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Abstract—Write-once memory (WOM) is a storage device con-
sisting of binary cells which can only increase their levels. A
t-write WOM code is a coding scheme which allows to write t
times to the WOM without decreasing the levels of the cells. The
sum-rate of a WOM code is the ratio between the total num-
ber of bits written to the memory and the number of cells. It is
known that the maximum sum-rate of a t-write WOM code is
log(t+ 1). This is also an achievable upper bound both by infor-
mation theory arguments and explicit WOM code constructions.
While existing constructions of WOM codes were targeted to in-
crease the sum-rate, we consider here two more figures of merit
in evaluating the constructions. The first one is the complexity of
the encoding and decoding maps of the code. The second one is
called the convergence rate, and is defined to be the minimum
code length n(ε) in order to reach ε close to a point in the ca-
pacity region. One of our main results in the paper is a specific
capacity achieving construction for two-write WOM codes which
has polynomial complexity and relatively short block length to
be ε close to the capacity. Using these two-write WOM codes,
we obtain three-write WOM codes that approach sum-rate 1.809
with relatively short block lengths. Finally, we provide another
construction of three-write WOM that achieves sum-rate 1.71 by
using only 100 cells.

I. INTRODUCTION

Write-once memory (WOM) is a storage medium consist-
ing of cells that can only increase their level. WOM codes
were first introduced by Rivest and Shamir [23] in 1982 and
were motivated by storage medium like punch cards and op-
tical disks. These media are comprised of storage elements,
called cells, which have a special asymmetric programming at-
tribute. In the binary version, it is only allowed to irreversibly
program each cell from level zero to level one. If a cell can
accommodate more than two levels, then on each program-
ming operation, it is only possible to increase the cell’s level.
A WOM code is a coding scheme which allows to store mul-
tiple messages in the WOM, while assuring that cells can only
increase their levels on each write. One of the famous exam-
ples of a WOM code was presented by Rivest and Shamir for
storing two bits twice using only three cells [23]. In this work
they presented more constructions of WOM codes and several
more families of WOM codes were studied later in the 1980’s
and 1990’s; see e.g., [6], [13], [20].

In the last decade, WOM codes have attracted tremendous
interest due to their applicability to flash memories [2], [9],
[17], [25], [26], [29]–[32]. Flash memory is another exam-
ple of a WOM where its cells are charged with electrons and
thus represent multiple levels [3]. Increasing a cell level is
fast and easy; however, in order to decrease its level, its en-
tire containing block of cells has to be erased first. This does
not only affect the writing speed of the flash memory but also
significantly reduces its lifetime [3]. Therefore, reducing the
number of block erasures is crucial in order to improve the life-
time of flash memories. The implementation of WOM codes

in flash memories was recently demonstrated in several works,
e.g. [18], [21], [34], as well as its benefits in improving the
memory lifetime [33].

Assume the WOM, consisting of n binary cells, is required
to accommodate t messages. For 1 6 i 6 t, let Mi be the
message size on the i-th write. The rate of the i-th write is
defined to be Ri =

log Mi
n , and the sum-rate is R = ∑

t
i=1Ri.

The capacity region of a t-write WOM is the set of all achiev-
able rate tuples. For the binary case, the capacity region was
found in [12], [15], [23]. It was also proved that the max-
imum achievable sum-rate for a binary WOM code with t
writes is log(t + 1). These results were generalized in [12]
for non-binary WOM and the maximum sum-rate for WOM
with q-ary cells was shown to be log (t+q−1

t ).
The main goal in designing a WOM code is to achieve,

by explicit code constructions, all rate tuples in the capac-
ity region, and in particular high sum-rate. For the two-write
case, such constructions were studied in [26] and [31] and for
multiple writes in [25]. There are also capacity achieving con-
structions but for the ε-error case, that is, successive writes are
not guaranteed in the worst case [2], [9], [17], [29]. In this
work, we are only interested in the zero-error case, i.e. each
write succeeds in the worst case. There are two more figure of
merits which we will investigate in this work when evaluating
WOM codes constructions. The first one, which we call the
complexity, is the complexity of the encoding and decoding
maps of the WOM code as a function of code length n. The
second one, called the convergence rate, is the minimum code
length n(ε) in order to be ε-close to a point in the capacity
region.

