
Mutually Uncorrelated Codes for DNA Storage
Maya Levy

Technion - Israel Institute of Technology
Haifa 32000, Israel

mayalevy@cs.technion.ac.il

Eitan Yaakobi
Technion - Israel Institute of Technology

Haifa 32000, Israel
yaakobi@cs.technion.ac.il

Abstract—Mutually Uncorrelated (MU) codes are a class of codes
in which no proper prefix of one codeword is a suffix of another
codeword. These codes were originally studied for synchronization
purposes and recently, Yazdi et al. showed their applicability to
enable random access in DNA storage. In this work we follow
the research of Yazdi et al. and study MU codes along with their
extensions to correct errors and balanced codes.

We first review a well known construction of MU codes and
study the asymptotic behavior of its cardinality. Then, we present
an efficient algorithm for MU codes with linear encoding and
decoding complexity. Next, we extend these results for (dh, dm)-
MU codes that impose a minimum Hamming distance of dh
between different codewords and dm between prefixes and suffixes.
Particularly we show an efficient construction of these codes with
nearly optimal redundancy and draw connections to the problem
of comma-free and prefix synchronized codes. Lastly, we provide
similar results for the edit distance and balanced MU codes.

I. INTRODUCTION

Mutually Uncorrelated (MU) codes satisfy the constraint
in which the prefixes set and suffixes set of all codewords
are disjoint. This class of codes was first studied by Leven-
shtein [13] for the purpose of synchronization, and has received
attention recently due to its relevance and applicability for DNA
storage [21]. Namely, these codes offer random access of DNA
blocks in synthetic DNA storage.

The potential of DNA molecules as a volume for storing
data was recognized due to its unique qualities of density
and durability. The first large scale DNA storage system was
designed by Church et al. [7] in 2012. Since then a few
similar systems were implemented but they did not support
random access to the memory. Recently, in [5], [21] two random
access DNA storage systems were proposed. To enable random
access, the authors suggested to equip the DNA information
blocks with unique addresses, which are aimed to identify the
corresponding blocks during the reading process.

Obtaining a good set of addresses is therefore a key property
in achieving the desired random access feature as it guarantees
the success of the chemical processes involved in the identifi-
cation phase. The constraints that a good addresses set should
satisfy are listed by Yazdi et al. in [21]. In this paper we focus
on three of the four listed constraints, described as follows:
1) the MU constraint is imposed as it avoids overlaps in two
addresses, which are likely to cause erroneous identification of
DNA blocks, 2) both the writing and reading channels of DNA
introduce substitution errors, therefore we are interested in large
mutual Hamming distance, and 3) we require the addresses
to be balanced since balanced DNA sequences increase the
chances of successful reads. In addition, the authors of [19]
mentioned that deletion errors are introduced during synthesis.
We therefore also extend our study to MU codes with edit
distance.

MU codes were rigorously studied in the literature under
different names such as codes without overlaps [15], [16], non-
overlapping codes [4] and cross-bifix-free codes [1], [3], [6].
However, the basic problem of finding the largest MU code is
still not fully solved. Let us define by AMU (n, q) the size of the

largest MU code over a field of size q. The best upper bound,
found by Levenshtein [15], states that AMU (n, q) < qn/(en),
while the best known constructive lower bound, given inde-
pendently in [6], [8], [13], states that AMU (n, q) & q−1

qe ·
qn

n .
Hence, for the binary case there is still a gap of factor 2
between the lower and upper bound. The construction of MU
codes is explicit. Given some k < n, one fixes the first k bits
to be zero, followed by a single one, and the last bit is one
as well. The sequence of the remaining n − k − 2 needs to
satisfy the constraint that it does not have a zeros run of length
k. Previous results claimed that q−1

qe ·
qn

n is a lower bound
on the construction’s code size, when n = (qi − 1)/(q − 1),
however it was not known whether it is possible to achieve
codes with larger cardinality. We show that in the binary case
indeed it is not possible to achieve larger codes using this
construction. Lastly, we present efficient encoding and decoding
algorithms with linear complexity which results in MU codes
with dlog(n)e+ 4 redundancy bits.

We then extend our study for MU codes with error-correction
capabilities. A (dh, dm)-MU code is an MU code with mini-
mum Hamming distance dh, with the additional property that
every prefix of length i differs by at least min{i, dm} symbols
from all proper length suffixes. We show an upper bound on
the size of (dh, dm)-MU codes and give a construction of
such codes with encoder and decoder of linear complexity.
The redundancy of the construction is

⌊
dh+1

2

⌋
log(n) + (dm −

1) log log(n) + O(dm log dm), which is nearly optimal with
respect to our upper bound on the code size. A similar con-
straint is imposed when studying MU codes with edit distance.
We give a general result of such codes and study MU codes
that can correct a single deletion or insertion. Lastly, we study
balanced MU codes, that is, codes which are both MU and
balanced. We show that the achievable minimum redundancy
of these codes is approximately 1.5 log(n) and for an efficient
construction we use Knuth’s algorithm while the redundancy is
roughly 2 log(n) bits.

