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Abstract—Partial MDS (PMDS) codes are a class of erasure-
correcting array codes which combine local correction of the rows
with global correction of the array. An m×n array code is called
an (r; s) PMDS code if each row belongs to an [n, n− r, r + 1]
MDS code and the code can correct erasure patterns consisting of
r erasures in each row together with s more erasures anywhere
in the array. While a recent construction by Calis and Koyluoglu
generates (r; s) PMDS codes for all r and s, its field size is expo-
nentially large. In this paper, a family of PMDS codes with field
size O

(
max{m,nr+s}s

)
is presented.

I. INTRODUCTION

Erasure-correcting array codes are a class of codes mainly
used to protect data in a Redundant Array of Independent
Disks (RAID) architecture against catastrophic disk failures.
Every column in the array corresponds to sectors from the
same disk, such that a disk failure is modeled by a column
erasure. Column failures are the widely studied model in the
literature and different solutions such as RAID 5 and RAID 6
are designed specifically for this failure model. However, in-
troducing solid state drives (SSDs) to the enterprise industry
has brought new challenges in the design of a RAID archi-
tecture. Namely, existing solutions for RAID architectures are
no longer adequate since SSDs may experience both disk fail-
ures and hard errors. To overcome this problem, Partial MDS
(PMDS) codes were proposed in [1].

PMDS codes are designed to tolerate this mixed type of fail-
ures. We say that a code consisting of m×n arrays is an (r; s)
PMDS code if each row in the codeword arrays belongs in an
[n, n − r, r + 1] MDS code, and furthermore, it is possible to
correct s more arbitrary erasures in the array. The construction
of PMDS codes for all r and s is a challenging task. In [1] the
problem was solved when either s = 1 or r = 1. Then, in [2]
it was solved for s = 2 and arbitrary r and recently in [3] it
was solved for all r and s using Gabidulin codes. However,
this construction requires a field of size O(nmn). Our goal is
constructing PMDS codes over fields of relatively small size.
In fact, [5] gives a construction of PMDS codes over smaller
fields for the case r = 1. In this paper, we extend the work
of [5] to the case where r > 1. Our (r; s) PMDS codes have
field size O (max{m,nr+s}s).

The rest of the paper is organized as follows. In Section II,
we formally define PMDS codes. In Section III, we present a
code, which we denote by C(Γ, β), using its parity check ma-
trix. In Section IV, we state necessary and sufficient conditions
for C(Γ, β) to be a PMDS code. Lastly, in Section V we present
a construction of matrices satisfying these conditions while us-
ing small fields.

II. DEFINITIONS AND PRELIMINARIES

For a prime power q, Fq is the finite field of size q. A linear
code of length n and dimension k over Fq will be denoted by

[n, k]q or [n, k, d]q , where d denotes its minimum distance. For
an integer n > 1, the set {1, 2, . . . , n} will be denoted by [n].
We begin with the definition of PMDS codes from [1].

Definition 1. Let C be a linear [mn,m(n − r) − s] code over
a field such that when codewords are taken row-wise as m × n
arrays, each row belongs to an [n, n−r, r+1] MDS code. Given
(σ1, σ2, . . . , σt) such that for j ∈ [t], σj > 1, we say that C is an
(r;σ1, σ2, . . . , σt)-erasure correcting code if, for any 1 6 i1 <
i2 < · · · < it 6 m, C can correct up to σj + r erasures in row ij
of an array in C. We say that C is an (r; s) partial-MDS (PMDS)
code if, for every (σ1, σ2, . . . , σt) where

∑t
j=1 σj = s, C is an

(r;σ1, σ2, . . . , σt)-erasure correcting code.

We refer to a set E(r;s) ⊆ [m]× [n] as an (r; s)-erasure set if
it corresponds to an erasure pattern that can be corrected by an
(r; s) PMDS code. The next example illustrates a (2;2) PMDS
code and a corresponding erasure set.

Example 1. Assume m = 3, n = 5, r = 2, and s = 2. Then
we can interpret our codewords as arrays having the following
form:

x =

 c1 c2 c3 p
(1)
1 p

(1)
2

c4 c5 c6 p
(1)
3 p

(1)
4

c7 p
(2)
1 p

(2)
2 p

(1)
5 p

(1)
6

 , (1)

where there are 7 information symbols and 8 parity symbols.
Given this setup, a PMDS code with these parameters is able
to correct at most 2 erasures in any row using only the sym-
bols from that row. Furthermore, it can correct 2 more erasures
occurring anywhere in the codeword matrix.

