
Rank Modulation Codes for DNA Storage
Netanel Raviv?,†, Moshe Schwartz†, and Eitan Yaakobi?

?Computer Science Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel
†Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel

netanel.raviv@gmail.com, schwartz@ee.bgu.ac.il, yaakobi@cs.technion.ac.il

Abstract—Synthesis of DNA molecules offers unprecedented
advances in storage technology. Yet, the microscopic world in
which these molecules reside induces error patterns that are
fundamentally different from their digital counterparts. Hence,
to maintain reliability in reading and writing, new coding
schemes must be developed.

In a reading technique called shotgun sequencing, a long DNA
string is read in a sliding window fashion, and a profile vector
is produced. It was recently suggested by Kiah et al. that such
a vector can represent the permutation which is induced by its
entries, and hence a rank modulation scheme arises. Although
this interpretation suggests high error tolerance, it is unclear
which permutations are feasible, and how to produce a DNA
string whose profile vector induces a given permutation.

In this paper, by observing some necessary conditions, an
upper bound for the number of feasible permutations is given.
Further, a technique for deciding the feasibility of a permutation
is devised. By using this technique, an algorithm for producing
a considerable number of feasible permutations is given, which
applies to any alphabet size and any window length.

I. INTRODUCTION

Coding for DNA storage devices has gained increasing
attention lately, following a proof of concept by several
promising prototypes [1], [3], [4]. Due to the high cost and
technical limitations of the synthesis (i.e., writing) process,
these works focused on producing short strings, but as the
cost of synthesis declines, longer strings can be produced. In
turn, long strings are read more accurately by a technique
called shotgun sequencing [12], in which short substrings are
read separately and reassembled together to form the original
string.

The shotgun sequencing technique has motivated the def-
inition of the DNA storage channel [8]. In a channel with
alphabet Σ of size q and a window length `, data is stored as
a long string over Σ; the output of the channel is a (possibly
erroneous) histogram, or a profile vector with q` entries, each
containing the number of times that the corresponding `-
substring was observed. Errors in this channel might occur as
a result of substitution errors in the synthesis or sequencing
processes, or imperfect coverage of reads.

In order to cope with different error patterns, several code
constructions were recently suggested [8], however, much is
yet to be done to obtain high error resilience and high rate.
It was also suggested in [8, Sec. VIII.B] to employ a rank
modulation scheme, which has the potential for coping with
any error pattern that does not revert the order among the
entries of the profile vector.

In this scheme, the absolute values of the profile vector are
ignored, and only their relative values are considered. That
is, a given profile vector represents the permutation which is
induced by its entries. Clearly, to induce a permutation the
entries of the vector must be distinct, which is a reasonable
assumption for long strings and short read length.

A well known tool in the analysis of strings is the DeBruijn
graph G`q , whose set of nodes is Σ`, and two nodes are

This work was supported in part by the Israel Science Foundation (ISF)
under grant No. 130/14 and grant No. 1624/14.

connected by a directed edge if the (`−1)-suffix of the former
is the (` − 1)-prefix of the latter. This graph is a useful tool
in the analysis of the DNA storage channel since any string
over Σ induces a path in the graph, and since a (normalized)
profile vector can be seen as measure on its node set. Further,
we may restrict out attention to closed strings only (i.e., strings
that correspond to closed paths), since in our context, they are
asymptotically equivalent to their ordinary counterparts.

Due to flow conservation constraints in the DeBruijn
graph [7], it is evident that not every permutation is feasible,
i.e., there exist permutations that are not induced by any
profile vector, and hence by any string. Consequently, [8]
suggested to disregard a certain subset S of the entries in
the profile vector, encode any permutation on the complement
of S, and complete the entries of S to obtain flow conserva-
tion.

In this paper the feasibility question is studied in a more
restrictive setting, where all the entries of the profile vector are
considered. By formulating several necessary conditions, an
upper bound is given on the number of feasible permutations,
out of all permutations on q` elements. In addition, a linear
programming technique is devised to decide the feasibility of
a given permutation. Using this technique, an encoding algo-
rithm for producing a large number of feasible permutations
for any alphabet size q and any ` is given. Interestingly, some
of the above results rely on an interpretation of the encoding
process as a Markov chain on the DeBruijn graph. Further,
it is also observed that if the entries of the profile vector are
grouped according to equivalence classes of cyclic rotations,
then any permutation is feasible. Even though this approach
might seem simpler, it induces lower information rate and
lower error resilience.

