
Endurance-Limited Memories with Informed Decoder
Yeow Meng Chee∗, Michal Horovitz†, Alexander Vardy‡¶, Van Khu Vu¶, and Eitan Yaakobi§
∗ Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
† Computer Science Department, Tel-Hai College, and The Galilee Research Institute - Migal, Upper Galilee, Israel
‡ Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

¶ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
§ Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 32000 Israel

Emails:pvocym@nus.edu.sg, horovitzmic@telhai.ac.il, avardy@ucsd.edu, vankhu001@ntu.edu.sg,
yaakobi@cs.technion.ac.il

Abstract—Non-volatile resistive memories, such as phase change
memories and resistive random access memories, have attracted
significant attention recently due to their scalability, speed,
and rewritability. However, in order to use these memories in
large-scale memory and storage systems, the limited endurance
deficiency of these memories must be addressed. In a recent pa-
per, we proposed a new coding scheme, called endurance-limited
memories (ELM) codes, which increases the endurance of these
memories by limiting the number of cell programming opera-
tions. Namely, an `-change t-write ELM code is a coding scheme
that allows to write t messages into some n binary cells while
guaranteeing that the number of times each cell is programmed
is at most `. There are several models of these codes which de-
pend upon the information that is available to the encoder and
the decoder before each write. This information can be one of
the following three options: 1. the number of times each cell has
been programmed, 2. only the memory state before programming,
or 3. no information is available on the cells’ state or previous
writes. In this paper, we study the models in which the decoder
knows on each write the number of times each cell has been pro-
grammed before the last write, while for the encoder we consider
the aforementioned three possibilities.

I. INTRODUCTION

Resistive memories, such as resistive random access memories
(ReRAM) and phase-change memories (PCM) have the potential
to be widely used in the future as a universal memory. These
memories are abundant with several important advantages, such
as speed, density, non-volatile, and rewritability. However, one
of their main bottlenecks is the limited write endurance, which
must be solved in order to make these memories widely used.

Previous works have offered different solutions to overcome
this limitation. For example, in [16] a technique has been ap-
plied for mellow writes which reduce the wearout of the cells
during programming, and in [8] the authors using locally re-
pairable codes (LRC) to get small rewriting locality. Other solu-
tions used coding schemes to correct stuck-at cells; see e.g. [9],
[11], [15]. Recently, in [2], we proposed a new family of codes,
called endurance-limited memory (ELM) codes. The model un-
der this paradigm assumes that there are n cells and each cell
stores a binary value by the cell’s resistance. The goal is to
write t messages sequentially in the cells, while the resistance
of each cell can be changed at most some ` > 1 times. Note that
for ` = 1, we get the classical problem of write-once memory
(WOM) codes [3], [6], [7], [10], [13], [14].

There are several models of ELM codes that can be stud-
ied [2]. These models are distinguished by the information that
is available to the encoder and the decoder before each write.
Specifically, for the encoder/decoder this information can be one
of the following three options:

1) Informed All (EIA/DIA) is the case where the number of
times each cell has been programmed so far is known.

2) Informed Partially (EIP/DIP) is the case where only the
cell state is known before programming.

3) Uninformed (EU/DU) is the case where no information on
the cells is available before programming.

Thus, by considering all combinations of the above three cases
for the encoder and the decoder, it is possible to define and study
nine models, EX : DY , where X,Y ∈ {IA, IP, U}. The EIA
models have been studied by the authors in [2], and this paper
advances this study to cover the DIA models as well.

The rest of the paper is organized as follows. First, the DIA
models are formally defined in Section II. In Section III, we
review the capacity region and maximum sum-rates results for
the EIA models that were determined in [2]. Then, we proceed
to study the capacity region of the DIA models. The capacity
region of the EIP:DIA model is studied in Section IV and Sec-
tion V presents capacity achieving codes for this model. Then,
Section VI compares between the EIP:DIA and the EIA models.
Lastly, in Section VII we study the EU:DIA model.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the three DIA ELM models
which are studied in the paper and state several simple obser-
vations. The definition of all nine models can be found in [2].

For a positive integer a, the set {0, . . . , a − 1} is defined by
[a]. We assume that the number of cells is n, and we use the
vector notation c ∈ [2]n to represent the encoded vector of the n
memory cells, and the vector v ∈ [`+1]n, which will be called
the cell-program-count vector, to represent the number of times
each cell has been programmed. Note that the state of a cell
is the parity of the number of times it was programmed. Thus,
if the encoder (or the decoder) knows the cell-program-count
vector v, in particular it knows the cell-state vector as well. For
a vector v ∈ [` + 1]n, we denote by 〈v〉2 the length-n binary
vector which satisfies (〈v〉2)k = vk(mod 2) for all k ∈ [n],
and we say that 〈v〉2 equals to v modulo 2. For two length-n
vectors a, b, a+b is the vector obtained by point-wise addition.
If a and b are binary vectors a ⊕ b is the vector obtained by
point-wise addition modulo 2.