Suppose x was stored where x belongs to a (2; 2) PMDS
code. Suppose further, that x experiences erasures resulting in
the vector y shown below (the symbols in bold correspond to
the erasures):

y =

 c1 c2 c3 p
(1)
1 p

(1)
2

c4 c5 c6 p
(1)
3 p

(1)
4

c7 p
(2)
1 p

(2)
2 p

(1)
5 p

(1)
6

 .

The erasures in x can be described by the following (2; 2)-
erasure set:

E(2;2) = {(1, 1), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4)}.

Let Fq be a field of size q and M be a positive integer. For
a given basis of FqM over Fq , every element v ∈ FqM can
also be represented as a length-M vector over Fq . A set of el-
ements v1, . . . ,vN ∈ FqM is said to be linearly independent
over Fq if the length-M vectors representing these N elements
are linearly independent over Fq .
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III. GENERAL CONSTRUCTION OF PMDS CODES

A PMDS code can be seen either as an m×n array code or
as a code of length mn. We will interchangeably use these two
options to represent the code. From the context, it will be clear
which option we use. We assume that q is a prime power such
that q > n and FqM is an extension field of Fq . Let β ∈ Fq
be a primitive element. Let H be the (m · r + s)×mn matrix
given by (2), which will be the parity check matrix of the code
C, i.e.,

C = {x ∈
(
FqM

)mn | H · xT = 0}.

Let Γ = (α1,1, α1,2, . . . , αm,n) ∈
(
FqM

)mn
be a sequence of

mn distinct elements. For i ∈ [m], j ∈ [n], ` ∈ [s], we set

v
(`)
i,j = αq

`−1

i,j .

We denote the code generated by this construction by C(Γ, β).
Next we discuss how to select the elements in the sequence Γ
such that the code C(Γ, β) given by the parity check matrix H
is a PMDS code. This selection will determine also the size of
the extension field FqM .

Notice that we can interpret our constraints as follows. Let
x = (x1,1, x1,2, . . . , xm,n) ∈ C(Γ, β) ⊆

(
FqM

)mn
be a code-

word, where xi,j denotes the element in x that is located in
row i and column j. From (2),

0k−1 · xi,1 +
n∑
j=2

β(k−1)(j−1)xi,j = 0, for i ∈ [m], k ∈ [r] (3)

m∑
i=1

n∑
j=1

αq
`−1

i,j xi,j = 0, for ` ∈ [s]. (4)

In the rest of this paper, we will refer to an (r; 0)-erasure set
as an (r; 0)-erasure vector S ∈ ([n]r)m and denote it by S =
(s1, . . . , sm), where for i ∈ [m], si = (si,1, . . . , si,r) ∈ [n]r,
and si,1 < si,2 < · · · < si,r. For example, suppose we store the
vector x from (1) and we receive

y =

 c1 c2 c3 p
(1)
1 p

(1)
2

c4 c5 c6 p
(1)
3 p

(1)
4

c7 p
(2)
1 p

(2)
2 p

(1)
5 p

(1)
6

 ,

so that a (2; 0)-erasure vector occurred, marked by the symbols
in bold. Then we represent this erasure pattern using the vector
S = (s1, s2, s3) =

(
(1, 2), (3, 4), (1, 5)

)
.

For a matrix A with n columns and a vector s =
(s1, . . . , sr) ∈ [n]r, where s1 < s2 < · · · < sr, let As be the
submatrix of A given by the columns in the set {s1, s2, . . . , sr}.
Similarly, for a vector u of length n, us is the sub-vector of
u given by the indices of the set {s1, s2, . . . , sr}. By a slight
abuse of notation, for a vector s = (s1, . . . , sr) ∈ [n]r, we
denote by s ∈ [n]n−r the vector

s = (s1, s2, . . . , sn−r), (5)

which contains, in increasing order, all the values in [n] that do
not appear in s. For example, if s = (1, 3, 7, 8) ∈ [9]4, then
s = (2, 4, 5, 6, 9). Lastly, we denote by H(β) the matrix

H(β) =


1 1 1 · · · 1
0 β β2 · · · βn−1

...
...

...
. . .

...
0 βr−1 β2(r−1) · · · β(r−1)(n−1)

 ∈ (Fq)r×n .