Finally, this problem may also be seen in a more general
setting, beyond any applications for DNA storage. For exam-
ple, it may be seen as a highly-restrictive variant of constraint
coding, an area of coding theory that concerns the construction
of strings with or without some prescribed substrings. This
resemblance is apparent by observing that in our setting, every
`-substring is required to be more or less frequent than any
other `-substring.

II. PRELIMINARIES

For an alphabet Σ of size q and a window size `, let G`q
be the DeBruijn graph of order ` over Σ. That is, the node
set V (G`q) is Σ`, and for any two nodes u and v in V (G`q),
the edge set E(G`q) contains (u, v) if the (`− 1)-suffix of u
equals the (`− 1)-prefix of v. An edge (u, v) is labeled by a
string w ∈ Σ`+1 whose `-prefix is u and whose `-suffix is v.

For a string x over Σ, the `-profile vector px ∈ Zq` (or
simply, the profile vector) is a vector with q` non-negative
integer entries (px(w))w∈Σ` , each of which contains the
number of occurrences of the corresponding `-substring in x,
i.e., px(w) = |{i | xi, . . . , xi+`−1 = w}| for all w ∈ Σ`,
where indices are taken modulo |x|. The entries of px may be

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 3135

identified by either the set of nodes of G`q or the set of edges
of G`−1

q , and the subscript x is omitted if clear from context.
The symmetric group Sq` is seen as the set of all bijective

functions from Σ` to {0, 1, . . . , q` − 1}. For a permutation
π ∈ Sq` , a vector p ∈ Rq` satisfies π if the relative order
among the entries of p is identical to that of π, in which case
we denote p � π. Similarly, a string x ∈ Σ∗ (where Σ∗ is
the set of all closed strings) satisfies a permutation π ∈ Sq`
if px � π (or x � π by abuse of notation), where px is the `-
profile vector of x. Further, a permutation π is feasible if there
exists a string x ∈ Σ∗ such that x � π. Clearly, only vectors
with distinct entries can satisfy a permutation, and hence, not
every string satisfies a permutation.

The main goals in this paper are to characterize, bound,
and construct sets of feasible permutations in Sq` . To this
end, given q and `, let

Fq,` , {π ∈ Sq` | ∃x ∈ Σ∗, x � π}, and

Rq,` ,
log2 |Fq,`|
log2(q`!)

.

It is evident that Fq,1 = Sq for any q, and that F2,` = ∅ for
every ` ≥ 2 (due to the structure of G`q around the constant
strings σ`). Therefore, the simplest set of parameters, that will
be prominent in Section V, is ` = 2 and q = 3.

A. Grouping by equivalence classes

Let ∼ be the equivalence relation of cyclic rotations on Σ`,
i.e., u ∼ v if one can be obtained from the other by cyclic
rotations, and let Σ`/∼ be the corresponding set of equivalence
classes (that are often called necklaces [5]). It is known [5,
p. 141, Eq. 4.63] that the size of any equivalence class in Σ`/∼
divides `, and the size ψ` of Σ`/∼ is given by the following
formula, in which φ is Euler’s totient function.

ψ` =
1

`

∑
d|`

φ(d)q`/d

For a profile vector p ∈ Zq` , the vector p̃ ∈ Zψ` is an
integer vector whose entries are identified by the elements
of Σ`/∼. Each entry p̃(C) for C ∈ Σ`/∼ contains the sum of
entries in p that correspond to the elements of C.

Let S̃ψ` be the set of bijective functions from Σ`/∼
to {0, 1, . . . , ψ` − 1}. A permutation π ∈ S̃ψ` is feasible if
there exists a string x ∈ Σ∗ such that p̃x � π. Since each
equivalence class is a cycle in G`q , and since G`q is strongly
connected, the following is easy to prove by choosing a proper
path in G`q .

Theorem 1. For any q and any `, all the permutations in S̃ψ`
are feasible.

Theorem 1 suggests an alternative rank modulation scheme.
However, grouping by equivalence classes diminishes the
error resilience of the system. Further, it will be evident from
Theorem 15 which follows, that a comparable rate can be
achieved explicitly without grouping by equivalence classes.

