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Abstract—Batch codes, first introduced by Ishai, Kushilevitz,
Ostrovsky, and Sahai, mimic a distributed storage of a set of
n data items on m servers, in such a way that any batch of k
data items can be retrieved by reading at most some t symbols
from each server. Combinatorial batch codes, are replication-based
batch codes in which each server stores a subset of the data items.

In this paper, we propose a generalization of combinatorial
batch codes, called multiset combinatorial batch codes (MCBCs),
in which n data items are stored in m servers, such that any
multiset request of k items, where any item is requested at most
r times, can be retrieved by reading at most t items from each
server. The setup of this new family of codes is motivated by
recent work on codes which enable high availability and par-
allel reads in distributed storage systems. The main problem
under this paradigm is to minimize the number of items stored
in the servers, given the values of n, m, k, r, t, which is denoted
by N(n, k, m, t; r). We first give a necessary and sufficient con-
dition for the existence of MCBCs. Then, we present several
bounds on N(n, k, m, t; r) and constructions of MCBCs. In par-
ticular, we determine the value of N(n, k, m, 1; r) for any n >⌊

k−1
r

⌋
( m

k−1)− (m− k + 1)A(m, 4, k− 2), where A(m, 4, k− 2) is
the maximum size of a binary constant weight code of length
m, distance four and weight k− 2. We also determine the exact
value of N(n, k, m, 1; r) when r ∈ {k, k− 1} or k = m.

I. INTRODUCTION

Batch codes were first introduced by Ishai et al. in [11] as
a method to represent the distributed storage of a set of n data
items on m servers. These codes were originally motivated by
several applications such as load balancing in distributed stor-
age, private information retrieval, and cryptographic protocols.
Formally, these codes are defined as follows [11].

Definition 1.
1) An (n, N, k, m, t) batch code over an alphabet Σ, encodes

a string x ∈ Σn into an m-tuple of strings y1, . . . , ym ∈
Σ∗ (called buckets or servers) of total length N, such that
for each k-tuple (called batch or request) of distinct in-
dices i1, . . . , ik ∈ [n], the k data items xi1 , . . . , xik can be
decoded by reading at most t symbols from each server.

2) An (n, N, k, m, t) multiset batch code is an (n, N, k, m, t)
batch code which also satisfies the following property: For
any multiset request of k indices i1, . . . , ik ∈ [n] there is
a partition of the buckets into k subsets S1, . . . , Sk ⊆ [m]
such that each item xi j , j ∈ [k], can be retrieved by reading
at most t symbols from each bucket in S j.

Yet another class of codes, called combinatorial batch codes
(CBC), is a special type of batch codes in which all encoded
symbols are copies of the input items, i.e., these codes are
replication-based. Several works have considered codes under
this setup; see e.g. [1]–[8], [12], [14], [15]. However, note

that combinatorial batch codes are not multiset batch codes
and don’t allow to request an item more than once.

Motivated by the works on codes which enable paral-
lel reads for different users in distributed storage systems,
for example, codes with locality and availability [13], [16],
we introduce a generalization of CBCs, named multiset
combinatorial batch codes.

Definition 2. An (n, N, k, m, t; r) multiset combinato-
rial batch code (MCBC) is a collection of subsets of [n],
C = {C1, C2, . . . , Cm} (called servers) where N = ∑

m
j=1 |C j|,

such that for each multiset request {i1, i2, . . . , ik}, in which ev-
ery element in [n] has multiplicity at most r, there exist subsets
D1, . . . , Dm, where for all j ∈ [m], D j ⊆ C j with |D j| 6 t,
and the multiset union1 of D j for j ∈ [m] contains the multiset
request {i1, i2, . . . , ik}.

In other words, an (n, N, k, m, t; r)-MCBC is a coding
scheme which encodes n items into m servers, with total
storage of N items, such that any multiset request of items
of size at most k, where any item can be repeated at most r
times, can be retrieved by reading at most t items from each
server. In particular, when r = 1 we obtain a combinatorial
batch code, and when r = k and t = 1 we obtain a multiset
batch code based on replication. When t 6= 1, retrieval of a
multiset for the MCBCs does not essentially partition the set
of servers as for multiset batch codes.