II. DEFINITIONS, PRELIMINARIES, AND RELATED WORK

For every two integers i ≤ k we denote by [i, k] the set of
integers {j | i ≤ j ≤ k} and use [k] as a shortening to [1, k].
Let Σq be a finite alphabet of size q and Σnq be the set of vectors
of size n over the alphabet Σq . We also denote by Fn2 the set of
binary vectors of length n. For a vector a = (a1, . . . , an) and
i, j ∈ [n], i ≤ j, we denote by aji the subvector (ai, . . . , aj) of
a. For j < i, aji is the empty word. The Hamming weight of
a vector a is denoted by wH(a) and dH(a,b) is the Hamming
distance between a and b. A zeros run of length r of a vector
a is a subsequence ai+r−1

i , i ∈ [n−r+1] such that ai = · · · =
ai+r−1 = 0. The notation ai denotes the concatenation of the
vector a i times and ab is the concatenation of the two vectors
a and b. For two functions f(n), g(n) we say f(n) . g(n) if
limn→∞

f(n)
g(n) ≤ 1, and f(n) ≈ g(n) if limn→∞

f(n)
g(n) = 1.

Definition 1 Two not necessarily distinct words a, b ∈ Σnq are
mutually uncorrelated if any non-trivial prefix of a does not

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 3125

match a non-trivial suffix of b and vice versa. A code C ⊆ Σnq is
a mutually uncorrelated (MU) code if any two not necessarily
distinct codewords of C are mutually uncorrelated.

Let us denote by AMU (n, q) the largest cardinality of an MU
code. Levenshtein showed in [15] that for all n and q

AMU (n, q) ≤
(
n− 1

n

)n−1
qn

n
<
qn

en
. (1)

We now recall a family of MU codes which was suggested
independently first by Gilbert in [8], later by Levenshtein
in [13] and recently by Chee et al. in [6].

Construction 1 Let n, k be two integers such that 1 ≤ k < n
and let C1(n, k) ⊆ Σnq be the following code:
C1(n, k) = {a ∈ Σnq | ∀i ∈ [k], ai = 0, ak+1 6= 0, an 6= 0,

an−1
k+2 has no zeros run of length k}.

It was proved in [6], [8], [13] that there exists an appropriate
choice of k for which the following lower bound holds

|C1(n, k)| & q − 1

qe
· q

n

n
(2)

where n→∞ over the sub sequence qi−1
q−1 , i ∈ N.

However, it was not established in these works what the
maximal asymptotic cardinality of C1(n, k) is.

Additional interesting approach for constructing binary MU
codes was proposed in [3] and was later generalized in [1]
to alphabets of size q > 2. In this case, it was shown that
for some small values of n the approach in [1] achieves larger
cardinality than Construction 1. Both works [1], [3] do not offer
asymptotic analysis of the constructions’ redundancy, however,
for the binary case it is commonly believed that Construction
1 provides the best known asymptotic code size.

III. MUTUALLY UNCORRELATED CODES

In this section we expand the study of MU codes. Specif-
ically, we show that the lower bound in (2) is asymptotically
tight. We also show an efficient encoding scheme for MU codes,
which improves upon a recent result from [17].
Theorem 1 For q = 2,

max
1≤k<n

{|C1(n, k)|}≈ 2n

n
2F (n)≤ 2n

2en
,

where F (n) = ∆n −min
{

log(e)2∆n + 1, 2 log(e)2∆n
}

, and
∆n = log(n)− dlog(n)e.

Proof Sketch: It can be shown that the size of C1(n, k)
is maximized by choosing k = dlog(n)e + a for some integer
a. We therefore assume without loss of generality that k =
dlog(n)e + a with a ∈ Z. Let S(n, k) be the set of all binary
vectors with no zeros runs of length k,
S′(n, k) = {s ∈ S(n, k) | s starts or ends with k/2 zeros},

and s(n, k) = |S(n, k)|, s′(n, k) = |S′(n, k)|. Note that
s′(n, k) ≤ 2 ·2n−k/2 = 2n−k/2+1. Lastly, we denote Ŝ(n, k) =
S(n, k) \ S′(n, k) and ŝ(n, k) = |Ŝ(n, k)| = s(n, k) −
s′(n, k) ≥ s(n, k) − 2n−k/2+1. For all m large enough, we
consider the set T (m) = Ŝ(n, k)m = Ŝ(n, k)× · · · × Ŝ(n, k),
and t(m) = |T (m)| = ŝ(n, k)m. Note that the set T (m)
satisfies the (0, k − 1)-RLL constraint [9], and hence

lim
m→∞

log(t(m))

nm
= lim
m→∞

log(ŝ(n, k))

n
=

log(ŝ(n, k))

n
≤E0,k−1.