B. Feasible permutations and Markov Chains

Some of the results which follow utilize an intriguing
connection to Markov chains over DeBruijn graphs. This
connection, which is described in this subsection, may be used
for obtaining a randomized encoding algorithm.

A Markov chain [2] is an infinite series of random variables
X0, X1, . . ., whose states space is the vertex set of a graph

(G`q in this paper). For any natural n and for any set of vertices
i0, . . . , in, and j, a Markov chain satisfies that

Pr(Xn+1 = j | Xn = in, Xn−1 = in−1, . . . , X0 = i0)

= Pr(Xn+1 = j | Xn = in),

and the right hand side is independent of n. Clearly, since
this process is memoryless, the transition probabilities can
be described by a transition matrix M , such that Mi,j is
the probability that the random path traverses to vertex j,
given that it is currently in vertex i. If v is a probability
distribution on nodes at a certain step of the chain (i.e., vi
is the probability that the chain is currently in vertex i), then
vM is the probability distribution in the following step.

A Markov chain is irreducible if for any states i and j, there
exists an integer t such that the chain travels from state i to
state j in t steps with a nonzero probability. A Markov chain
is called positive recurrent if the mean return time to any
state is finite. It is readily verified that any Markov chain
on a DeBruijn graph with no zero transition probabilities is
irreducible and positive recurrent, and we henceforth restrict
our attention to such Markov chains.

It is a basic fact that a Markov chain on any finite graph
has a unique stationary distribution, that is, a probability
distribution p such that pM = p. Moreover, given any initial
distribution v it is known that the chain tends to p as the
number of steps tends to infinity, i.e., vM i i→∞−→ p. In the
remainder of this section, M ∈ Rq`×q` is a transition matrix
of an irreducible and positive recurrent Markov chain on G`q
for some q and `, and p is its stationary distribution. The next
observation follows from the structure of the adjacency matrix
of G`q .

Observation 2. For any u ∈ Σ`−1, the stationary distribu-
tion p of M satisfies

∑
σ∈Σ p(σu) =

∑
σ∈Σ p(uσ).

This lemma implies that a stationary distribution satisfies all
flow-conservation constraints on the edges of G`−1

q [7]. Now,
take a rational approximation of p, multiply it by the lcm of
its entries’ denominators, and place the resulting numbers on
the edges of G`−1

q . This implies, according to Observation 2,
that there exists an Eulerian path in G`−1

q such that its
corresponding `-profile vector satisfies p, which gives rise to
the following result.

Lemma 3. For a given permutation π ∈ Sq` , if there exists a
transition matrix M whose stationary distribution satisfies π,
then there exists a string x which satisfies π.

The above discussion implies two possible algorithms for
obtaining a string which satisfies a given stationary distribu-
tion p. A randomized one is given by defining the transition
matrix

(Mp)a,b =

{
p(vσ)∑
τ∈Σ p(vτ) if (a, b) is an edge and b = vσ,

0 otherwise,

whose stationary distribution is p, and following the resulting
Markov chain for long enough. A deterministic one is given
by finding an Eulerian path from the rational approximation
of p, as described above.

In the sequel it is shown that these algorithms apply for any
real vector χ that satisfies the flow conservation constraints
(Lemma 10), and a method for deciding if such a vector exists
and finding it for a given permutation is provided (Section IV).
Further, the encoding algorithms in Section V operate by
generating a large set of such vectors.

2017 IEEE International Symposium on Information Theory (ISIT)

3136

III. UPPER BOUND

The upper bound in this section relies on the follow-
ing necessary condition for feasibility of a given permuta-
tion π. To formulate this condition, for a string u ∈ Σ`−1

let G`q(u) be the subgraph of G`q which consists of the vertices
{σu}σ∈Σ ∪ {uσ}σ∈Σ, that are connected as in G`q . Given a
permutation π ∈ Sq` , color the edges of G`q (and of G`q(u)
for all u ∈ Σ`−1) in red and green such that an edge (a, b) is
colored in green if π(a) < π(b) and in red if π(a) > π(b). The
following constraint encapsulates the aforementioned flow
conservation constraint.

Lemma 4. If there exists u ∈ Σ`−1 such that G`q(u) contains
an all-red perfect matching or an all-green perfect matching,
then π is infeasible.