Example 1. Let us consider the following (n = 5, N =
15, k = 5, m = 5, t = 1; r = 2) MCBC,

1 1 2 2 3
3 4 3 4 4
5 5 5 5 5

where the i-th column contains the indices of items stored in
the server Ci ∈ C, i ∈ [5]. It is possible to verify that the code
C satisfies the requirements of a (5, 15, 5, 5, 1; 2)-MCBC.
For example, the multiset request {3, 3, 4, 4, 5} can be read
by taking the subsets D1 = {3}, D2 = {4}, D3 = {3},
D4 = {4}, D5 = {5}. 2

Similarly to the original problem of combinatorial batch
codes, the goal in this paper is to minimize the total
storage N given the parameters n, m, k, t and r of an
MCBC. Let N(n, k, m, t; r) be the smallest N such that an

1For any i ∈ [n], the multiplicity of i in the multiset union of the sets D j
for j ∈ [m] is the number of subsets that contain i, that is |{ j ∈ [m] : i ∈
D j}|.
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(n, N, k, m, t; r)-MCBC exists. An MCBC is called optimal
if N is minimal given n, m, k, t, r. In this paper, we focus on
the case t = 1, and thus omit t from the notation and write
it as an (n, N, k, m; r)-MCBC and its minimum storage by
N(n, k, m; r). In case r = 1, i.e. when an MCBC is a CBC,
we further omit r and write it as an (n, N, k, m)-CBC and its
minimum storage as N(n, k, m).

For CBCs, a significant amount of work has been done to
study the value N(n, k, m), and the exact value has been deter-
mined for a large range of parameters. For a list of the known
results we refer the reader to [2], [3], [5], [6], [12], [15].

The rest of the paper is organized as follows. In Section II,
we give a necessary and sufficient condition for the existence
of MCBCs. In Section III, we give several bounds on MCBCs.
In Section IV, we present constructions of MCBCs. Lastly,
Section V concludes the paper. Due to the lack of space, some
of the proofs in the paper are deferred to the full version.

II. SET SYSTEMS AND THE MULTISET HALL’S CONDITION

A set system is a pair (V, C), where V is a finite set of points
and C is a collection of subsets of V (called blocks). Given a
set system (V, C) with a points set V = {v1, v2, . . . , vn} and
a blocks set C = {C1, C2, . . . , Cm}, its incidence matrix is an
m× n matrix M, given by

Mi, j =

{
1 if v j ∈ Ci ,
0 if v j 6∈ Ci .

If M is the incidence matrix of the set system (V, C), then the
set system having incidence matrix M> is called the dual set
system of (V, C).

Let C = {C1, C2, . . . , Cm} be an (n, N, k, m; r)-MCBC.
Similarly to the study of CBCs, by setting V = [n], we con-
sider the set system (V, C) of the MCBC. In addition, we
denote the set system (X,B) which is given by X = [m] and
B = {B1, B2, . . . , Bn} where for each i ∈ [n], Bi ⊆ X con-
sists of the servers that store the i-th item. Then, it is readily
verified that (X,B) is the dual set system of (V, C). We note
that a set system (V, C) of this form or its dual set system
(X,B) uniquely determines an MCBC and thus in the rest of
the paper we will usually refer to an MCBC by its set system
or its dual set system.

Example 2. In Table I, we give a (20, 80, 16, 16)-CBC from
[15] based on an affine plane of order 4. Here, V = [20],
each column contains the indices of items stored in a server
Ci ∈ C and also forms a block of the set system (V, C). Here,
the dual set system is X = [16] and B =

{{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16},
{1, 6, 11, 16}{2, 5, 12, 15}, {3, 8, 9, 14}, {4, 7, 10, 13},
{1, 8, 10, 15}, {2, 7, 9, 16}, {3, 6, 12, 13}, {4, 5, 11, 14},
{1, 7, 12, 14}, {2, 8, 11, 13}, {3, 5, 10, 16}, {4, 6, 9, 15},
{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}.

The incidence matrix of the CBC given above is as follows,
where the indices of nonzero entries in the i-th row, i ∈ [16],

correspond to the indices of items stored in the i-th server Ci.

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1


2

In the rest of this section we let (V, C) with V = [n] and
C = {C1, C2, . . . , Cm} be a set system, and (X,B) with X =
[m] and B = {B1, B2, . . . , Bn} be its dual set system. The
following theorem states a necessary and sufficient condition
on the dual set system to form a construction of CBCs.

Theorem 3.[ [12]] The set system (V, C) is an (n, N, k, m)-
CBC if and only if its dual set system (X,B) satisfies the fol-
lowing Hall’s condition:

for all h ∈ [k], and any h distinct blocks Bi1 , Bi2 , . . . , Bih ∈
B, | ∪h

j=1 Bi j | > h.