According to the constraint in which each cell can be pro-
grammed at most some ` times, we assume that if the encoder
attempts to program a cell more than ` times then its value will
not be changed. For the EIA models, it is assumed that the en-
coder will not attempt to program a cell that has already been
programmed ` times before. We see this as an extension of the
WOM model for ` = 1. These models will be defined both for
the zero-error and the ε-error cases.

For a cell-program-count vector v ∈ [`+ 1]n and a new vec-
tor c ∈ [2]n to be programmed to the cells, we define the result
of programming the new vector c by N(v, c) ∈ [` + 1]n and
f(v, c) ∈ [2]n, such that, N(v, c) is the new cell-program-count
vector after programming c, f(v, c) is the new cell-state vec-
tor, and they are formally defined as follows. For all k ∈ [n],
N(v, c)k = vk if ck = vk(mod 2), and otherwise N(v, c)k =
max{`,vk + 1}. Similarly, f(v, c)k = ck if vk < `, and other-
wise f(v, c)k = vk(mod 2). Note that 〈N(v, c)〉2 = f(v, c),
i.e., f(v, c) equals to N(v, c) modulo 2.

2019 IEEE Information Theory Workshop (ITW)

978-1-5386-6900-6/19/$31.00 ©2019 IEEE

Definition 1. An [n, t, `;M1, . . . ,Mt]
EX:DIA,pe `-change

t-write endurance-limited memory (ELM) code with error
probability vector pe = (pe1 , . . . , pet), where X ∈ {IA, IP, U},
is a coding scheme comprising of n binary cells and is defined
by t encoding and decoding maps (Ej ,Dj) for 1 6 j 6 t.
For the map Ej , Im(Ej) is its image, where by definition
Im(E0) = {(0, . . . , 0)}.

Furthermore, for j ∈ [t + 1], let Nj and Im∗(Ej) be the
set of all state-program-count vectors, cell-state vectors which
can be obtained after the first j writes, respectively. Formally,
for j > 1, Nj = {N(v, c) : c ∈ Im(Ej),v ∈ Nj−1}, where
N0 = {(0, . . . , 0)}, and Im∗(Ej) = {〈v〉2 : v ∈ Nj}. Note that
for the EIA models Im∗(Ej) = Im(Ej). For a message m we
denote by Indm(x) the indicator function, where Indm(x) = 0
if m = x, and otherwise Indm(x) = 1. The three DIA models
are defined as follows for all 1 6 j 6 t.
(1) If X = IA then Ej : [Mj] × Nj−1 7→ [2]n, such that for all

(m,v) ∈ [Mj]×Nj−1 it holds that v+(〈v〉2 ⊕ Ej(m,v)) ∈
[`+ 1]n, and
Dj : {(Ej(m,v),v) : m ∈ [Mj],v ∈ Nj−1}7→[Mj],

where∑
(m,v)∈[Mj]×Nj−1

Pr(m)Pr(v) · Indm (Dj(Ej(m,v),v)) 6 pei .

(2) If X = IP then Ej : [Mj]× Im∗(Ej−1) 7→ [2]n, and
Dj : {(f(v, Ej(m, 〈v〉2)),v) : m ∈ [Mj],v ∈ Nj−1}7→[Mj],

where∑
(m,v)∈[Mj]×Nj−1

Pr(m)Pr(v) · Indm (Dj(f(v, Ej(m, 〈v〉2)),v)) 6 pei .

(3) If X = U then Ej : [Mj] 7→ [2]n, and
Dj : {f(v, Ej(m)),v) : m ∈ [Mj],v ∈ Nj−1}7→[Mj],

where∑
(m,v)∈[Mj]×Nj−1

Pr(m)Pr(v) · Indm (Dj(f(v, Ej(m)),v)) 6 pei .

If pej = 0 for all 1 6 j 6 t, then the code is called a zero-error
ELM code and is denoted by [n, t, `;M1, . . . ,Mt]

EX:DIA,z .

Similarly, it is possible to define [n, t, `;M1, . . . ,Mt]
EX:DY,g

ELM codes for g ∈ {z, ε} and Y ∈ {IP, U} for the cases where
the decoder is either partially informed or uniformed. See [2]
for the formal definition of these models.

The rate on the j-th write of an [n, t, `;M1, . . . ,Mt]
EX:DY

ELM code, X,Y ∈ {IA, IP, U}, is defined as Rj =
logMj

n ,
and the sum-rate is the sum of the individual rates on all writes,
Rsum =

∑t
j=1Rj . A rate tuple R = (R1, . . . ,Rt) is called

ε-error achievable in model EX : DY , if for all ε > 0 there
exists an [n, t, `;M1, . . . ,Mt]

EX:DY ,pe ELM code with error
probability vector pe = (pe1 , . . . , pet) 6 (ε, . . . , ε), such that
logMi

n > Ri − ε. The rate tuple R will be called zero-error
achievable if for all 1 6 j 6 t, pej = 0. The ε-error capacity
region of the EX : DY model is the set of all ε-error achievable
rates tuples, that is,

CEX:DY,ε
t,` = {(R1, . . . , Rt)|(R1, . . . , Rt) is ε-error achievable},

and the ε-error maximum sum-rate will be denoted by
REX:DY,ε
t,` . The zero-error capacity region CEX:DY,z

t,` and the
zero-error maximum sum-rate REX:DY,z

t,` are defined similarly.
For R = (R1, . . . ,Rt) and R′ = (R′1, . . . ,R′t), we say that
R 6 R′ if Rj 6 R′j for all 1 6 j 6 t, and R < R′ if R 6 R′

and R 6= R′.