A central tool in this section is an arrangement. For
A ⊆ Σ`, an arrangement of A is a vector of length |A|
that contains each element of A exactly once, and a
sub-arrangement is obtained from an arrangement by
deleting some of its entries. For a permutation π on
a set A ⊆ Σ`, i.e., an injective function from A
to {0, . . . , |A| − 1}, the corresponding arrangement is the
vector (π−1(0), . . . , π−1(|A| − 1)). The bound in this section
is obtained by counting the number of infeasible arrangements
on string sets of the form V (G`q(u)) for some u, and then
expanding this bound to a large set of mutually disjoint
subgraphs. The proof of the following lemma, which is
omitted due to lack of space, uses the well-known Catalan
numbers to enumerate the number of all-green and all-red
perfect matchings in a subgraph G`q(u).

Lemma 5. For u ∈ Σ`−1, the number of infeasible arrange-
ments of V (G`q(u)) is at least 2

q+1 · (2q)!.

Mutually disjoint subgraphs G`q(u) are obtained as follows.

Lemma 6. If {ui}ki=1 ⊆ Σ`−1 is an independent set of ver-
tices in G`−1

q , then the sets V (G`q(u)) are mutually disjoint.

Let U be an independent set of size k in G`−1
q with no

self loops, and let {πi}i∈[k] be a set of arrangements on
the respective nodes of {G`q(u)}u∈U . The following claim
presents the number of arrangements on Σ` that contain πi
as a sub-arrangement for all i ∈ [k]. This claim is proven
by considering the set of multi-permutations on the multi-
set {12q, . . . , k2q}, and embedding πi in the positions which
contain i for each i ∈ [k].

Lemma 7. There exist q`!
(2q)!k

arrangements π on Σ` that
contain πi on V (G`q(ui)) for any i ∈ [k].

Fortunately, the maximum value of k was studied in [10],
where it is called the loopless independence number α∗(q, `).

Lemma 8. [10] α∗(q, `) ≥ q`−q`−2

3 .

Using Lemma 5, Lemma 7, and Lemma 8, the number
of arrangements that contain an infeasible sub-arrangement
on some subgraph G`q(u) can be bounded. Unfortunately, the
resulting bound does not seem to provide a non-trivial upper
bound on the rate Rq,`.

Theorem 9. For any q and any `, |Fq,`| ≤
(
q−1
q+1

) q`−q`−2

3 ·q`!.

IV. A POLYNOMIAL ALGORITHM FOR DECIDING
FEASIBILITY

In this section it is shown that a given permutation π ∈ Sq`
can be decided to be feasible or not in time polynomial in
q`. If it is feasible, the time complexity of producing a string
which satisfies it depends on its minimal length, a topic yet to
be studied. The given algorithm relies on the following simple
claim, which resembles Observation 2 and its subsequent
discussion.

Lemma 10. A permutation π ∈ Sq` is feasible if and only
if there exists a vector χ ∈ Rq` such that π � χ and for
all u ∈ Σ`−1,

∑
σ∈Σ χ(uσ) =

∑
σ∈Σ χ(σu).

Given a permutation π, Lemma 10 gives rise to the linear
programming problem below for deciding its feasibility. In
what follows, for a set A ⊆ Σ` the notation 1A stands for the
binary characteristic vector of A, and ‘·’ denotes the ordinary
inner product.
Variables {χv | v ∈ Σ`}.
Objective None.
Constraints

• χ(u) − χ(v) > 0 for all distinct u and v in Σ` such
that π(u) > π(v).

• χ · (1{vσ | σ ∈ Σ} − 1{σv | σ ∈ Σ}) = 0 for
all v ∈ Σ`−1.

According to Lemma 10, determining the feasibility of this
system is equivalent to determining the feasibility of the
given permutation π. Since deciding the feasibility of a linear
programming problem can be done in polynomial time, so
does the feasibility of a given permutation.

Given the vector χ, the corresponding permutation may be
found by sorting its entries. The corresponding string may be
generated by shifting the entries of χ by an additive constant
to obtain a positive vector, normalizing the result by the
sum of entries, and following either the randomized or the
deterministic algorithms that were mentioned after Lemma 3.
For this reason, the encoding algorithms in the sequel focus
on finding the vector χ, rather than finding the permutation
itself.