In this paper, we present a generalization of the Hall’s con-
dition, named the multiset Hall’s condition, and provide a nec-
essary and sufficient condition for the construction of MCBCs.

Theorem 4. The set system (V, C) is an (n, N, k, m; r)-MCBC
if and only if its dual set system (X,B) satisfies the following
multiset Hall’s condition:

for all h ∈ [d k
r e], and any h distinct blocks Bi1 , Bi2 , . . . , Bih ∈

B, | ∪h
j=1 Bi j | > min{hr, k}.

Proof: (⇒) Assume that (V, C) is an (n, N, k, m; r)-
MCBC, and let i1, i2, . . . , ih ∈ V for some h ∈ [d k

r e] be the
indices of some h different items. Then, the set ∪ j∈[h]Bi j cor-
responds to the indices of all the servers that contain these
items.

If h 6 b k
r c, let us consider the multiset request {i1, . . . , i1,

i2, . . . , i2, . . . , ih, . . . , ih} where each of the h elements is re-
quested r times. Since it is possible to read from each server
at most one item, the number of servers that contain these h
items has to be at least hr, that is | ∪ j∈[h] Bi j | > hr. Similarly,
if h = d k

r e, then we need k servers for the multiset request
of size k on i1, i2, . . . , ih where each i j, for j ∈ [h], is re-
quested at most r times, and so | ∪ j∈[h] Bi j | > k. Together we
conclude that | ∪h

j=1 Bi j | > min{hr, k}.
(⇐) We construct a new set system (U,F ) with U = [rn]

and F = {F1, F2, . . . , Fm} where for i ∈ [m], Fi = {c + jn :
c ∈ Ci , j ∈ [0, r− 1]}. Let U(`) = {`+ jn : j ∈ [0, r− 1]}
for ` ∈ [n]. We first show the following claim.
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TABLE I
A (20, 80, 16, 16)-CBC

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 6 5 8 7 7 8 5 6 8 7 6 5
9 10 11 12 12 11 10 9 10 9 12 11 11 12 9 10

13 14 15 16 15 16 13 14 16 15 14 13 14 13 16 15
17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20

Claim 1 (V, C) is an (n, N, k, m; r)-MCBC if (U,F ) is an
(rn, rN, k, m)-CBC.

Proof: Suppose that (U,F ) is an (rn, rN, k, m)-CBC.
For any multiset request Q of (V, C) where each ` ∈ [n] ap-
pears r` times with 0 6 r` 6 r and ∑

n
`=1 r` = k, consider the

request P of (U,F ) which contain any r` distinct elements in
U(`). Since (U,F ) is an (rn, rN, k, m)-CBC, P can be read
by taking D j ⊆ Fj, |D j| 6 1 for j ∈ [m]. Then Q can be read
from the servers {C j : j ∈ [m], |D j| = 1}. Therefore, (V, C)
is an (n, N, k, m; r)-MCBC.

Let (X = [m], G = {G1, . . . , Gnr}), be the dual set sys-
tem of (U,F ), so Gi, for i ∈ [rn], is the set of servers that
contain the i-th item in (U,F ). We show that (X, G) satisfies
the Hall’s condition. For any i1, i2, . . . , ih ∈ [rn], h ∈ [k], let
r` denote the number of elements in U(`) for ` ∈ [n]. Then∣∣∣∪h

j=1Gi j

∣∣∣ = ∣∣∪`:r` 6=0B`

∣∣.
Let a = |{` : r` 6= 0}|. By the multiset Hall’s condition,

when a 6 d k
r e,
∣∣∪`:r` 6=0B`

∣∣ > min{ar, k}; when d k
r e < a 6

k, ∣∣∣∣∣∣ ⋃`:r` 6=0

B`

∣∣∣∣∣∣ > min{r
⌈

k
r

⌉
, k} > k = min{ar, k}.

Since h = ∑`:r` 6=0 r` 6 ar and h 6 k, we always have | ∪h
j=1

Gi j | > h for any h ∈ [k], that is (X, G) satisfies the Hall’s
condition. Hence, (U,F ) is an (rn, rN, k, m)-CBC by The-
orem 3, and by Claim 1 (V, C) is an (n, N, k, m; r)-MCBC.