where E0,k−1 is the capacity of the (0, k− 1)-RLL constraint.
We get s(n, k) ≤ 2nE0,k−1 + 2n−k/2+1 and it is also pos-
sible to show that 2nE0,k−1 ≤ s(n, k). We use the result

limk→∞
1−E0,k

log(e)2−k−2 = 1 from [10] to get s(n, k) ≈ 2nE0,k−1

and since |C1(n, k)| = s(n− k − 2, k), we have
n|C1(n, k)|

2n
≈ 2log(n)+(n−dlog(n)e−a−2)E0,dlog(n)e+a−1−n.

We denote
fa(n) = log(n)+(n−dlog(n)e−a−2)E0,dlog(n)e+a−1−n,

and
fa(n) ≈ ∆n −

log(e)

2a+1
2∆n − a− 2.

In order to maximize the size of the code it is possible to show
that maxa∈Z{fa(n)} = F (n), and conclude

max
1≤k<n

{|C1(n, k)|} ≈ 2n

n
2F (n) ≤ 2n

2en
,

where the last step is verified showing that maxx∈[−1,0]

{
x −

min{log(e)2x + 1, 2 log(e)2x}
}

= − log(e)− 1.
Construction 1 does not provide MU codes with efficient

encoder and decoder. To show such a construction with linear
complexity, one has to choose the value of k and define a code
of length n− k− 2 without zeros runs of length k. This result
is shown in Algorithm 1, where we choose k = dlog(n)e+ 1.

Algorithm 1 Zero Run-Length Encoding

Input: Sequence x ∈ Fn′
2

Output: y ∈ Fn′+1
2 with zeros run length ≤ dlog(n)e

1: Define y = x1 ∈ Fn′+1
2

2: Set i = 1 and iend = n′

3: while i ≤ iend − dlog(n)e do
4: if wH(yi+dlog(n)e

i) = 0 then
5: remove the zeros run yi+dlog(n)e

i from y
6: p(i): binary representation of i with dlog(n)e bits
7: append p(i)0 to the right of y
8: set iend = iend − dlog(n)e − 1
9: else

10: set i = i+ 1
11: end if
12: end while

The following lemma proves the correctness of Algorithm 1.
Lemma 1 For all n′ ≤ n, given any vector x ∈ Fn

′

2 ,
Algorithm 1 outputs a sequence y ∈ Fn

′+1
2 , where any zeros

run has length at most dlog(n)e and such that x can be
uniquely reconstructed given y. Furthermore, the time and
space complexity of the algorithm and its inverse is Θ(n).

Proof: The algorithm starts by initializing y = x1. We then
iterate over the indices of y that correspond to the indices of the
input word x. If we encounter an index in which a dlog(n)e+1
zeros run starts, we remove the run and append p(i)0, which
we call a pointer, to the right of y, where p(i) is the binary
representation of the index i.

First, notice that each appended pointer p(i)0 has the same
length as the corresponding removed run, therefore, throughout
the algorithm the length of y does not change. There exists an
index 1 ≤ t ≤ n′ such that the output y is of the form yt11yn

′+1
t+2

where yt1 is the remainder of x after removing the zeros runs and
yn
′+1
t+2 is the list of the pointers p(i)0 representing the indices

of the removed zeros runs.
To reconstruct x given y we start by locating the separating

bit 1 on position t + 1. We start from the right and check
whether the rightmost bit is 1 or 0. In case it is 0, then the
dlog(n)e bits to the left correspond to a pointer, we skip them
and repeat the process until we encounter the separating 1. We
then construct the original x by inserting zeros runs of length
dlog(n)e+ 1 to the remainder part yt1 according to the pointers
part yn

′+1
t+2 .

2017 IEEE International Symposium on Information Theory (ISIT)

3126

Next, we show that y does not contain a zeros run of length
greater than dlog(n)e. It is clear that yt1 does not contain such
a run. The separating 1 ensures that there is no zeros run
which starts in yt1 and ends in yn

′+1
t+2 . The structure of yn

′+1
t+2

is a sequence of concatenated pointers of the form p(i)0. It
suffices to show that any sub-vector of yn

′+1
t+2 of the form

(p(i1), 0, p(i2)) does not consist a zeros run of length greater
than dlog(n)e. We do not write the index zero and from the
algorithm, 0 < i1 ≤ i2. We consider the leftmost ones in p(i1)
and p(i2). Since i1 ≤ i2, the position of the leftmost one within
p(i1) is lower or equal to the position of the leftmost one within
p(i2), thus any window of length dlog(n)e+ 1 must contain at
least one of the leftmost ones from p(i1) and p(i2).