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR PMDS
CODES

In this section we state necessary and sufficient conditions
for the construction from Section III to generate PMDS codes.
Here we use the notation x = (x1, . . . ,xm) to represent an
m × n codeword array, where for i ∈ [m], xi is a length-n
vector. We also assume that β and the sequence Γ are given
so they determine the code C(Γ, β). Unless stated otherwise we
assume that all fields used in the paper have characteristics 2.
We start with the following claim.

Claim 1 If x = (x1, . . . ,xm) ∈ C(Γ, β), then for any (r; 0)-
erasure vector S = (s1, . . . , sm) ∈ ([n]r)m, the following
equality holds for all i ∈ [m]:

(xi)
T
si = ((H(β)

si )−1 ·H(β)
si

) · (xi)Tsi .
Proof: Since H(β) is a parity check matrix of an [n, n− r]

MDS code, any r columns of H(β) are linearly independent, and
thus the matrix H(β)

si ∈ Fr×rq has an inverse matrix (H
(β)
si )−1.

According to (3), we have

0T = H(β) · xTi = H(β)
si · (xi)

T
si +H

(β)
si
· (xi)Tsi .

After multiplying both sides on the left by the matrix (H
(β)
si )−1

we get

0T = (H(β)
si )−1 ·H(β)

si · (xi)
T
si + (H(β)

si )−1 ·H(β)
si
· (xi)Tsi

= (xi)
T
si + ((H(β)

si )−1 ·H(β)
si

) · (xi)Tsi
which implies the statement in the claim.

Next, we recall the notion of t-wise independence [5].

Definition 2. Let F be a field. A multiset S ⊆ F is t-wise inde-
pendent over a subfield F′ ⊆ F if for every T ⊆ S such that
|T | 6 t, the elements of T are linearly independent over F′.

For any (r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m,
let CS be the code obtained by puncturing C in the positions
corresponding to the erasure locations referenced by the vector
S. The next claim is straightforward.

Claim 2 Code C is an (r; s) PMDS code if and only if CS is an
[m(n−r),m(n−r)−s] MDS code for any (r; 0)-erasure vector
S.

The following lemma is well known:
Lemma 3. (cf. [6]) Let FqM be an extension field of Fq , andH ∈(
FqM

)s×s
be the following matrix

H =


α1 α2 · · · αs
αq1 αq2 · · · αqs
...

...
. . .

...
αq

s−1

1 αq
s−1

2 · · · αq
s−1

s

 ,

where α1, α2, . . . , αs ∈ FqM . Then H has rank s if and only if
the elements α1, α2, . . . , αs are linearly independent over Fq .

Let S = (s1, . . . , sm) ∈ ([n]r)m be an (r; 0)-erasure vector.
For i ∈ [m], let A(β)

si ∈ (Fq)r×(n−r) be the matrix

A(β)
si = (H(β)

si )−1 ·H(β)
si
.

Let αi be the vector αi = (αi,1, αi,2, . . . , αi,n), and
denote αsi = (αi,si,1 , αi,si,2 , . . . , αi,si,r ), where si =
(si,1, si,2, . . . , si,r) ∈ [n]r, and αsi = (αi,si,1 , . . . , αi,si,n−r ),
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H =



1 1 1 · · · 1
0 β β2 · · · βn−1

0 β2 β4 · · · β2(n−1)

...
...

... · · ·
...

0 βr−1 β2(r−1) · · · β(r−1)(n−1) · · ·
1 1 · · · 1
0 β · · · βn−1

...
... · · ·

...
0 βr−1 · · · β(r−1)(n−1)

. . .
· · · · · · · · · · · · 1 1 · · · 1
· · · · · · · · · · · · 0 β · · · βn−1

· · · · · · · · · · · ·
...

... · · ·
...

· · · · · · · · · · · · 0 βr−1 · · · β(r−1)(n−1)

v
(1)
1,1 v

(1)
1,2 v

(1)
1,3 · · · v

(1)
1,n v

(1)
2,1 v

(1)
2,2 · · · v

(1)
2,n · · · · · · v

(1)
m,1 v

(1)
m,2 · · · v

(1)
m,n

v
(2)
1,1 v

(2)
1,2 v

(2)
1,3 · · · v

(2)
1,n v

(2)
2,1 v

(2)
2,2 · · · v

(2)
2,n · · · · · · v

(2)
m,1 v

(2)
m,2 · · · v

(2)
m,n

...
...