According to these definitions it is easy to verify the following
relations. For g ∈ {z, ε}, X, Y ∈ {IA, IP, U},

CEU :DY,g
t,` ⊆ CEIP :DY,g

t,` ⊆ CEIA:DY,g
t,` ,

CEX:DU,g
t,` ⊆ CEX:DIP,g

t,` ⊆ CEX:DIA,g
t,` ,

CEX:DY,z
t,` ⊆ CEX:DY,ε

t,` .

Similar connections hold for the maximum sum-rates.
Note that if ` > t then all problems are trivial since it is possi-

ble to program all cells on each write, so the capacity region in
all models is [0, 1]t and the maximum sum-rate is t. For ` = 1
we get the classical and well-studied WOM codes [3], [6], [7],
[10], [13], [14]. In this case we also notice that the IA and IP
models are the same for both the encoder and the decoder. The
capacity region and the maximum sum-rate in most of these
cases are known; see e.g. [6], [7], [10], [14]. In the rest of this
paper, and unless stated otherwise, we assume that 1 6 ` < t.
We note that there is a strong connection between the codes
studied in this paper and non-binary WOM codes as described
in [2].

III. THE EIA MODELS

The capacity region and the maximum sum-rate of the EIA
models for both zero-error and ε-error cases, were explored
in [2]. In this section we review these results in order to
compare them with the EIP models which are studied in the
paper.

For 1 6 j 6 t and i ∈ [` + 1], let pj,i ∈ [0, 1], be the prob-
ability to program a cell on the j-th write, given that this cell
has been already programmed i times. We define pj,` = 0. Let
Qj,i be the probability that a cell has been programmed exactly
i times on the first j writes. Formally, Qj,i is defined recursively
by using the probabilities pj,i and pj,i−1 as follows.

Qj,i =

{
Qj−1,i(1− pj,i) +Qj−1,i−1pj,i−1, if i > 0,

Qj−1,i(1− pj,i), if i = 0,
(1)

where Q0,0 = 1 and Q0,i = 0 for i > 0.
In this paper h(x), H(X) is the binary entropy function where

0 6 x 6 1, X is a random variable, respectively. The rates
region Ct,` is defined as follows.

Ct,`=
{
(R1, . . . , Rt)|∀16j6t : Rj6

∑min{`,j}−1
i=0 Qj−1,ih(pj,i),

∀i ∈ [`] : pj,i ∈ [0, 0.5], and Qj,i is defined in (1)
}
.

(2)
It is readily verified that the maximum sum-rate is achieved with
pj,i = 0.5 for all t− j + 1 > `− i.

Corollary 2. For all t and `, Ct,` is the capacity region for all
the EIA models for both zero-error and ε-error cases, and is de-
noted by CEIAt,` . The maximum sum-rate in all the EIA models is
REIAt,` = log

∑`
i=0

(
t
i

)
.

IV. CAPACITY OF THE EIP:DIA MODEL

In this section we discuss the capacity region and the maxi-
mum sum-rates of the EIP:DIA model. Recall that if ` = 1 then
by definition, EIP is equivalent to EIA and this model is equiva-
lent to the known WOM model. Thus, in this section we assume
that ` > 1.

Denote by cj , j ∈ [t + 1], the length-n binary vector which
represents the memory state after the j-th write, where c0 = 0.
Note that on the j-th write, both the encoder and the decoder
know the state of the memory cj−1 before writing the new data.
Therefore, programming the current memory state, cj , is equiv-
alent to writing a length-n binary vector which represents the
difference between these two states, cj ⊕ cj−1.

2019 IEEE Information Theory Workshop (ITW)

Let Xj be a length-n binary vector, where Xj,k = 1 if and
only if the k-th cell is intended to be programmed on the j-th
write. Similarly, Yj , is a length-n binary vector, where Yj,k = 1
if and only if the value of the k-th cell was successfully changed
on the j-th write, that is, Yj = cj ⊕ cj−1.

For 1 6 j 6 t and i ∈ [`+1], we define the probabilities pj,0,
pj,1, and Qj,i as follows. pj,k is the probability of programming
a cell on the j-th write given that the value of this cell was
k, k ∈ {0, 1}, and Qj,i is the probability of a cell to be pro-
grammed exactly i times after the first j writes. Additionally,
let Qj,e, Qj,o be the probability of a cell to be programmed an
even, odd number of times after the first j writes, respectively.
Formally, Qj,i, Qj,e, and Qj,o are defined recursively by using
the probabilities pj′,0 and pj′,1 for j′ 6 j. We now assume that
` is even. The case of an odd ` is defined similarly. We define
Qj,i for j > 0 as follows. For even i > 0,

Qj,i=

{
Qj−1,i−1 · pj,1 +Qj−1,i · (1− pj,0), if 0 < i 6 `.