Prior to this work, the capacity achieving constructions for
two-write WOM cannot achieve these two figures of merit si-
multaneously. Namely, the one from [31] is beneficial for the
convergence rate but suffers from high complexity, while the
second one in [26] has opposite attributes and requires an ex-
ponential block length in order to be ε-close to the capacity.
One of our main results in this paper is an explicit construc-
tion of two-write WOM codes which provides both low com-
plexity and short block length to be ε-close to the capacity.
Furthermore, it is possible to derive explicit rate tuples un-
der this construction which improve upon the previously best
known sum-rate of 1.4928 in [31]. WOM codes with short
block length are attractive due to their efficient encoding and
decoding procedures [4].

For three-write WOM codes, the best known sum-rate of an
explicit WOM code is 1.61 [31], while the upper bound is 2.
The best sum-rate which could be achieved by the construc-
tion from [31] is 1.66, and in [26] this result was improved to
sum-rate 1.809. Then, another improvement was given in [32]
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and the best sum-rate was 1.885. As mentioned before, the
construction from [25] is a capacity achieving construction
for any number of writes, and in particular three writes. How-
ever, in order to get close to the capacity the block length
has to be extremely large and significantly larger than the one
from [26], [31], [32]. Using our two-write WOM codes, we
modify the construction in [26] to obtain three-write WOM
codes that approach sum-rate 1.809 faster than the former. In
addition, we provide another construction of three-write WOM
that achieves sum-rate 1.71 by using only 100 cells.

The rest of the paper is organized as follows. In Section II,
we review the definitions of WOM codes and define the fig-
ure of merits of complexity and convergence rate that we be
used in evaluating WOM code constructions. In Section III,
we review state of the art results for the constructions of two-
write WOM codes and present our construction with polyno-
mial complexity and fast convergence rate. In Section IV, we
present our constructions of explicit three-write WOM codes.
These constructions will improve upon state of the art sum-
rate results of explicit known WOM codes. Finally, Section V
concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this work, we assume that the memory consists of n bi-
nary cells, where initially all of them are in the zero state.
On each write it is only possible to increase the level of each
cell to level one. A vector x = (x1, . . . , xn) ∈ {0, 1}n will
be called a cell-state vector. For two cell-state vectors x and
y, we say that x 6 y if xi 6 yi for all 1 6 i 6 n. For a
positive integer n, we use the notation [n] to define the set of
integers {1, . . . , n}. If x represents a bit value then its comple-
ment is x = 1− x, and for a binary vector x = (x1, . . . , xn),
x = (x1, . . . , xn). For any map f : A→ B, Im( f ) is the im-
age of the map f . The binary entropy function is defined for
every probability 0 < p < 1 as h(p) = −p log(p)− (1−
p) log(1− p).

We follow the formal definition of WOM codes from [32].

Definition 1. An [n, t; M1, . . . , Mt] t-write WOM code is a
coding scheme comprising of n binary cells and is defined by t
pairs of encoding and decoding maps (Ei ,Di), for 1 6 i 6 t.
The encoding map Ei is defined by

Ei : [Mi]× Im(Ei−1)→ {0, 1}n,

where, by definition, Im(E0) = {(0, . . . , 0)}, such that
Ei(m, c) > c for all (m, c) ∈ [Mi]× Im(Ei−1). Similarly, the
decoding map Di is defined by

Di : Im(Ei)→ [Mi],

such that for all (m, c) ∈ [Mi]× Im(Ei−1), Di(Ei(m, c)) =

m. The rate on the i-th write is defined byRi =
log Mi

n , and the
sum-rate isRsum = ∑

t
i=1Ri.