... · · ·
...

...
...

...
...

...
...

v
(s)
1,1 v

(s)
1,2 v

(s)
1,3 · · · v

(s)
1,n v

(s)
2,1 v

(s)
2,2 · · · v

(s)
2,n · · · · · · v

(s)
m,1 v

(s)
m,2 · · · v

(s)
m,n



. (2)

where si = (si,1, si,2, . . . , si,n−r) is the vector defined in (5).
Lastly, for i ∈ [m] we denote by γsi = (γsi,1, γsi,2, . . . , γsi,n−r)

∈
(
FqM

)n−r
the vector

γsi = αsi ·A(β)
si +αsi . (6)

We are now ready to prove a necessary and sufficient condi-
tion for C(Γ, β) to be a PMDS code.

Lemma 4. The code C(Γ, β) is an (r; s) PMDS code if and only
if for any (r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m, the
set T (S) = {γsi,j}i∈[m],j∈[n−r] is s-wise independent over Fq .

Proof: According to Claim 2, the code C is an (r; s)
PMDS code if and only if for any (r; 0)-erasure vec-
tor S = (s1, . . . , sm) ∈ ([n]r)m, the code CS is an
[m(n− r),m(n− r)− s] MDS code. Let S = (s1, . . . , sm) ∈
([n]r)m be an (r; 0)-erasure vector. From (4), we see that for
` ∈ [s], the global parity constraints imply

0 =
m∑
i=1

n∑
j=1

αq
`−1

i,j xi,j =
m∑
i=1

αq
`−1

i xTi ,

where αq
`−1

i = (αq
`−1

i,1 , αq
`−1

i,2 , . . . , αq
`−1

i,n ) and xi = (xi,1, . . . , xi,n)

for i ∈ [m]. We also denote αq
`−1

si =
(
αq

`−1

i,si,1
, αq

`−1

i,si,2
, . . . , αq

`−1

i,si,r

)
and define αq

`−1

si
similarly. From Claim 1, we can write

(xi)
T
si = A

(β)
si · (xi)Tsi and therefore we have

0 =
m∑
i=1

αq
`−1

i xTi =
m∑
i=1

(
αq

`−1

si · (xi)Tsi +αq
`−1

si
· (xi)Tsi

)
=

m∑
i=1

(
αq

`−1

si ·A(β)
si · (xi)

T
si

+αq
`−1

si
· (xi)Tsi

)
=

m∑
i=1

(
αq

`−1

si ·A(β)
si +αq

`−1

si

)
· (xi)Tsi ,

=(a)
m∑
i=1

(
αsi ·A(β)

si +αsi

)q`−1

· (xi)Tsi ,

=
m∑
i=1

(
γsi

)q`−1

· (xi)Tsi ,

where equality (a) holds since the matrix A(β)
si is over Fq . We

conclude that a parity check matrix for the code CS will be
given by (7). Therefore, from Lemma 3, the code CS is an MDS
code if and only if the set of m(n− r) elements given by the
entries of the vectors γsi for i ∈ [m] is s-wise independent
over Fq .

Notice that for the case r = 1, we have the following corol-
lary which is similar to the result from [5].

Corollary 5. The code C(Γ, β) is a (1; s) PMDS code if and only
if for any (1; 0)-erasure vector S = (s1, . . . , sm) ∈ [n]m, the set

T (S) =
{
αi,j + αi,si

}
i∈[m],j∈[n]\{si}

is s-wise independent over F2.

According to the representation of the code C(Γ, β) by its par-
ity check matrix given in (2), the code is determined by the
choice of β ∈ Fq , the primitive element in Fq , and the se-
quence Γ = (α1,1, α1,2, . . . , αm,n) ∈

(
FqM

)mn
over the exten-

sion field FqM . Hence, the necessary and sufficient condition
given in Lemma 4 for the code C(Γ, β) to be an (r; s) PMDS
code involves both β and Γ. However, in our construction, β can
be chosen to be any primitive element in Fq . The next corollary
exploits this fact to simplify the task of finding a suitable set Γ
defined over a small field. It replaces the necessary and suffi-
cient condition of Lemma 4 with a sufficient condition involving
the s-wise independence of sets of elements whose definition
is independent of the choice of β. In the next section we dis-
cuss how to choose sequences Γ that satisfy this condition over
small fields.