V. ENCODING ALGORITHMS

In this section encoding algorithms are given for any `
and any q. These algorithms provide a lower bound on the
size of Fq,` for the respective parameters. Since an additive
structure of the alphabet is required, it is assumed in this
section that Σ = Zq . From the reasons that were discussed
at the end of Section IV, the algorithms that are detailed in
this section focus on providing the vector χ (Lemma 10). In
Subsection V-A an algorithm for ` = 2 and any q is given;
and in Subsection V-B it is used as the base case for another
algorithm which obtains feasible permutations for any ` and
any q.

To clearly describe the constraints on the vector χ, by
abuse of notation it is considered either as a vector in Rq`

or as a matrix in Rq`−1×q`−1

. That is, given a string u
in Z`q , the notation χ(u) stands for the u-th entry of χ when
seen as a vector, and given two strings w,w′ in Σ`−1, the
notation χ(w,w′) denotes the (w,w′) entry when seen as a
matrix, where

χ(w,w′) ,{
χ(u) if (w,w′) is a u-labelled edge in E(G`q)

0 else
.

2017 IEEE International Symposium on Information Theory (ISIT)

3137

Algorithm 1: Aq(m), an encoding algorithm for ` = 2 and any q.
Data: A repository R of all f3,2 feasible matrices for q = 3 and ` = 2.
Input : An information vector m ∈ Iq .
Output: A feasible matrix χ ∈ Rq×q (which represents a feasible vector χ ∈ Rq2

).
if q = 3 then return the m-th feasible matrix in R;
Denote m = (m′, πq) for m′ ∈ Iq−1 and πq ∈ Sq .
Apply Aq−1(m′) to get a matrix χ′, and for i, j ∈ Zq−1 denote (χ′)i,j = xi,j .
Choose ε such that

ε <
min{|xi,j − xs,t| : i, j, s, t ∈ Zq−1 and (i, j) 6= (s, t)}

q
.

Choose1 y , (y0, . . . , yq−1) ∈ Rq such that y � πq , and such that the following matrix contains distinct positive entries

χ ,

y0 y1 − (q−1)(q−2)
2 · ε y2 · · · yq−1

y1 x0,0 x0,1 · · · x0,q−2

y2 − ε x1,0 + ε x1,1 · · · x1,q−2

y3 − 2ε x2,0 + 2ε x2,1 · · · x2,q−2

...
...

...
. . .

...
yq−1 − (q − 2)ε xq−2,0 + (q − 2)ε xq−2,1 · · · xq−2,q−2

.

return χ.

Using this notation, for v ∈ Z`−1
q the constraint∑

σ∈Zq χ(vσ) =
∑
σ∈Zq χ(σv) may be written as∑

u∈Z`−1
q

χ(v, u) =
∑
u∈Z`−1

q
χ(u, v), i.e., the v-th row sum

equals the v-th column sum. A vector (matrix) χ which
satisfies these constraints and satisfies a permutation is called
a feasible vector (matrix).

A. An encoding algorithm for ` = 2 and any q

This algorithm operates recursively on q, where the base
case is q = 3. To resolve the base case, the set F3,2 (or
the corresponding set of feasible matrices) should be kept
in a repository. It can be shown both combinatorially and
computationally that the size of F3,2 is f3,2 , 30240. In
what follows, the discussion refers to Algorithm 1, in which
the information vector is taken from the set Iq , [f3,2] ×
[4!]× [5!]× · · · × [q!].

By the choice of ε and the choice of y, it is evident
that the output χ contains distinct and positive entries. To
prove the correctness of the algorithm, it ought to be shown
that the row and column sum constraint from Lemma 10
is satisfied, and that different information vectors result in
different permutations. First, by summing across the rows and
columns of the matrix χ in Algorithm 1, the following holds.

Lemma 11. For all τ ∈ Zq ,
∑
σ∈Zq χ(τ, σ) =∑

σ∈Zq χ(σ, τ).

Second, the fact that Algorithm 1 is injective is as follows.

Lemma 12. If u and v are distinct information vectors in Iq
such that Aq(u) = χu, Aq(v) = χv and χu � πu, χv � πu
for some permutations πu and πv , then πu 6= πv .