In the following, when constructing an MCBC, we always
construct its dual set system (X,B), and check if it satisfies
the multiset Hall’s condition from Theorem 4. By adding an
asterisk, we let (X,B)∗ denote its dual set system (V, C).

Example 3. By checking the multiset Hall’s condition,
it is possible to verify that Example 2 gives a construc-
tion of (20, 80, k, 16; r)-MCBC for any pair (k, r) ∈
{(16, 1), (11, 2), (10, 3), (7, 4)}. 2

In the following sections, we will give several bounds and
constructions of MCBCs.

III. BOUNDS OF MCBCS

In this section, we give several bounds of MCBCs. We
first state a lemma with some basic properties on the value
of N(n, k, m; r).
Lemma 5.
(i) N(n, k, m; r) > rn.

(ii) N(n, k, m; r) > N(n, k, m; i) for i ∈ [r− 1].

(iii) N(n, k, m; k) = kn.
(iv) 1

r N(nr, k, m) 6 N(n, k, m; r) 6 N(rn, k, m).
(v) N(n, k, m; r) 6 rN(n,

⌈
k
r

⌉
,
⌊m

r
⌋
).

Let (V, C) be a set system of an (n, N, k, m; r)-MCBC and
let (X,B) be its dual set system. For i > 0, we denote by
Ai the number of subsets in B of size i. Note that for i < r,
Ai = 0 since every item is contained in at least r different
servers. As pointed in [12], Ai = 0 for i > k + 1 since for
any block of size larger than k, we can reduce the block to k
points and the multiset Hall’s condition is still satisfied. The
following bound is a generalization of the results in [2], [5],
[12].

Lemma 6. If (X,B)∗ is an (n, N, k, m; r)-MCBC with r 6 k−
1, and Ai for i ∈ [k− 1] is defined as above, then

k−1

∑
i=r

(
m− i

k− 1− i

)
Ai 6

⌊
k− 1

r

⌋(
m

k− 1

)
.

Proof: Let Mk−1 be the ( m
k−1)× n matrix, whose rows

are labeled by all the (k− 1)-subsets of X, and the columns
are labeled by the blocks in B that contain less than k points.
The (i, j)-th entry of Mk−1 is 1 if the j-th block B j is con-
tained in the i-th (k− 1)-subset of X, and otherwise it is 0.

Each row in Mk−1 has at most
⌊

k−1
r

⌋
ones. In order to

verify this property, assume in the contrary that there exist⌊
k−1

r

⌋
+ 1 blocks, and without loss of generality let them be

the blocks B1, B2, . . . , Bb k−1
r c+1, which are all subsets of the

same (k− 1)-subset. Therefore, | ∪b
k−1

r c+1
i=1 Bi| 6 k− 1, and

the multiset Hall’s condition is not satisfied, since b k−1
r c +

1 = dk/re and min{(b k−1
r c + 1)r, k} = k. Every column

which corresponds to a block of size i < k has exactly ( m−i
k−1−i)

ones. Therefore, by counting the number of ones in Mk−1 by
rows and columns separately, we get that ∑

k−1
i=r ( m−i

k−1−i)Ai 6⌊
k−1

r

⌋
( m

k−1).
According to Lemma 6, the next theorem is derived, while

its proof follows the one of Lemma 3.2 in [2].

Theorem 7. Let r 6 k− 1. For any c ∈ [r, k− 1],

N(n, k, m; r) > nc−

 k− c
m− k + 1


⌊

k−1
r

⌋
( m

k−1)

( m−c
k−1−c)

− n

 .

IV. CONSTRUCTIONS OF MCBCS

In this section we present several constructions of MCBCs.
Some of the principles in these constructions use ideas from
the constructions of CBCs from [2], [5], [12].
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A. A Construction by Replication

Our first construction uses simple replication which is a
generalization of the one in [2], [5], [12].

Construction 1 Let n, k, m, r be positive integers such
that n >

⌊
k−1

r

⌋
( m

k−1) with r < k. We construct an
(n, N, k, m; r)-MCBC by explicitly constructing its dual set
system (X = [m],B = {B1, . . . , Bn}) as follows:

1) The first
⌊

k−1
r

⌋
( m

k−1) blocks of B consist of
⌊

k−1
r

⌋
copies

of all different (k− 1)-subsets of [m].
2) Each remaining block of B is taken to be any k-subset of

[m].
Thus, the value of N is given by

N = kn−
⌊

k− 1
r

⌋(
m

k− 1

)
.