Qj−1,i · (1− pj,0), if i = 0,
(3)

and for odd i > 0, Qj,i = Qj−1,i−1 ·pj,0+Qj−1,i ·(1−pj,1). The
base j = 0, is Q0,0 = 1 and Q0,i = 0 for i > 0. Furthermore,
let Qj,e =

∑`/2
i=0Qj,2i and Qj,o =

∑`/2
i=1Qj,2i−1.

Next, we define the rates region C̃lbt,`, which will be shown
to be achieved, and the rates region C̃ubt,` which will be shown
to be an upper bound for the capacity region. That is, C̃lbt,` ⊆
CEIP :DIA,ε
t,` ⊆ C̃ubt,`. In addition, it will be shown that C̃ubt,` ⊆ Ct,`

for all t, `. We present here the definition for even `, while the
odd case case can be defined similarly.

C̃lbt,`=
{
(R1,R2, . . . ,Rt)|∀1 6 j 6 t :

Rj 6 Qj−1,oh(pj,1) +Qj−1,eh(pj,0)−Qj−1,`,
pj∈[0, 0.5] and Qj,e, Qj,o, Qj,` are defined above.

}
,

(4)
C̃ubt,`=

{
(R1,R2, . . . ,Rt)|∀1 6 j 6 t :

Rj 6 Qj−1,oh(pj,1) + (Qj−1,e −Qj−1,`)h(pj,0),
pj∈[0, 0.5] and Qj,e, Qj,o, Qj,` are defined above.

}
.

(5)
For example, by substituting p3,0 = p3,1 = 0.5 in Equations

(2), (4), and (5) for t = 3 and ` = 2 we obtained the following
region.

C̃lb3,2 = C̃ub3,2 = C3,2=
{
(R1, R2, R3)|R1 6 h(p1,0),

R26(1−p1,0) · h(p2,0) + p1,0 · h(p2,1),
R36(1−p1,0 · p2,1),

p1,0, p2,0, p2,1∈[0, 0.5]
}
,

The next theorem presents the main result of this section.

Theorem 3. For all t > `, C̃lbt,` ⊆ C
EIP :DIA,ε
t,` ⊆ C̃ubt,`.

Proof Sketch: For the direct part we should prove that for
each ε > 0 and (R1,R2, . . . ,Rt) ∈ C̃lbt,`, there exists an
[n, t;M1, . . . ,Mt]

EIP :DIA,pe

t,` ELM code, where for all
1 6 j 6 t, logMj

n > Rj − ε and pe = (pe1 , . . . , pet) 6
(ε, . . . , ε). We use the well-known random channel-coding
theorem [4, p. 200] on each write.

For the converse part, let S1, . . . , St be independent random
variables, where Sj is uniformly distributed over the messages
set [Mj], and Ŝj is the decoding result on the j-th write. Let Vj
be an independent random variable on Nj , the set of the cell-
programs-count vectors after the first j writes. The data process-
ing yields the following Markov chain:

Sj |Vj−1 — Xj |Vj−1 — Yj |Vj−1 — Ŝj |Vj−1,
and therefore, I(Xj ;Yj |Vj−1) > I(Sj ; Ŝj |Vj−1). Additionally,
applying Fano’s inequality [4, p. 38] yields I(Sj ; Ŝj |Vj−1) >
log(Mj) − H(pej) − pej log(Mj). Let L be an index random
variable, which is uniformly distributed over the index set [n].
We have that

1

n
I(Xj ;Yj |Vj−1) 6

`−1∑
i=0

Pr(Vj−1,L = i)H(Yj,L|Vj−1,L = i).

Now, we set pj,0 = Pr(Xj,L = 1|Vj−1,L mod 2 = 0) and
similarly pj,1 = Pr(Xj,L = 0|Vj−1,L mod 2 = 1). Thus, for
even i < `, H(Yj,L|Vj−1,L = i) = H(pj,0), and for odd i < `,
H(Yj,L|Vj−1,L = i) = H(pj,1). We also define for i ∈ [` + 1]
Qj,i = Pr(Vj,L = i) and we note that Qj,i can be calculated
as in Equation (3). Additionally, we use the notations Qj,o and
Qj,e as defined above. Finally, we conclude that

log(Mj)

n
− εj 6

1

n
I(Xj ;Yj |Vj−1)

6 Qj−1,oh (pj,1) + (Qj−1,e −Qj−1,`)h (pj,0) ,

where εj =
H(pej)+pej log(Mj)

n , and the converse part is implied.

The next theorem proves that if t = ` + 1 or t = ` + 2, then
there is strict equality between the two regions C̃lbt,` and C̃ubt,`.

Theorem 4. If t ∈ {`+1, `+2} then C̃lbt,` = C̃ubt,` = C
EIP :DIA,ε
t,` .