In [12], [15], the capacity region of a binary t-write WOM
was found to be
Ct =

{
(R1, . . . ,Rt)|R1 6 h(p1),R2 6 (1− p1)h(p2), . . . ,

Rt−1 6
( t−2

∏
i=1

(1− pi)
)

h(pt−1),Rt 6
t−1

∏
i=1

(1− pi),

where 0 6 p1, . . . , pt−1 6 1/2
}

,

and log(t+ 1) was proved to be the maximum sum-rate. Even
though it is known that all rate tuples in the capacity region
are achievable, the problem of finding efficient code construc-
tion remains a challenge. According to [31], we assume that
the write number on each write is known since this side infor-
mation does not affect the achievability of rate tuples in the
capacity region

We will evaluate the constructions efficiency according to
the following two figures of merit, which we next define for
the constructions of WOM codes.

1) Complexity: the construction complexity is defined to be
the complexity of the encoding and decoding maps as a
function of code length n.

2) Convergence rate: the minimum code length n(ε) in or-
der to be ε-close to a rate tuple (R1, . . . ,Rt) in the
capacity region.

More rigorously, the second figure of merit states that the con-
vergence rate of a WOM codes construction to a rate tuple
(R1, . . . ,Rt) ∈ Ct is n(ε) if there exists a WOM code by
the construction of length n(ε) with rate tuple at least (R1 −
ε, . . . ,Rt −ε). Since we will be mostly interested to deter-
mine whether n(ε) is polynomial or exponential with 1/ε, we
say that a construction approaches a rate tuple (R1, . . . ,Rt) ∈
Ct with polynomial, exponential rate if n(ε) is polynomial,
exponential with 1/ε, respectively. Similarly we that say a
construction approaches a sum-rate Rsum with polynomial or
exponential rate, and for capacity achieving constructions with
polynomial or exponential rate.

III. TWO-WRITE WOM CODES CONSTRUCTION

In this section we present an explicit construction of two-
write WOM codes. As opposed to existing constructions, we
will prove that this construction will have both polynomial
complexity and polynomial convergence rate.

A. Background and State of the Art Results

The capacity region of a two-write WOM is given by

C2 =
{
(R1,R2)|R1 6 h(p),R2 6 (1− p), 0 6 p 6 1/2

}
,

and the maximum sum-rate is log 3 ≈ 1.58. On the
other hand, the best sum-rate reported in the literature is
1.4928 [31]. There are three explicit constructions which
achieve the capacity C2 of two-write WOM. The first one
to accomplish this task was presented in [31]. Shortly af-
ter, in [26] Shpilka presented another capacity achieving
construction for two writes and a general construction for t
writes in [25]. There are several other works which achieve
the ε-error capacity of two-write WOM. Here, ε-error im-
plies that the second write does not succeed in the worst
case but only with high probability. These constructions are
based on polar codes [2], LDPC codes [9], [17], or random
matrices [29].

All the aforementioned constructions use a very similar
principle. For a given probability 0 < p < 1/2, if the WOM
has n cells, then on the first write at most pn cells are pro-
grammed (but not necessarily all such patterns). Thus, it is
possible to store roughly nh(p) bits and the rate approaches
h(p). The challenge on the second write is to store roughly
(1− p)n more bits on the remaining (1− p)n cells.
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The construction in [31] accomplishes this task by restrict-
ing the cell-state vectors that can be programmed on the first
write, such that any pattern of n(1 − p) bits can be stored
on the second write. This approach significantly simplifies the
encoding and decoding on the second write however it incurs
an extremely high complexity on the first write since not all
vectors of weight at most pn can be programmed. While the
convergence rate of this construction is polynomial its com-
plexity can be exponential since it may require a lookup table
for the first write encoding and decoding.