The correctness of this construction is stated in the next the-
orem.

Theorem 8. The code (X,B)∗ from Construction 1 is an
(n, N, k, m; r)-MCBC with n >

⌊
k−1

r

⌋
( m

k−1), r < k and

N = kn−
⌊

k−1
r

⌋
( m

k−1).

Before we show that this construction is optimal, let us re-
call a useful lemma from [2], [5].

Lemma 9.[ [2], [5]] Let 1 6 k 6 m and 0 6 i 6 k− 1. Then
( m−i

k−1−i)− 1 > (m− k + 1)(k− 1− i).

We can now deduce that Construction 1 is optimal.

Corollary 10 For any n >
⌊

k−1
r

⌋
( m

k−1),

N(n, k, m; r) = kn−
⌊

k− 1
r

⌋(
m

k− 1

)
.

Proof: For any (n, N, k, m; r)-MCBC, let Ai for i ∈ [k]
be the number of blocks in the dual set system of size i. By
Lemma 9, for i 6 k− 1, ( m−i

k−1−i) > (m− k + 1)(k− 1− i) +
1 > k− i, then

k−1

∑
i=r

(k− i)Ai 6
k−1

∑
i=r

(
m− i

k− 1− i

)
Ai 6

⌊
k− 1

r

⌋(
m

k− 1

)
,

and the last inequality holds according to Lemma 6. Therefore,
we get that

N =
k

∑
i=r

iAi =
k

∑
i=r

(k− (k− i))Ai =
k

∑
i=r

kAi −
k

∑
i=r

(k− i)Ai

= kn−
k−1

∑
i=r

(k− i)Ai > kn−
⌊

k− 1
r

⌋(
m

k− 1

)
.

Hence, we conclude that N(n, k, m; r) = kn −
⌊

k−1
r

⌋
( m

k−1)

when n >
⌊

k−1
r

⌋
( m

k−1), since the codes from Construction 1
achieve this bound.

As a special case when r = k − 1 we get the following
corollary.

Corollary 11

N(n, k, m; k− 1) =

{
kn− ( m

k−1) if n > ( m
k−1),

(k− 1)n if n < ( m
k−1).

B. Constructions Based on Constant Weight Codes
Next, we give constructions based upon constant weight

codes. Let (n, d, w)-code denote a binary constant weight code
of length n, weight w and minimum Hamming distance d, and
let A(n, d, w) denote the maximum number of codewords of
an (n, d, w)-code.

Construction 2 Let X = [m] and C be an (m, 2(k− w), w)-
code with n codewords for some w ∈ [max{r, k/2}, k − 1].
Let B = {B1, . . . , Bn} be the support sets of all the codewords
in C.

The next theorem proves the correctness of this construction.

Theorem 12. The code (X,B)∗ from Construction 2 is an
(n, wn, k, m; r)-MCBC.

Proof: We only need to check that (X,B) satisfies the
multiset Hall’s condition. It is satisfied as the size of each
block in B is w > r and since the minimum distance of C is
2(k−w), we get that the union of any two blocks in B is at
least k.

For w = r we get the following family of optimal codes.

Corollary 13 For any n 6 A(m, 2(k− r), r), N(n, k, m; r) =
rn.

Constant weight codes were used in [2] to construct CBCs.
Now, we give a similar construction for MCBCs.

Construction 3 Let X = [m], r 6 k − 2. Let C be an
(m, 4, k− 2)-code withα codewords withα 6 A(k, 4, k− 2).
First, let B0 be a set of

⌊
k−1

r

⌋
( m

k−1) blocks, in which each

(k − 1)-subset of [m] appears
⌊

k−1
r

⌋
times. Let S consist of

the support sets of the codewords in C. Then, for any block in
S , add it to B0, and remove one copy of each of its m− k + 2
supersets2 of size k− 1 in B0. Let the resulting block set be B.

Theorem 14. The code (X,B)∗ from Construction 3 is an
(n, N, k, m; r)-MCBC with

n =

⌊
k− 1

r

⌋(
m

k− 1

)
−α(m− k+ 1) and N = n(k− 1)−α,

whereα 6 A(k, 4, k− 2).

Next, we apply Construction 3 to get a family optimal
codes, where we use the bound from A(n, 4, w) > 1

n (
n
w)

from [10].