Proof: If we use the same probabilities pj,0, pj,1, 1 6 j 6 t,
for these two regions, then the gap between the rates on the j-th
write is Qj−1,` · h(pj,i), where i ∈ [2], and i = ` (mod 2). For
j < `, it holds that Qj,` = 0. Thus, we can assign Qj−1,` = 0 in
C̃lbt,` and in C̃ubt,` for all j < t. For j = t, the maximum sum-rate
is obtained for pt,0 = pt,1 = 0.5. Thus, if t = ` + 1 we get
C̃lbt,` = C̃ubt,`. However, if t = ` + 2 then for j = t − 1 = ` + 1,
and i = ` (mod 2), i ∈ [2] the maximum sum-rate is obtained
for pj,i = 0.5. Thus, C̃lbt,` and C̃ubt,` are exactly the same region,
and this is the capacity region of the EIP:DIA model for the
ε-error case.

On the other hand, the next theorem proves that if t > ` + 2
then the two regions are not the same.

Theorem 5. For all t > ` + 2, C̃lbt,` (C̃ubt,`, and the maximum
sum-rate in C̃lbt,` is smaller than the maximum sum-rate obtained
in C̃ubt,`.

Proof: By Theorem 3, we have C̃lbt,` ⊆ C̃ubt,`. Now, we prove
that C̃lbt,` 6= C̃ubt,`. Let R̃ub = (R̃ub1 , . . . , R̃ubt) ∈ C̃ubt,` be a maxi-
mal rate tuple (that is, there does not exists R′ ∈ C̃ubt,` such that
R̃ub < R′) where R̃ubj 6= 0 for all 1 6 j 6 ` + 3. We denote
the probabilities which achieve R̃ub by p̃ubj,i, 1 6 j 6 t, i ∈ [2],
and Q̃ubj,i, 1 6 j 6 t, i ∈ [`+1]∪{e, o}, is defined above in this
section (see Equation (3)) using the p̃ubj′,i′ probabilities. We can
assume without loss of generality that Q̃ub`,` > 0 and p̃ub`+1,i < 0.5

where i = ` (mod 2), i ∈ [2] (otherwise, R̃ub does not achieve
maximum sum-rate). We can prove by induction on j that for
obtaining R̃ub in C̃lbt,` using the probabilities p̃lbj,i, we must set
p̃lbj,i = p̃ubj,i. Thus, Q̃lbj,i = Q̃ubj,i for all j, i, where Q̃lbj,i is de-
fined as Q̃ubj,i (see Equation (3)) using the p̃lbj′,i′ probabilities,
and hence R̃lb`+1 < R̃ub`+1. The theorem for the capacity region

2019 IEEE Information Theory Workshop (ITW)

is an immediate conclusion, and by choosing R̃ub as a rate tu-
ple which achieves the maximum sum-rate in C̃ubt,`, we get the
result regarding the maximum sum-rate.

In Section V we present capacity achieving codes for the
EIP:DIA model for the case of ` = 2. Then, in Section VI we
compare between the the EIP:DIA model which was discussed
in this section, and the EIA models which were presented in
Section III.

V. CONSTRUCTIONS FOR THE EIP:DIA MODEL

Our goal in this section is to construct a family of capac-
ity achieving t-write `-change EIP:DIA ELM codes, for ` = 2.
Before presenting our main result, we introduce the following
family of EU:DI WOM codes [7]. These codes will be used as
an important component in our construction of EIP:DIA ELM
codes. The EU:DI WOM codes were defined in [7] as follows.

Definition 6. An [n, 2;M1,M2]
EU :DI,(pe1 ,pe2)
2 two-write bi-

nary EU:DI WOM code is a coding scheme comprising of
n bits. It consists of two pairs of encoding and decoding
maps (EEU :DI

1 ,DEU :DI
1) and (EEU :DI

2 ,DEU :DI
2). For the

map EEU :DI
i , Im(EEU :DI

i) is its image and Im∗(EEU :DI
i)

is the cell-state vectors which can be obtained after the i-th
write. The encoding and decoding maps are defined as fol-
lows. EEU :DI

i : [Mi] 7→ [2]n and DEU :DI
i : Im∗(EEU :DI

i−1) ×
Im∗(EEU :DI

i) 7→ [M2] such that for all m ∈ [Mi],∑
(m,c)∈[Mi]×Im∗(EEU:DI

i−1)

Pr(m)Pr(c)·Indm
(
DEU :DI
i (max{c, EEU :DI

i (m)},c)
)
6pei .

We note that there exists a family of two-write binary EU:DI
WOM codes which achieve the rates pair R = (R1, R2) for all
R1 6 h(p1) and R2 6 (1− p1)h(p2) such that 0 6 p1, p2 6 1
[14]. Several explicit constructions of such codes were presented
in [7]. In these presented codes, Im(E1)EU :DI is a subset of all
the length-n binary vectors of Hamming weight at most bp1 ·nc.
We refer to these codes as [n, 2;M1,M2]

EU :DI,(0,pe2)
2 (p1, p2)

Using this family of WOM codes, we can construct a family of
capacity achieving three-write two-change EIP:DIA ELM codes.