Constructing an MU code using Algorithm 1 and Construc-
tion 1 gives us the following result.

Corollary 1 There exists a construction of an MU code with
redundancy dlog(n)e + 4 and linear encoding and decoding
time and space complexities.
According to Theorem 1 the lowest asymptotic redundancy that
can be achieved by C1(n, k) when q = 2 is log(2en). Our result
shows that with roughly 1.56 additional redundancy bits it is
possible to have an efficient implementation of MU codes. A
similar algorithm to the problem solved by Algorithm 1 was
recently proposed in [17] to efficiently encode sequences that
do not contain runs of zeros and ones of length k with a single
redundancy bit. Specifically, in [17] the authors showed how
to accomplish this task with k = dlog(n)e + 4. Algorithm 1
can be slightly adjusted in order to solve the problem in [17]
with k = dlog(n)e + 2. Lastly, we note that Kauts presented
in [11] an algorithm which encodes all words avoiding zeros
runs of any specific length with optimal redundancy. However,
the space complexity of this algorithm is Θ(n2).

IV. (dh, dm)-MUTUALLY UNCORRELATED CODES

Since substitution errors may also happen both in the writing
and reading processes of DNA molecules, we impose in this
section a stronger and more general version of mutual uncor-
relatedness constraint, by requiring the prefixes and suffixes to
not only differ but also have a large distance.

Definition 2 A code C ⊆ Σnq is called a (dh, dm)-MU code if
1) the minimum Hamming distance of the code is dh,
2) for every two not necessarily distinct words a, b ∈ C, and

i ∈ [n− 1]: dH(ai1, b
n
n−i+1) ≥ min{i, dm}.

We set AMU (n, q, dh, dm) to be the largest cardinality of a
(dh, dm)-MU code over Σnq , and M(n, q, d) as the largest car-
dinality of a length-n code over Σnq with minimum Hamming
distance d. Motivated by Levenshtein’s upper bound [14], we
first provide an upper bound on the value AMU (n, q, dh, dm).

Theorem 2 For all n, q, dh, dm,

AMU (n, q, dh, dm) ≤ M(n, q, d)

bn/dmc
, (3)

where d = min{dh, 2dm}. Hence, the minimum redundancy of
a (dh, dm)-MU code is

⌊
d+1

2

⌋
logq(n)− logq(dm) +O(1).

Proof: Let C ⊆ Σnq be a (dh, dm)-MU code. We let

Ĉ = {(aa)n+i
i+1 |a ∈ C, i = α · dm, α ∈ [0, bn/dmc − 1]}. (4)

That is, the code Ĉ consists all cyclic shifts of words from
C by αdm bits. For a,b ∈ C let â = (aa)n+i

i+1 , b̂ = (bb)n+j
j+1

with i = αidm and j = αjdm, αi, αj ∈ [0, bn/dmc − 1].
Note that â, b̂ ∈ Ĉ. We prove that if i 6= j or a 6= b, then

dH(â, b̂) ≥ min{dh, 2dm}. First, if i = j then a 6= b and
dH(a,b) = dH(â, b̂) ≥ dh. Otherwise, i 6= j and we assume
without loss of generality that i > j. Notice that ân−jn−i+1

is a prefix of a and b̂
n−j
n−i+1 is a suffix of b. Moreover the

length of ân−jn−i+1 is at least dm, therefore, from the definition

of (dh, dm)-MU code, dH(ân−jn−i+1, b̂
n−j
n−i+1) ≥ dm. Similarly,

b̂
n

n−j+1b̂
n−i
1 is a prefix of b and ânn−j+1ân−i1 is a suffix of a,

thus dH(ânn−j+1ân−i1 , b̂
n

n−j+1b̂
n−i
1) ≥ dm. Therefore,

dH(â, b̂)=d(ân−i1 ân−jn−i+1ânn−j+1, b̂
i

1b̂
n−j
n−i+1b̂

n

n−j+1)≥2dm.

We showed that dH(â, b̂) ≥ min{dh, 2dm}, thus |Ĉ| =
bn/dmc · |C| ≤ M(n, q, d) where d = min{dh, 2dm} and the
theorem follows directly.