On the other hand, in [26] (almost) any pattern of at most
pn cells can be programmed and the second write uses a set
of “average” MDS codes which are derived from a Wozen-
craft ensemble [16], [19]. This collection of codes guarantees
the success of encoding roughly (1− p)n bits on the second
write. The encoding and decoding complexities of this con-
struction are polynomial with the code length n. However in
order to achieve high sum-rate, the block length has to be ex-
tremely large, and in particular the convergence rate of this
construction is exponential.

The constructions from [31] and [26] introduce a trade-
off between the complexity and convergence rate. While the
first one suffers from high complexity but achieves polyno-
mial convergence rate, the second one has opposite attributes,
i.e., low complexity but exponential convergence rate. How-
ever, we will show that there is no such tradeoff by presenting
a construction which accomplishes these two goals simultane-
ously.

B. The Construction
We are now ready to present our two-write WOM codes

construction. This construction is motivated by a recent
one [5], which is based on the notion of spreads in projective
geometry. A specific example for this construction was first
developed by Dumer for codes with stuck-at cells [8]. This
structure is defined formally as follows.

Definition 2. A collection V1, V2, . . . , VM of τ-dimensional
subspaces of Fn

2 is said to be a τ-partial spread of Fn
2 of size

M if
Vi ∩Vj = {0} for all i 6= j

In addition, if
⋃M

i=1 Vi = Fn
2 , then the collection is said to be a

τ-spread of Fn
2 .

Spreads were widely studied in the literature and it is well
known that τ-spreads exist if and only if τ divides n; see
e.g. [1], [10], [24], [27]. In this case it also holds that

M =
2n − 1
2τ − 1

> 2n−τ .

The case where n is not a multiple of τ was studied in [11]
and it was shown that a τ-partial spread of Fn

2 of size 2n−τ

exists, where τ 6 n/2.
The construction of two-write WOM codes is carried as

follows.

Theorem 3. For all τ and n such that τ + 1 6 n/2, there exists
an [n, 2; M1, M2] two-write WOM code, where

M1 =
τ

∑
i=0

(
n
i

)
, M2 = 2n−(τ+1).

Moreover the construction complexity is polynomial O(n3)
and it is capacity achieving with polynomial rate.

Proof: We shall prove this theorem by explicitly present-
ing its encoding and decoding on each write. The first write is
simple. We encode one of M1 messages by simply program-
ming one of the vectors of weight at most τ . The encoding
and decoding complexities for this step can be implemented
for example by the enumerative coding scheme by Cover [7].

For the second write we use a (τ + 1)-partial spread, given
by the collection of M2 subspaces V1, . . . , VM2 . Let m ∈ [M2]
be the message to be written on the second write, and let S be
the set of indices of the programmed cells on the first write,
so |S| 6 τ but for the simplicity of the proof we assume that
|S| = τ . The encoding of this write is performed by program-
ming a vector v such that for all i ∈ S, vi = 1.

Assume that v1, v2, . . . , vτ+1 is a basis for Vm, and let
v′1, v′2, . . . , v′τ+1 be their projections on the set S. Since for
i ∈ [τ + 1], v′i ∈ Fτ

2 , these τ + 1 vectors belong to a τ-
dimensional vector space and therefore there exist non-trivial
coefficients a1, . . . , aτ+1 for which

τ+1

∑
i=1

aiv′i = 0.

Finally, let x = ∑
τ+1
i=1 aivi, and the programmed cell-state vec-

tor is c = x. Note that since for all i ∈ S, xi = 0, we get that
ci = 1, as required. Given a codeword c, we are able to de-
termine x. Since the subspaces in the partial spread intersect
trivially, we are able to identify the subspace that the nonzero
vector x belongs to and hence decode the value of m. This
completes the decoding.
Complexity: The complexity of the encoding and decoding
maps is O(n3). For more details, we refer the reader to [5].
Convergence rate: We now turn to prove that the convergence
rate of the construction is polynomial. For all τ + 1 6 n/2,
the rates of the construction are given by

R1 =
log

(
∑
τ
i=0 (

n
i )
)

n
,R2 =

n− (τ + 1)
n

,

and thus the sum-rate is

R =
log

(
∑
τ
i=0 (

n
i )
)
+ n− (τ + 1)

n
.