Construction 7. Given pj,i ∈ [0, 0.5] where 1 6 j 6 3 and i ∈
[2], and a [Q2,en, 2;M

′
1,M

′
2]
EU :DI,(0,ε)
2 (

Q2,2

Q2,e
, 0.5) WOM code,

(Q2,2 = p1,0p2,1 and Q2,e = p1,0p2,1 + (1 − p1,0)(1 − p2,0))1,
we construct an [n, 3, 2;M1,M2,M3]

EIP :DIA,(0,0,ε) ELM code
such that M1 =

(
n

bp1,0nc
)
, M2 =

(bp1,0nc
bp1,0p2,1nc

)
·
(n−bp1,0nc
bp2,0(n−p1,0n)c

)
,

and M3 = b2n(1−p1,0p2,1)c.
1) First write: We use the pair of encoder/decoder of a constant

weight code of length n, weight bp1,0nc to encode/decode in
the first write. The rate is R1 = h(p1,0).

2) Second write: The idea is to write a binary constant weight
code of length bp1,0nc, weight bp1,0p2,1nc into all positions
with value 1 after the first write and write a binary constant
weight code of length bn−p1,0nc, weight b(n−p1,0n)p2,0c
into all positions with value 0 after the first write. Since the
decoder knows all previous states of all cells, it can decode
the two constant weight codes separately to get the original
information. The value M2 is the product of the sizes of the
two constant weight codes. The rate is R2 = p1,0h(p2,1) +
(1− p1,0)h(p2,0).

3) Third write: Let c2 be the cell-state vector after the second
write. The encoder on the third write does not have the infor-
mation of the vector N2 ∈ [3]n, but it knows the positions

1We assume here and in the rest of the section that n is sufficiently large so
that Qj,en is an integer number for all 2 6 j 6 t− 1.

of all cells with value 1, that is, the cells which were pro-
grammed exactly once. The encoder can write any word of
length b(n− p1,0n)p2,0c+ bp1,0nc− bp1,0p2,1nc into these
positions. For the rest of all cells with value 0, the encoder
does not know which cells are programmed twice and which
cells are not programmed while the decoder has this infor-
mation. The idea is to write on these cells as in the second
write of the EU:DI WOM code. Since the decoder has full
information on the cells, it decodes the message on the cells
with value 0, by considering cells which were programmed
twice in the first two writes as programmed cells in WOM.
The rate on this write equals to the weighted sum of the rates
from the two codes. The first code which contains all words
of length b(n − p1,0n)p2,0c + bp1,0nc − bp1,0p2,1nc con-
tributes to the rate R3,1 = (1 − p1,0)p2,0 + p1,0(1 − p2,1).
The second code which is the code of the second write of the
EU:DI WOM code applied on the cells with value 0, pro-
vides R3,2 = (1 − p1,0)(1 − p2,0). Hence, the rate on the
third write is R3 = R3,1 +R3,2 = 1− p1,0p2,1.

By the above construction, we can achieve for the EIP:DIA
model any rate tuple from C3,2, and hence we can con-
clude that CEIA3,2 = CEIP :DIA,ε

3,2 . Furthermore, the technique
in Construction 7 can be generalized for all t when ` = 2.
Thus, CEIAt,2 = CEIP :DIA,ε

t,2 for all t as summarized in Corol-
lary 10. Note that for t = 3 we can simplify the third
write in Construction 7 by applying the second write of
[n, 2;M ′1,M

′
2]
EU :DI,(0,ε)
2 (p1,0p2,1, 0.5) WOM code. However,

we choose to present here the more complicated construc-
tion in order to clarify the generalization in Construction 8.
Due to lack of space, we only sketch the idea of the general
construction.

Construction 8. Given pj,i ∈ [0, 0.5] where 16 j 6 t and i ∈ [2],
let Ck be a [Qk−1,en, 2;Mk1,Mk2]

EU :DI,(0,ε)
2 (

Qk−1,2

Qk−1,e
, pk,0)

WOM code, 3 6 k 6 t, where Mk2 = 2Qk−1,enRk2 and
Rk2 = (1− Qk−1,2

Qk−1,e
)h(pk,0).

We construct an [n, t, 2;M1, . . . ,Mt]
EIP :DIA,(0,0,ε,...,ε)

ELM code such that the values of M1 and M2 are ex-
actly as in Construction 7, and Mj = 2nRj where Rj =
Qj−1,eRj2 + Qj−1,1h(pj,1) for 3 6 j 6 t. The construction is
as follows.

1) The first two writes follow the ones from Construction 7.
2) On the j-th write, where j > 3, the encoder knows the bi-

nary cell-state vector cj−1 and does not have information
about the cell-program-count vector Nj−1 which the de-
coder knows. For any given δ and ε, the weight of cj−1 is
w(cj−1) ∈ [(Qj−1,1 − δ)n, (Qj−1,1 + δ)n] with high prob-
ability (p > 1 − ε). In all the positions with value 1, the
encoder can write a word of length w(cj−1) and weight
approximately (1 − pj,1)w(cj−1).For the rest of the cells,
all positions with value 0, the encoder can write accord-
ing the the second write of Cj , an EU:DI WOM code with
probability p2 = pj,0.