Proof. Note that according to the choice of ε, the relative
order among the entries of χ′ is preserved. Hence, if ui 6= vi
for some entry i, then the respective permutations between
the yj-s in stage i of the algorithm (or the chosen permutation
from R if i = 1) are distinct. Hence, the permutation on the
corresponding entries of χu and χv are also distinct, and the
claim follows.

Corollary 13. For any q,

|Fq,2| ≥ f3,2 ·
q−4∏
i=0

(q − i)! and lim
q→∞

Rq,2 ≥
1

4
.

B. An encoding algorithm for any ` and any q
In this section the recursive algorithm from Subsection V-A

is used to obtain an encoding algorithm for any ` and any q.
Inspired by [9] and [11], the recursive step of the algorithm
relies on embedding a feasible matrix χ`−1 in homomorphic
pre-images of G`−1

q in G`q , and breaking ties that emerge. The
information vector at hand is encoded into the particular way
that these ties are broken.

Definition 14. [6] For graphs G and H , a function f :
V (G) → V (H) is a (graph) homomorphism if for each
pair of vertices u, v in V (G), if (u, v) is an edge in G
then (f(u), f(v)) is an edge in H .

The algorithm which follows relies on the following ho-
momorphism, and yet, many other homomorphisms exist, and
either of them may be used similarly.

D` : Z`q → Z`−1
q

D`(v) , (v0 + v1, v1 + v2, . . . , v`−2 + v`−1), and
D : Z∗q → Z∗q
D(v) , D|v|(v).

It is an easy exercise to prove that for any `, the function D
is a q to 1 surjective homomorphism from G`q to G`−1

q . That
is, for every u ∈ Z`−1

q , the set D−1(u) contains exactly q
elements. Moreover, it is readily verified that this set may be
written as

D−1(u) = {v0, . . . , vq−1},

where vi,0 = i for all i ∈ Zq . Similarly, for every u ∈ Z`−1
q ,

{D(σu)}σ∈Zq = {σD(u)}σ∈Zq , and
{D(uσ)}σ∈Zq = {D(u)σ}σ∈Zq .

1Since y is a real vector, it is clear that such a vector exists and may easily
be found.

2017 IEEE International Symposium on Information Theory (ISIT)

3138

Algorithm 2: B`q(m), an encoding algorithm for any ` and any q.

Input : An information vector m ∈ J`q .
Output: A feasible matrix χ ∈ Rq`−1×q`−1

(which represents a feasible vector χ ∈ Rq` .)
if ` = 2 then return Aq(m) (Algorithm 1);
Denote m = (m′, P), where P ∈ P` and m′ ∈ J`−1

q .
Apply B`−1

q (m′) to obtain a matrix χ`−1.
Multiply χ`−1 by a positive constant2 such that the absolute differences between any two entries in the resulting matrix
are at least 2.

foreach v ∈ Z`q do
Denote v = v0v

′, where v0 ∈ Zq and v′ ∈ Z`−1
q .

Denote D(v) , w = (w0w
′w`−2), where w0, w`−2 ∈ Zq and w′ ∈ Z`−3

q .
Define

χ`(v) =

χ`−1(D(v)) + P (D(v))(v0)

q〈w0,w`−2〉 if D(v) ∈ A`
χ`−1(D(v))−

∑
µ6=v0

P (µ−v0,w
′w`−2)(µ)

q〈µ−v0,w`−2〉 if w0 = 0, w`−2 6= 0

χ`−1(D(v))−
∑
τ 6=0

P (w0w
′,τ)(v0)

q〈w0,τ〉 if w0 6= 0, w`−2 = 0

χ`−1(D(v)) +
∑
µ6=v0

∑
τ 6=0

P (µ−v0,w
′,τ)(µ)

q〈µ−v0,τ〉
if w0 = w`−2 = 0

end
return χ`.

The information vector is taken from the set J`q , defined as
follows.

J`q , Iq × P3 × P4 × · · · × P`, where

Pi , {P | P : Ai → Sq}, and

Ai , {u ∈ Zi−1
q | 0 /∈ {u0, ui−2}} for all i ∈ {3, . . . , `}.

That is, the information vector is of the form m =
(m′, P3, . . . , P`), where Pi is a function from Ai to Sq , and
m′ ∈ Iq (see Subsection V-A). In addition, for i and j in Zq ,
let 〈i, j〉 be 〈i, j〉 , i+ j · q + 1.