Before presenting a construction of (dh, dm)-MU codes, we
introduce a new constraint that will be used in this construction.
Definition 3 Let d be a positive integer. We say that a vector
a ∈ Σnq satisfies the (d , k)-window weight limited (WWL)
constraint, and is called a (d, k)-WWL vector, if n < k or
∀i ∈ [n− k + 1] : wH(ai+k−1

i) ≥ d.
This constraint states that a vector a ∈ Σnq is a (d, k)-WWL

vector if the weight of each consecutive subsequence of length
k in a is at least d. A set of (d, k)-WWL vectors will be called
a (d, k)-WWL code.

For the rest of the paper we let F (n, d) be

F (n, d) = dlog(n)e+ (d− 1)(dlogdlog(n)ee+ C) + 2, (5)

where C is a constant equal to the minimum integer such that
2dlogdlog(n)ee+C ≥ dlog(F (n, d))e + 2. We present an explicit
algorithm for encoding and decoding (d, F (n, d))-WWL binary
vectors with n′ ≤ n information bits and d redundancy bits.

Algorithm 2 Window Weight Limited Encoding

Input: x ∈ Fn′
2 and an integer d > 1

Output: (d, F (n, d))-WWL vector y ∈ Fn′+d
2

1: Define y = x1d ∈ Fn′+d
2

2: Set i = 1 and iend = n′

3: while i ≤ iend − F (n, d) + 1 do
4: if wH(yi+F (n,d)−1

i) < d then
5: remove yi+F (n,d)−1

i from y
6: p(i): binary representation of i with dlog(n)e bits
7: for j = 1, . . . , d− 1 do

8:
t(j) : binary representation of the index of the jth 1

in yi+F (n,d)−1
i with dlogdlog(n)ee+ C bits

9: end for
10: append p(i)t(1) · · · t(d− 1)01 to the right of y
11: set iend = iend − F (n, d)
12: set i = i− F (n, d) + 1
13: else
14: set i = i+ 1
15: end if
16: end while

Lemma 2 For all n′ ≤ n, given any vector x ∈ Fn
′

2 Algo-
rithm 2 outputs a (d, F (n, d))-WWL vector y ∈ Fn

′+d
2 such

that x can be uniquely reconstructed given y. The time and
space complexity of the algorithm and its inverse is Θ(n).

We are now ready to show a construction of (dh, dm)-
MU codes. We say that a vector u ∈ F`2 is a d-auto-
cyclic vector if for every 1 ≤ i ≤ d, dH(u, 0iu`−i1) ≥ d.
In the next construction we use the following d-auto-cyclic
vector u of length `(d) = ddlog de + 2d, which is given by
u = 1du0 · · · udlog de ∈ F`(d)

2 such that ui = ((12i

02i

)d)d1.

2017 IEEE International Symposium on Information Theory (ISIT)

3127

Construction 2 Let n, k be two integers such that k ≥ `(dm)
and n ≥ k+`(dm)+2dm. Denote n′ = n−k−`(dm)−2dm. Let
CH be a length-n′ (dm, k)-WWL code with minimum Hamming
distance dh.

C2(n, k, dh, dm) = {0ku1dmc1dm ∈ Fn2 | c ∈ CH}.

Theorem 3 The code C2(n, k, dh, dm) is a (dh, dm)-MU code.

Proof: For simplicity of notation let C = C2(n, k, dh, dm)
and a,b ∈ C. The code C has minimum distance dh since
an−dmk+`(dm)+dm+1,b

n−dm
k+`(dm)+dm+1 ∈ CH and CH has minimum

distance dh. For the second part of the proof we use the
following claim.

Claim 1 Let x, y be two (d, k)-WWL vectors, then the vector
x1dy is also a (d, k)-WWL vector.

We show that for any a,b which are not necessarily distinct,
for all i ∈ [n−1]: dH(ai1,b

n
n−i+1) ≥ min{i, dm}. We consider

the following cases:
1) For i ∈ [1, dm], ai1 = 0i,bnn−i+1 = 1i, and thus

dH(ai1,b
n
n−i+1) = i = min{i, dm}.

2) For i ∈ [dm + 1, k], ai1 = 0i,bnn−i+1 = bn−dmn−i+11dm , and
hence dH(ai1,b

n
n−i+1) ≥ dm.

3) For i ∈ [k + 1, n − dm], notice that bndm+1 =
0k−dm1dmu1dmc1dm , where 0k−dm , u and c ∈ CH are
all (dm, k)-WWL vectors. From Claim 1 bndm+1 is also a
(dm, k)-WWL vector and since n− i+ 1 > dm,bnn−i+1

is also a (dm, k)-WWL vector. Therefore in its first
k positions there are at least dm ones and dH(ai1 =
0kaik+1,b

n
n−i+1) ≥ dm.