VI. THE EIP:DIA MODEL VS. THE EIA MODELS

In this section we compare between the EIP:DIA model and
the EIA models. The capacity of the EIA models, CEIA:DY,g

t,` for
g ∈ {z, ε} and Y ∈ {IA, IP, U} was stated in Section III to be
equal to Ct,`, while in Section IV we presented upper and lower
bounds for the capacity of the EIP:DIA model for the ε-error
case, C̃lbt,` ⊆ C

EIP :DIA,ε
t,` ⊆ C̃ubt,`. For t ∈ {` + 1, ` + 2} it was

proved in Theorem 4 that these bounds are tight.

2019 IEEE Information Theory Workshop (ITW)

The next theorem proves that for t > ` > 3 the capacity re-
gions CEIP :DIA,ε

t,` and CEIAt,` are different, while for ` = 2 these
regions were shown to be the same using Construction 8.

Theorem 9. For t > ` > 3, C̃ubt,` (Ct,`. Hence CEIP :DIA,ε
t,` (

CEIAt,` .
Proof: It can be readily verified that C̃ubt,` ⊆ Ct,`. Next, we

prove by induction on t, ` that for t > ` > 3, C̃ubt,` (Ct,`.
The base of the induction is t = 4, ` = 3. The maxi-
mum sum-rate in C4,3 is obtained for p2,0 = p3,1 = 0.5,
p3,2 < p3,0 = 0.5 (for completeness, p4,i = 0.5 for i ∈ [`],
p1,0 = 0.467,p2,1 = 0.429, and p3,2 = 0.333, and the rate tuple
is (0.997, 0.993, 0.984, 0.933)). Thus, in order to achieve this
rate tuple in C̃ubt,` the probabilities denoted by p̃ubj,0, p̃

ub
j,1 must be

as follows. For achieving R1 we should set p̃ub1,0 = p1,0. Then,
for R2 we must set p̃ub2,0 = p2,0 = 0.5, p̃ub2,1 = p2,1 (otherwise,
if we set p̃ub2,1 6= p2,1 then a bigger rate will be achieved in the
second write, but it will decrease the sum of the rates in the
next writes). For j = 3, we must set p̃ub3,1 = p3,1 = 0.5, and
then there does not exist a value p̃ub3,0 which achieves R3, since
instead of two different probabilities p3,0 and p3,2 in C4,3, there
exists only one parameter p̃ub3,0 in C̃ub4,3.

For the induction step, we assume R = (R1, . . . ,Rt) ∈ Ct,` \
C̃ubt,`, and we prove the claim for two different cases; (t + 1, `)
and (t+ 1, `+ 1).

For (t + 1, `) we have R′ = (R1, . . . ,Rt, 0) ∈ Ct+1,`.
Assume by contradiction that Ct+1,` = C̃ubt+1,`. Then, R′ =

(R1, . . . ,Rt, 0) ∈ C̃ubt+1,`, which implies that R = (R1, . . . ,Rt) ∈
C̃ubt,` in contradiction.

For (t+ 1, `+ 1) we have R′ = (R1, . . . ,Rt, 1) ∈ Ct+1,`+1,
where Qt,`+1 = 0. Assume by contradiction that Ct+1,`+1 =

C̃ubt+1,`+1. Then, R′ = (R1, . . . ,Rt, 1) ∈ C̃ubt+1,`+1, with
Qt,`+1 = 0 (otherwise, Rt+1 < 1). Hence, we can conclude
that R = (R1, . . . ,Rt) ∈ C̃ubt,`, which it is a contradiction.

We note that by the proof of the induction base case in The-
orem 9 we can conclude also that REIP :DIA,ε

4,3 < REIA4,3 , but
we can not deduce it for all t > ` > 3. We can summarize this
section in the following corollary.

Corollary 10 For all t > ` the following holds

C̃lbt,` ⊆ C
EIP :DIA,ε
t,` ⊆ C̃ubt,` ⊆ Ct,` = CEIAt,` .

• For t ∈ {`+ 1, `+ 2}, C̃lbt,` = C
EIP :DIA,ε
t,` = C̃ubt,`.

• For t > `+ 2, C̃lbt,` (C̃ubt,`.
• For t > ` = 2 all these regions are equal, in particular,
CEIP :DIA,ε
t,2 = CEIAt,2 .

• For t > ` > 3, C̃ubt,` (Ct,`, and hence CEIP :DIA,ε
t,` (CEIAt,` .

VII. CAPACITY OF THE EU:DIA MODEL

In this section we discuss the capacity region and the maxi-
mum sum-rate of the EU:DIA model. The proofs in this section
are similar to those in Section IV, and due to lack of space are
omitted.

For 1 6 j 6 t and i ∈ [`+ 1], we define the probabilities pj ,
and Qj,i as follows. pj is the probability of programming a cell
on the j-th write, and Qj,i is the probability of a cell to be pro-
grammed exactly i times in the first j writes. Additionally, let
Qj,e and Qj,o be the probability of a cell to be programmed even
and odd times in the first j writes, respectively. Formally, Qj,i,
Qj,e, and Qj,o are defined recursively by using pj′ probabilities.
For j > 1,

Qj,i =

{
Qj−1,i−1 · pj +Qj−1,i · (1− pj), if 0 < i 6 `.

