = min{D(p, T ), D} then
the solution for Problem 1 - Combined channel is
F3(BSC(p), D, T ) = D′

D(p,T ) · max{1 − h(pt), 1 − pt−1}
obtained by PST,q(BSC(p), D) for q=1 or q=0, respectively.

This result can be intuitively explained as if q = 0 then the
last programming is just providing a complete verification for
all the successful cells by substituting a question mark in all
the erroneous cells. Thus, according to some threshold (p, t),
we can either provide a complete verification for the already
programmed cells (q = 0) or try to reprogram again all the
failed cells (q = 1). The proof and details are available in the
long version of this paper [10].

For each p we denote by tp the smallest value of t, such
that h(pt) ≥ pt−1 (tp may not be an integer). Since h(px) ≥
ph(x) for 0 ≤ x, p ≤ 0.5, we conclude that for each t ≥
tp it holds that h(pt) ≥ pt−1. Thus, given p, it holds that
t ≥ tp if and only if C(BSC(p), t, 0) = 1 − pt−1 ≥ 1 −
h(pt) = C(BSC(p), t, 1). Let T be the last attempt to program.
If T ≥ tp then in the T -th attempt all the failed cells will

be programmed with question marks. Otherwise, they will be
reprogrammed again without verification. In Fig. 2 the values
of tp are presented in a graph, where the x-axis is p and the
y-axis is t. The graph line is f(p) = tp.

Fig. 2: The tp graph.
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