Corollary 15 For any
⌊

k−1
r

⌋
( m

k−1)− (m− k+ 1)A(m, 4, k−

2) 6 n 6
⌊

k−1
r

⌋
( m

k−1), r 6 k− 2,

N(n, k, m; r) = n(k− 1)−


⌊

k−1
r

⌋
( m

k−1)− n

m− k + 1

 .

2For a block S ∈ S of size k− 2, the supersets are the (k− 1)-subsets of
[m] that contain S.
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C. A Construction for m = k
In the following, we give a construction of (n, N, k, k; r)-

MCBC and determine the value of N(n, k, k; r) for 1 6 r 6 k.

Construction 4 Let m = k and X = [k],B = {B1, . . . , Bn}
and k = αr + β, where α > 1 and 0 6 β 6 r− 1 such that
the following holds.

(i) When β = 0, for any n > α, let Bi = [(i− 1)r + 1, (i−
1)r + r] for i ∈ [α], and Bi = [k] for any i ∈ [α + 1, n].

(ii) When β > 0, for any n > α + r, let Bi = [(i − 1)r +
1, (i − 1)r + r] for i ∈ [α], Bi = [k] \ {i −α, i −α +
r, i−α + 2r, . . . , i−α + (α − 1)r} for i ∈ [α + 1,α +
r], and Bi = [k] for any i ∈ [α + r + 1, n].

Theorem 16. The code (X,B)∗ from Construction 4 is an
(n, N, k, k; r)-MCBC with N = kn−

⌊
k−1

r

⌋
k.

The next corollary summarizes the construction and results
in this section.

Corollary 17 N(n, k, k; r) = kn−
⌊

k−1
r

⌋
k if r | k, n > k

r or

r - k, n > b k
r c+ r.

D. A Construction from Steiner Systems

In the following we construct a class of MCBCs based upon
Steiner systems, which is a generalization of Example 2.

A Steiner system S(2, `, m) is a set system (X,B), where
X is a set of m points, B is a collection of `-subsets (blocks)
of X, such that each pair of points in X occurs together in
exactly one block of B. For the existence of Steiner systems,
we refer the reader to [9].

Theorem 18. Let (X,B) be an S(2, `, m) with m > `. Then
(X,B)∗ is a (|B|, `|B|, k, m; r)-MCBC for any b `2 c+ 1 6 r 6
` and k 6 (`− r + 1)(2r− 1).

An affine plane of order q is an S(2, q, q2). It has q2 points
and q2 + q blocks. It is well known that an affine plane exists
for any prime power q [9]. The next result of CBCs based
upon affine planes was given in [15].

Theorem 19. [15] Let q be a prime power and (X,B) be an
affine plane of order q. Then (X,B)∗ is an optimal uniform
(q2 + q, q3 + q2, q2, q2)-CBC.

The code in Theorem 19 is also an optimal CBC. However,
note that it is a different code from the optimal (n, N, k, k)-
CBC in [12] which is constructed as follows: Let X = [k],
and B = {B1, . . . , Bn}, which are given by Bi = {i} for i ∈
[k], and Bi = [k] for i ∈ [k + 1, n]. By Theorem 18, we can
see the code in Theorem 19 is also (q2 + q, q3 + q2, k, q2; r)-
MCBCs for different pair-values of k and r.

Corollary 20 Let q be a prime power. Then there exists a (q2 +
q, q3 + q2, k, q2; r)-MCBC for any b q

2 c+ 1 6 r 6 q and k 6
(q− r + 1)(2r− 1).

When r = q, we also receive an optimal (q2 + q, q3 +
q2, 2q − 1, q2; q)-MCBC, since it reaches the bound in

Lemma 5 (i) with total storage N = rn = q(q2 + q) =
q3 + q2. Note that this code could also be obtained by Con-
struction 2 using (q2, 2q − 2, q)-codes. The existence of
(q2, 2q − 2, q)-codes follows from affine planes as follows.
For any block B ∈ B, we get a codeword u of length q2 in
which the value of each coordinate ui for i ∈ [q2] is 1 if and
only if i ∈ B. Since any two blocks intersect in at most one
points, the distance between every two distinct codewords is
at least 2(q − 1). Finally, we note that it is possible to im-
prove the value of k when r 6 b q

2 c, and the optimality of
this code construction for other values of r is left open for
future research.

V. CONCLUSION

In this paper, we generalized combinatorial batch codes to
multiset combinatorial batch codes. Several bounds and con-
structions of optimal codes were obtained.
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