Corollary 6. The code C(Γ, β) is an (r; s) PMDS code if for any
(r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m and any m
full-rank matrices V1, . . . , Vm ∈ Fr×(n−r)q , the set

T̂ (S) = {γ̂si,j}i∈[m],j∈[n−r],

is s-wise independent over Fq , where for i ∈ [m]

γ̂si = (γ̂si,1, γ̂si,2, . . . , γ̂si,n−r) = αsi ·Vi+αsi ∈ Fn−rq . (8)
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γ1s1,1 γ1s1,2 γ1s1,3 · · · γ1s1,n−r γ1s2,1 γ1s2,2 · · · γ1s2,n−r · · · · · · · · · γ1sm,1 · · · γ1sm,n−r
γqs1,1

γqs1,2
γqs1,3

· · · γqs1,n−r γqs2,1
γqs2,2

· · · γqs2,n−r · · · · · · · · · γqsm,1 · · · γqsm,n−r

γq
2

s1,1
γq

2

s1,2
γq

2

s1,3
· · · γq

2

s1,n−r γq
2

s2,1
γq

2

s2,2
· · · γq

2

s2,n−r · · · · · · · · · γq
2

sm,1
· · · γq

2

sm,n−r
...

...
...

. . .
...

...
...

. . .
... · · · · · · · · ·

...
. . .

...
γq

s−1

s1,1
γq

s−1

s1,2
γq

s−1

s1,3
· · · γq

s−1

s1,n−r γq
s−1

s2,1
γq

s−1

s2,2
· · · γq

s−1

s2,n−r · · · · · · · · · γq
s−1

sm,1
· · · γq

s−1

sm,n−r

 . (7)

V. PMDS CODES OVER SMALL FIELDS

Note again that the condition in Corollary 6 is a condition
only on the sequence Γ. Thus we say that a sequence Γ is an
(r; s)-PMDS sequence of size m × n if it satisfies the condi-
tion from Corollary 6. As mentioned above, our goal is to find
(r; s)-PMDS sequences of size m × n over a field with the
smallest possible size. We denote by r(n, d, q) the minimum
redundancy of an [n, k, d]q code. We will make use of the fol-
lowing useful lemma, based upon BCH codes, in subsequent
derivations.

Lemma 7. (cf. [9, Problem 8.12]) The value r(n, d, q) satisfies

r(n, d, q) 6 min

{
1 +

⌈(
1− 1

q

)
(d− 2)

⌉
· dlogq(n)e,⌈(

1− 1

q

)
(d− 1)

⌉
· dlogq(n)e

}
.

A. First Construction of PMDS Sequences over a Small Field

Our first result on PMDS codes with small field size is stated
in the next lemma.

Lemma 8. If the set of elements in the sequence Γ =
(α1,1, . . . , αm,n) is (r+ 1)s-wise independent over Fq , then it is
an (r; s)-PMDS sequence. Hence, there exists an (r; s)-PMDS
sequence over a field FqM , where

M = r(mn, (r + 1)s+ 1, q), (9)

and q is the smallest prime power larger than n. In par-
ticular, there exists an (r; s)-PMDS code with field size
O
(
n(mn)(r+1)s−1).

Proof: The result follows by noting that according to (8),
for any (r; 0)-erasure vector S = (s1, . . . , sm) ∈ ([n]r)m and
any m vectors v1, . . . ,vm ∈ Frq , each element in the set T̂ (S)
from Corollary 6 can be written as a linear combination over
Fq of exactly r + 1 elements from Γ. That is, we can write
any element γ ∈ T̂ (S) as γ = v · uT , where v ∈ Fr+1

q and
u ∈ Γr+1, while all the entries in u are all distinct. Therefore,
any s elements in T̂ (S) are linear combinations over Fq of at
most (r+ 1)s elements from Γ. Thus, if the set of elements in
the sequence Γ is (r+1)s-wise independent over Fq , it follows
that the set T̂ (S) is s-wise independent over Fq as well, and
hence Γ is an (r; s)-PMDS sequence.