4) For i ∈ [n − dm + 1, n − 1], let j = n − i,
and â = ai1, b̂ = bnn−i+1 = bnj+1. Notice that

âk−j+`(dm)−1
k−j = 0ju`(dm)−j

1 and b̂
k−j+`(dm)−1

k−j = u. u
is a dm-auto-cyclic vector, hence dH(0ju`(dm)−j

1 ,u) ≥
dm and we get dH(ai1,b

n
n−i+1) = dH(â, b̂) ≥

dH(âk−j+`(dm)
k−j , b̂

k−j+`(dm)

k−j) ≥ dm.

We can use Algorithm 2 together with a systematic code with
minimum distance dh in order to explicitly construct the code
CH with k = F (n, dm) + 1 in Construction 2.

Corollary 2 There exist (dh, dm)-MU codes with redundancy⌊
dh+1

2

⌋
log(n)+(dm−1) log log(n)+O(dm log dm) and linear

time and space complexity.

Proof Sketch: We use Algorithm 2 to generate a
(dm, F (n, dm))-WWL code of length ñ < n, where the choice
of ñ will be explained later. We then guarantee minimum
Hamming distance dh by applying a systematic BCH encoder
on the output of Algorithm 2. The approximately bdh−1

2 c log(ñ)
redundancy bits added by the BCH encoder are positioned
within the ñ bits such that every two redundancy bits are
located at least F (n, dm) + 1 positions apart. We denote the
resulting set of vectors by C′. Notice that the code C′ is
a (dm, F (n, dm) + 1)-WWL code with minimum Hamming
distance dh and its length is a function of ñ which we denote
by f(ñ). We construct the code C2(n, k, dh, dm) by choosing
k = F (n, dm) + 1 and using C′ as CH . The choice of ñ is
determined such that f(ñ) = n′ = n − k − `(dm) − 2dm is
satisfied. The total redundancy of this construction is upper
bounded by

F (n, dm) + `(dm) + 2dm + 1 +

⌊
dh − 1

2

⌋
log(n) +O(1)

=

⌊
dh + 1

2

⌋
log(n) + (dm − 1) log log(n) +O(dm log dm).

An interesting related problem is discussed by Levenshtein
in [14], where he described prefix synchronized codes with
index ρ. A code C ⊆ Fn2 is said to be prefix synchronized
with prefix h ∈ Fm2 ,m ≤ n and index ρ if for any a ∈
C, i ∈ [2, n], dH((ah)i+m−1

i ,h) ≥ ρ. Levenshtein stated
in [14] that when n goes to infinity, the redundancy of the
maximal prefix synchronized code with index ρ is log n +
(ρ − 1) log log n − o(log logn). Notice that C2(n, k, 1, dm) is
prefix synchronized with h = 0ku and ρ = dm, hence by
Corollary 2 we provide an efficient construction to the problem
with only o(log logn) additional bits of redundancy. Simi-
larly an extension to comma-free codes by Levenshtein [14]
states that C ⊆ Σnq is a (d, ρ)-comma-free code if for any
a,b, c ∈ C, i ∈ [2, n], dH((ab)i+n−1

i , c) ≥ ρ, and C has a
minimum Hamming distance d. Note that any (d, ρ)-MU code
is also a (d, ρ)-comma-free code, so we can use the result of
Corollary 2 to construct efficient (d, ρ)-comma-free codes with
bd+1

2 c log n+ (ρ− 1) log log n+ o(log log n) redundancy bits.
To the best of our knowledge, the lowest redundancy that an
efficient construction to this problem achieved so far has been√
ρn [2], [16].
Lastly, we note that Construction 2 improves upon Construc-

tion 3 from [20], which solves the problem of (dh, dm = 1)-
MU codes but requires O(

√
n) redundancy bits.

V. MU CODES WITH EDIT DISTANCE

In this section we turn to another extension of MU codes
which imposes a minimum edit distance between prefixes and
suffixes as well as on the code. This extension is motivated by
several works such as [19] which report deletion errors during
the synthesis of DNA strands.

The edit distance dE(a,b) of two words a,b is the minimum
number of insertions and deletions that transform a to b. The
minimum edit distance of a code C is the maximal d such that
for any two distinct words a,b ∈ C, dE(a,b) ≥ d.

Definition 4 A code C is called a (de, dm)-EMU code if
1) the minimum edit distance of the code is de,
2) for every two not necessarily distinct words a, b ∈ C, and

i, j ∈ [n − 1], if i, j ∈ [dm, n − dm]: dE(ai1, b
n
n−j+1) ≥

dm, otherwise dE(ai1, b
n
n−j+1) ≥ min{i, j, n− i, n− j}.