In stage `, Algorithm 2 relies on embedding the ma-
trix χ`−1, which results from stage ` − 1, in entries of χ`
that correspond to homomorphic pre-images of G`−1

q in G`q .
Since the homomorphism D is q to 1, this results in q`−1

sets of entries in χ`, of q elements each, that contain identical
entries. These equalities are broken by adding small constants
to each set, where these constants are ordered according to
the permutations in Sq that appear in the current entry of
the information vector. To maintain the row and column sum
constraint (Lemma 10), a unique entry in every row and every
column is chosen, and its addition is adjusted to cancel out
the sum of additions from its respective row or column.

To verify the correctness of Algorithm 2, it must be shown
that the row and column sum constraint (Lemma 10) is
satisfied, that the entries are distinct, and that it is injective.
Note that the additions to v ∈ Z`q such that D(v) /∈ A` are
chosen to cancel out the additions in their respective rows
and columns, and hence the row and column sums of χ`
are identical to those of χ`−1. To prove that the entries are
distinct, it is readily observed that all ties in the homomorphic
pre-images of G`−1

q in G`q are broken with fractions that
have distinct q-ary expansions. The fact that Algorithm 2 is
injective follows similarly to Lemma 12. Full proofs of these
facts will appear in future version of this paper. In addition,
Algorithm 2 implies the following.

Theorem 15. For any q and `,

|Fq,`| ≥ f3,2 ·

(
q−4∏
i=0

(q − i)!

)
·

(∏̀
i=3

(q!)q
i−1−2qi−2+qi−3

)
,

and hence, lim
q→∞

Rq,` ≥ 1
` for any fixed ` ≥ 3.

VI. DISCUSSION

In this paper a rank modulation scheme for DNA storage
was studied. In particular, an upper bound for the number of
feasible permutations was given by formulating a necessary
condition, and an encoding algorithm was devised.

Other than improving the results in this paper, for future
research we would also like to find the minimum n for which
all the permutations in Fq,` have a corresponding string of
length n. Furthermore, we would like to endow Fq,` with a
proper metric, such as Kendall’s τ , and find good codes by
this metric.

REFERENCES

[1] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” In Proc. ASPLOS,
pp. 637–649, 2016.

[2] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and
queues, vol. 31, Springer Science & Business Media, 2013.

[3] G. M. Church, Y. Gao, S. Kosuri, “Next-generation digital information
storage in DNA,” Science, 337.6102, pp. 1628-1628, 2012.

[4] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77-80, 2013.

[5] R. L. Graham, D. L. Knuth, and O. Patashnik. Concrete Mathematics:
A Foundation for Computer Science (2nd Edition). Addison-Wesley,
1994.

[6] J. L. Gross and J. Yellen. Handbook of graph theory. CRC press, 2004.
[7] P. Jacquet, C. Knessl and W. Szpankowski, “Counting Markov Types,

Balanced Matrices, and Eulerian Graphs,” IEEE Transactions on Infor-
mation Theory, vol. 58, no. 7, pp. 4261–4272, 2012.

[8] H. M. Kiah, J. G. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Transactions on Information Theory, vol. 62, no. 6,
pp. 3125–3146, 2016.

[9] A. Lempel, “On a homomorphism of the de Bruijn graph and its ap-
plications to the design of feedback shift registers,” IEEE Transactions
on Computers, vol. 100, no. 12, pp. 1204–1209, 1970.

[10] N. Lichiardopol, “Independence number of de Bruijn graphs,” Discrete
mathematics, vol. 306, no. 12, pp. 1145–1160, 2006.

[11] M. Liu, “Homomorphisms and automorphisms of 2-D de Bruijn-Good
graphs,” Discrete Mathematics, vol. 85, no. 1, pp. 105–109, 1990.

[12] A. S. Motahari, G. Bresler, and N. C. David, “Information theory of
DNA shotgun sequencing,” IEEE Transactions on Information Theory,
vol. 59, no .10, pp. 6273–6289, 2013.

2Notice that multiplying a feasible matrix by any positive constant does
not compromise the row and column sum constraints, and does not change
the relative order of the entries.

2017 IEEE International Symposium on Information Theory (ISIT)

3139