Qj−1,i · (1− pj), if i = 0,
(6)

where Q0,0 = 1 and Q0,i = 0 for i > 0.
Next, we define the regions Clbt,` and Cubt,`, which are lower and

upper bounds for the capacity region CEU :DIA,ε
t,` , respectively.

Clbt,`=
{
(R1,R2, . . . ,Rt)|∀1 6 j 6 t :

Rj 6 h(pj)−Qj−1,`
pj ∈ [0, 0.5], Qj,` is defined above

}
.

(7)

Cubt,`=
{
(R1,R2, . . . ,Rt)|∀1 6 j 6 t :

Rj 6 h(pj)−Qj−1,`h(pj),
pj ∈ [0, 0.5], Qj,` is defined above

}
.

(8)

We conclude the results regarding the capacity of the EU :
DIA model in the following corollary.

Corollary 11 For all t > ` the following holds

Clbt,` ⊆ C
EU :DIA,ε
t,` ⊆ Cubt,` ⊆ C̃lbt,` ⊆ CEIP :DIA

t,` .

• For t = `+ 1, ` > 2, Clbt,` = C
EU :DIA,ε
t,` = Cubt,`.

• For t > `+ 2, ` > 2, Clbt,` (C
ub

t,`.

• For all t > ` > 2, Cubt,` (C̃lbt,`, and hence CEU :DIA,ε
t,` (

CEIP :DIA,ε
t,` .

• For t ∈ {`+ 1, `+ 2}, ` > 2,REU :DIA,ε
t,` < REIP :DIA,ε

t,` .

REFERENCES
[1] Y. M. Chee, T. Etzion, H. M. Kiah and A. Vardy, “Cooling codes: Thermal-

management coding for high-performance interconnects,” Proc. IEEE Int.
Symp. on Inform. Theory, Aachen, Germany, Jun. 2017.

[2] Y. M. Chee, M. Horovitz, A. Vardy, V. K. Vu and E. Yaakobi, “Codes for
Endurance-Limited Memories,” Proc. IEEE Int. Symp. on Inform. Theory
and Its App., Singapore, October , 2018

[3] Y. M. Chee, H. M. Kiah, A. Vardy, and E. Yaakobi, “Explicit Constructions
of Finite-Length WOM Codes”, Proc. IEEE Int. Symp. on Inform. Theory,
Aachen, Germany, Jun. 2017.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st Edi-
tion. New York: Wiley-Interscience, 1991.

[5] F. Fu and A. J. H. Vinck, “On the capacity of generalized write-once mem-
ory with state transitions described by an arbitrary directed acyclic graph,”
IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 308–313, Sep. 1999.

[6] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inform.
Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[7] M. Horovitz and E. Yaakobi, “On the capacity of write-once memories,”
IEEE Trans. Inform. Theory, vol. 63, no. 8, pp. 5124–5137, Aug. 2017.

[8] Y. Kim, A. A. Sharma, R. Mateescu, S. H. Song, Z. Z. Bandic, J. A. Bain,
and B. V. K. Vijaya Kumar, “Locally rewritable codes for resistive mem-
ories,” IEEE J. Selected Areas in Comm., vol. 34, no. 9, pp. 2470–2485,
Sep. 2016.

[9] R. Maddah, R. Melhem, and S. Cho, “RDIS: Tolerating many stuck-
at aaults in resistive memory”, IEEE Trans. Computers, vol. 64, no. 3,
pp. 847–861, Mar. 2015.

[10] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inform.
and Contr., vol. 55, no. 1–3, pp. 1–19, Dec. 1982.

[11] S. Schechter, G.H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC, for
hard failures in resistive memories,” Proc. of the 37th Annual Int. Symp.
on Comp. Arch., pp. 141–152, Saint-Malo, France, 2010.

[12] A. Shpilka, “New constructions of WOM codes using the Wozencraft en-
semble”, IEEE Trans. Inform. Theory, Vol. 59, No. 7, 2013.

[13] A. Shpilka, “Capacity-Achieving Multiwrite WOM Codes”, IEEE Trans.
Inform. Theory, Vol. 60, No. 3, pp.1481–1487, 2014.

[14] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for a write-once
memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112, 1984.

[15] C. Xu, D. Niu, Y. Zheng, S. Yu, and Y. Xie, “Impact of cell failure on
reliable cross-point resistive memory design,” ACM Trans. Des. Autom.
Electron. Syst., vol. 20, no. 4, pp. 63:1–63:21, Sep. 2015.

[16] L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong,
“Mellow writes: Extending lifetime in resistive memories through selective
slow write backs”, 2016 ACM/IEEE 43rd Annual Int. Symp. on Comp.
Arch., pp. 519–531, Jun. 2016.

2019 IEEE Information Theory Workshop (ITW)