The second condition in Definition 4 is different than the MU
constraints we introduced so far since we consider also suffixes
and prefixes of different lengths. This choice of the constraint
will assure that suffixes and prefixes of the addresses will not
get confused even if they experienced deletions and insertions.

We set AEMU (n, q, de, dm) to be the largest cardinality of
a (de, dm)-EMU code over Σnq , and E(n, q, d) is the largest
cardinality of a code over Σnq with minimum edit distance d.

Theorem 4 For all n, q, de, dm, AEMU (n, q, de, dm) ≤
E(n,q,d)
bn/dmc , where d = min{de, dm}.

It can be proved that the code C2(n, k, de, dm) is a (2, dm)-
EMU code. In order to increase the minimum edit distance, we
slightly modify Construction 2 as follows.

Construction 3 Let n, k be two integers such that k ≥ dm
and n ≥ k + 2dm. Denote n′ = n − k − 2dm. Let CE be a

2017 IEEE International Symposium on Information Theory (ISIT)

3128

Table I
REDUNDANCY SUMMARY FOR BINARY CODES

Property MU (dh, dm)- MU (4, dm)- EMU Balanced MU
Lower bound log(n) + log(e) b d+1

2
c log(n)− log dm +O(1) 2 log(n)− log dm +O(1) 1.5 log(n) + log

√
2π − 1

Construction Construction 1 Construction 2 Construction 3 Construction 4
Efficient dlog(n)e+ 4 b dh+1

2
c log(n) + (dm − 1) log log(n) 2 log(n) + (dm − 1) log log(n) 2 log(n) + log log(n)

upper bound +O(dm log dm) +O(dm) +o(log log(n))
Comments d = min{2dm, dh} dm ≥ 4

(dm, k)-WWL code of length n′ with minimum edit distance de.
The code C3(n, k, de, dm) is defined as follows,

C3(n, k, de, dm) = {0k1dmc1dm ∈ Fn2 | c ∈ CE}.
Theorem 5 The code C3(n, k, de, dm) is a (de, dm)-EMU
code.

There exists an explicit efficient method to construct a
(dm, F (n, dm) + 1)-WWL codes with minimum edit distance
4, which will be used as the code CE in Construction 3.
For this, we use Algorithm 2 and the well known Varshamov
and Tenengolts (VT) codes with edit distance four in their
systematic version [18].
Theorem 6 There exists a construction of (4, dm)-EMU codes
with redundancy 2 log(n) + (dm − 1) log log(n) +O(dm) and
linear time and space complexity.

VI. BALANCED MUTUALLY UNCORRELATED CODES

A binary word of length n, when n is even, is said to be bal-
anced if its Hamming weight is n/2. For the extension of q > 2,
when q is even, we follow the balanced definition from [20]
and say that a code C ⊆ Σnq is balanced if for any a ∈ C the
number of positions i such that ai ∈ [0, q2 − 1] is n/2. Hence,
the number of q-ary balanced words is

(
n
n/2

)
(q/2)n ≈ 2qn√

2πn
.

For the rest of this section we assume that n and q are even. A
code C ⊆ Σnq is said to be a balanced MU code if C is balanced
and also an MU code. Let ABMU (n, q) denote the maximum
cardinality of balanced MU codes.

Theorem 7 For all n, q, ABMU (n, q) ≤ (n
n/2)(

q
2)

n

n ≈ 2qn

n
√

2πn
.

In particular, the minimum redundancy of balanced MU codes
is 1.5 log(n) +O(1).
Next is a construction of binary balanced MU codes.
Construction 4 Let n, k be two integers such that 1 ≤ k < n.
The code C(n, k) ⊆ Fn2 is defined as follows,
C4(n, k) ={0k1c1 | wH(c) =

n

2
−2, c is a (1, k) -WWL vector}.

The correctness and redundancy result of Construction 4 are
stated in the next theorem.
Theorem 8 The code C4(n, k) is a balanced MU code, and for
an integer k = log n + a, |C4(n, log n + a)| & C 2n

n
√
n

, where
C = 2a−1

22a+1
√

2π
.

The extension of Construction 4 for non-binary is direct,
since every symbol can store q/2 values after the assignment
of binary values. Hence the number of redundancy symbols
remains the same, i.e., 1.5 logq(n) + O(1). This meets the
result from [20] where a balanced MU code over the alphabet
{A,C,G, T} was suggested, with redundancy of 1.5 log4(n)+
O(1) symbols. However, our construction is also applicable for
the binary case as opposed to the one in [20].