A construction of such a sequence Γ whose elements are
(r + 1)s-wise independent over Fq is as follows. Let H be a
parity check matrix of an [mn, k, (r + 1)s + 1]q code C with
redundancy r = mn− k, where q is the smallest prime power
larger than n. We set Γ to consist of the mn columns of H ,
which are mn elements over the field Fqr . Since the minimum
distance of the code C is (r+1)s+1, every (r+1)s columns of
H are linearly independent over Fq and so are every (r+1)s el-
ements from the sequence Γ. By choosing a code C where r =
r(mn, (r+1)s+1, q) we get the result stated in (9), and by the

bound from Lemma 7, we obtain qM = O
(
n(mn)(r+1)s−1).

According to Lemma 8, we already deduce that there exists
an (r; s)-PMDS code over a field which is polynomial in mn
and not exponential as reported in [3]. We present next a further
improvement on the field size.

B. Second Construction of PMDS Sequences over a Small Field
In this section, we give a construction of (r; s)-PMDS se-

quences with a smaller field size than the one achieved in
Lemma 8. Our primary tool towards achieving this goal is the
construction of tensor product codes, which were first proposed
in [10]. As will be shown shortly, we will use the columns of
the parity check matrix of a tensor product code as the ele-
ments of the sequence Γ. Let us first review the definition of
tensor product codes, while focusing only on the case of era-
sure correction. A code C ⊆ (Fq)m×n is called an [m,n; t1, t2]
erasure-correcting code if it can correct any erasure pattern
of the following form E = (E1, . . . , Em), where for i ∈ [m],
Ei ⊆ [n] and

1) |{i : Ei 6= ∅}| 6 t1,
2) for i ∈ [m], |Ei| 6 t2.

More explicitly, such a code is required to correct erasures in at
most t1 rows, while in each row there are at most t2 erasures.
Such an erasure pattern will be called a (t1; t2)-erasure pattern.

The following theorem draws a connection between
[m,n; t1, t2] erasure-correcting codes and (r; s)-PMDS se-
quences and gives the main result of this section. Note that in
Corollary 11, we give an upper bound on q which is derived
as a consequence of the theorem below.

Theorem 9. Let CTP be an [m,n; s, r + s] erasure-correcting
code over Fq with redundancy ρ and parity check matrix
HTP = (α1,1, . . . , αm,n) ∈ (Fqρ)mn. Then, the sequence
ΓTP = (α1,1, . . . , αm,n) ∈ (Fqρ)mn is an (r; s)-PMDS
sequence of size m× n.

Proof: Assume S = (s1, . . . , sm) ∈ ([n]r)m is an (r; 0)-
erasure vector and v1, . . . ,vm ∈ Frq are m vectors which de-
termine the set T̂ (S) = {γ̂si,j}i∈[m],j∈[n−r] as specified in (8).
We will show that T̂ (S) is s-wise independent over Fq . Any s
elements from the set T̂ (S) can be expressed as a linear combi-
nation of elements from the sequence ΓTP . For i ∈ [m], we de-
note by Ei ⊆ [n] the locations of elements which belong to this
linear combination from the i-th row of ΓTP , that is, from the
elements αi,1, . . . , αi,n. Consider the vector E = (E1, . . . , Em)
and note that it is an (s; r + s)-erasure pattern. Since the code
CTP is an [m,n; s, r+ s] erasure-correcting code, every collec-
tion of columns from the parity matrix HTP which correspond
to an (s; r + s)-erasure pattern is linearly independent. Hence,
the set of elements in ∪mi=1Ei ⊆ ΓTP is linearly independent
over Fq and, therefore, so is every set of s elements from T̂ (S).
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According to Theorem 9, the task of finding (r; s)-PMDS
sequences can now be translated to the construction of
[m,n; s, r + s] erasure-correcting codes over Fq with small
redundancy ρ. We review the construction of such codes as
presented in [10]. Specifically, the parity check matrix for an
[m,n; s, r + s] erasure-correcting code CTP over Fq (where
q = n) is given as follows:

1) Assume that H ′ ∈ F(r+s)×n
q is a parity check matrix for

an [n, n− r − s]q MDS code.
2) Assume that H ′′ ∈ FR×mqr+s is a parity check matrix for an

[m,m−R, s+ 1]qr+s code.
3) Representing every column in H ′ as an element in Fqr+s ,

we let CTP be a code over Fq with the parity check matrix
H ′′ ⊗H ′ formed by taking the tensor product of H ′′ and
H ′.

Theorem 10. (cf. [10]) The code CTP is an [m,n; s, r + s]
erasure-correcting code over Fq with redundancy ρ = (r + s)R.

We are now ready to provide an upper bound on the field
size for (r; s) PMDS codes.