An efficient implementation of balanced MU codes can be
achieved by adopting Knuth’s algorithm for balancing binary
words [12]. Due to the lack of space, we only state our result
for such a construction.
Theorem 9 There exists a construction of a balanced MU code
with 2 log(n) + log log(n) + o(log logn) redundancy bits and
linear time and space complexity.

VII. CONCLUSION

In this work we studied MU codes as well as their variations
for codes with minimum Hamming distance, minimum edit
distance, and balanced codes. Similar techniques can be applied
to construct balanced MU codes together with minimum Ham-
ming distance and thereby satisfying three of the constraints
listed in [20]. The results in the paper are summarized in
Table I. For each case we first give the lower bound on the
redundancy, then the construction that solves this case, and
finally the best redundancy we could get with linear complexity.

ACKNOWLEDGMENTS

The authors would like to thank Olgica Milenkovic and Ryan
Gabrys for valuable discussions on DNA storage and Ron M.
Roth for his contribution to the proof of Theorem 1.

REFERENCES

[1] E. Barcucci, S. Bilotta, E. Pergola, R. Pinzani, J. Succi. “Cross-bifix-free
sets via Motzkin paths generation,” RAIRO - Theoretical Informatics and
Applications, vol. 50, no. 1, pp. 81 – 91, Jun. 2016.

[2] L. A. Bassalygo, “On the separation of comma-free codes (in Russian),”
Probl. Pered. Informatsii, vol. 2, no. 4, pp. 78–79, 1966.

[3] S. Bilotta, E. Pergola, R. Pinzani, “A new approach to cross-bifix-free sets,”
IEEE Trans. on Inf. Theory, vol. 58, no. 6, pp. 4058 – 4063, Jun. 2012.

[4] S. R. Blackburn, “Non-overlapping codes,” IEEE Trans. on Inf. Theory,
vol. 61, no. 9, pp. 4890–4894, Sep. 2015.

[5] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss,
“A DNA-based archival storage system,” ASPLOS, pp. 637–649, Atlanta,
GA, Apr. 2016.

[6] Y. M. Chee, H. M. Kiah, P. Purkayastha and C. Wang, “Cross-bifix-free
codes within a constant factor of optimality,” IEEE Trans. on Inf. Theory,
vol. 59, no. 7, pp. 4668–4674, Jul. 2013.

[7] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information
storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, Sep. 2012.

[8] E. Gilbert, “Synchronization of binary messages,” IRE Trans. on Inf.
Theory, vol. 6, no. 4, pp. 470–477, Sep. 1960.

[9] K. A. S. Immink, Coding techniques for digital recorders, Prentice Hall,
College Div., 1991.

[10] A. Kato and K. Zeger, “A comment regarding: On the capacity of two-
dimensional run length constrained channels,” personal manuscript, 2005.

[11] W. H. Kautz, “Fibonacci codes for synchronization control,” IEEE Trans.
on Inf. Theory, vol. 11, no. 2, pp. 284–292, Apr. 1965.

[12] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. on Inf. Theory, vol.
32, no. 1, pp. 51–53, 1986.

[13] V. I. Levenshtein, “Decoding automata which are invariant with respect
to their initial state(in Russian),” Probl. Cybern., vol. 12, pp. 125–136,
1964.

[14] V. I. Levenshtein, “Bounds for codes ensuring error correction and
synchronization,” Probl. Pered. Informatsii, vol. 5, no. 2, pp. 3–13, 1969.

[15] V. I. Levenshtein, “Maximum number of words in codes without over-
laps,” Prob. Inform. Transmission, vol. 6, pp. 355–357, 1970.

[16] V. I. Levenshtein, “Combinatorial problems motivated by comma-free
codes,” J. of Comb. Designs, vol. 12, no.3, pp. 184–196, 2004.

[17] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes for
correcting a burst of deletions or insertions,” in Proc. IEEE Int. Symp. Inf.
Theory, pp. 630–634, Barcelona, Spain, Jul. 2016.

[18] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Automatika i Telemkhanika, vol. 161, no.
3, pp. 288-292, 1965.

[19] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao and O.
Milenkovic, “DNA-based storage: Trends and methods,” IEEE Transac-
tions on Molecular, Biological and Multi-Scale Communications, vol 1,
no. 3, pp. 230–248, 2015.

[20] S. M. H. T. Yazdi, H. M. Kiah, and O. Milenkovic, “Weakly mutually
uncorrelated codes,” in IEEE Int. Symp. Inf. Theory, pp. 2649–2653,
Barcelona, Spain, Jul. 2016.

[21] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Nature Scientific
Reports, vol. 5, no. 14138, Aug. 2015.

2017 IEEE International Symposium on Information Theory (ISIT)

3129