Corollary 11. There exists an (r; s) PMDS code with field size
q(r+s)r(m,s+1,qr+s), where q is the smallest prime power larger
than n, which is O (max{m,nr+s}s).

Proof: According to Theorem 9 and Theorem 10, the
field size of the constructed (r; s)-PMDS sequence and thus
the (r; s)-PMDS code is qR(r+s), where q is the small-
est prime power larger than n and R was defined above.
Choosing R = r(m, s + 1, qr+s), we get an (r; s) PMDS
code with field size q(r+s)r(m,s+1,qr+s). If m 6 qr+s then
R = s and the field size becomes qs(r+s) = O(ns(r+s)).
Otherwise, according to the bound in Lemma 7, we choose
R = 1 +

⌈(
1− 1

qr+s

)
(s− 1)

⌉
· dlogqr+s(m)e and thus the

field size becomes

q
(r+s)

(
1+
⌈(

1− 1

qr+s

)
(s−1)

⌉
·dlogqr+s (m)e

)
= qr+sms−1= O(ms).

In conclusion, it follows that the field size of the construction
is O (max{m,nr+s}s).

Corollary 11 states our best result for the field size of PMDS
codes for arbitrary fixed r and s. In the rest of this section we
consider some special cases of r and s. Let us revisit again
the case r = 1. Recall from Corollary 5 that for r = 1 the
set T (S) (defined in Corollary 5) needs to be s-wise indepen-
dent only over F2. Consequently, repeating the same ideas as
in Theorem 9, we have the following corollary which holds for
the case r = 1.

Corollary 12. Let CTP be an [m,n; s, s + 1] erasure-correcting
code over F2 with redundancy ρ and parity check matrix
HTP = (α1,1, . . . , αm,n) ∈ Fmn2ρ . Then, the sequence
ΓTP = (α1,1, . . . , αm,n) is a (1; s)-PMDS sequence of size
m× n.

The next corollary bounds the field size for the case
r = 1. Similar to before, we first give the construction of an
[m,n; s, s+ 1] erasure-correcting code adopted from [10]:

1) Suppose H ′ ∈ F`×n2 is a parity check matrix for an [n, n−
`, s+ 2]2 code.

2) Suppose H ′′ ∈ FR×m
2`

is a parity check matrix for an
[m,m−R, s+ 1]2` code.

3) Representing every column in H ′ as an element in F2` , we
let CTP be a code over F2 with the parity check matrix
H ′′ ⊗H ′ formed by taking the tensor product of H ′′ and
H ′, and redundancy `R.

Using Corollary 12, we get the following analog of Corol-
lary 11 for the case r = 1. While this upper bound on the
field size is loose in many cases, it is still possible to show
that in several cases this result improves upon the bound from
[5], where the authors showed an achievable field size of
O((mn)(s−1)·(1−

1
2n )).

Corollary 13. There exists a (1; s) PMDS code with field size at
most (2n)sd

s+1
2 ems−1.

Proof: Applying Lemma 7, we see that ` 6 d s+1
2 edlog2(n)e.

As before, we can choose R = r(m, s + 1, 2`), and thus the
code redundancy is given by

` · r(m, s+ 1, 2`) = ` ·
(

1+

⌈(
1− 1

2`

)
(s− 1)

⌉
·dlog2`(m)e

)
6 ` · (1 + (s− 1) · dlog2`(m)e) ,

and the field size is at most
2`·(1+(s−1)·dlog

2`
(m)e) 6 (2n)sd

s+1
2 ems−1.

For the case of s = 3, we have the following corollary, which
follows by combining the tensor product construction with the
non-binary codes from [4]. A similar claim can be proved for
the case s = 4.
Corollary 14. There exists an (r; 3) PMDS code with field size
O(n3(r+3)) if m < n3 and otherwise O(nr+3m1.5).

Proof: Following the proof of Corollary 11, we deduce that
the field size of the constructed (r; 3) PMDS code is given by
q(r+3)r(m,4,qr+3). Here we use the result from [4], which states
that r(m, 4, qr+3) = 1.5 logqr+3(m) + 1 for m > qr+3, and
r(m, 4, qr+3) = 3, otherwise. In the former case, we get

q(r+3)r(m,4,qr+3) = q(r+3)(1.5 logqr+3 (m)+1) = qr+3m1.5

= O(nr+3m1.5).
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