For each 0 < p < 1/2, let us choose τ = dnpe. According
to [22, Lemma 4.8] we use the inequality

τ

∑
i=0

(
n
i

)
>

1
n + 1

2nh( τ
n ),

and conclude that

R >
log

(
1

n+1 2nh( τ
n )
)
+ n− (τ + 1)

n

= h
(τ

n

)
+ 1− τ + 1

n
− log (n + 1)

n

> h(p) + 1− p− 2 + log (n + 1)
n

.

Therefore if n = (1/ε)2 then R > h(p) + 1− p−ε and in
particular, R1 > h(p)−ε and R2 > 1− p−ε.

The codes we derived in Theorem 3 are not only capacity
achieving. The construction also provides WOM codes with
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explicit sum-rates. For example, if we choose n = 168, τ =
55 we will get sum-rate R = 1.561.

IV. THREE-WRITE WOM CODES CONSTRUCTION

In this section, we present two constructions of three-write
WOM codes and we focus on obtaining codes with high sum-
rates. Suppose a family of three-write WOM codes approaches
sum-rate Rsum. As before, we consider the minimum code
length n(ε) in order to be ε-close to Rsum and determine
whether n(ε) is polynomial or exponential with 1/ε.

The first construction is a simple modification of a three-
write WOM code in [26] and has sum-rates approaching 1.809.
The WOM codes from this construction have polynomial com-
plexity and approach 1.809 at polynomial rate. The second
construction however is non-explicit but provides three-write
WOM codes with high sum-rates for moderate values of n.
In fact, using the second construction, we obtain three-write
WOM codes with sum-rate 1.71 using only 100 cells. The pre-
viously best known sum-rate of explicit WOM codes is 1.61
in [31].

A. First Construction

Our first construction is based on a three-write WOM code
in [26]. On the first two writes, Shpilka used a modification of
the Rivest-Shamir two-write WOM code [23] that guarantees
that at most a certain number of cells are programmed after
the second write. On the third write, Shpilka then applies his
two-write WOM code (derived from a Wozencraft ensemble).

Theorem 4. [26] Let m and ` be integers such that ` 6 4m.
Set n = 12m + 5 and τ = d8m− 5`/4e. There exists an
[n, 3; M1, M2, M3] three-write WOM, where

M1 =
4m

∑
i=`

(
4m

i

)
34m−i , M2 = 44m, M3 = 212m−τ .

After the second write, at most τ cells are programmed. Fur-
thermore, if we set ` = b1.768mc, these codes approach sum-
rate 1.809.

Since these codes by Shplika use a Wozencraft ensemble,
the sum-rate of the three-write WOM codes approaches 1.809
with exponential rate. A simple modification to this scheme
is to apply the two-write WOM code from Theorem 3. Since
at most τ cells are programmed after the second write and if
we set τ + 1 6 n/2, or d8m− 5`/4e 6 6m + 1, we are able
to apply Theorem 3 to encode 2n−(τ+1) messages. Since the
two-write WOM code has polynomial convergence rate, the
sum-rate of the modified three-write WOM code approaches
1.809 with polynomial rate. We summarize this discussion in
the following theorem.

Theorem 5. Let m and ` be integers such that ` 6 4m
and d8m− 5`/4e 6 6m + 1. Set n = 12m + 5 and
τ = d8m− 5`/4e. There exists an [n, 3; M1, M2, M3]
three-write WOM, where

M1 =
4m

∑
i=`

(
4m

i

)
34m−i , M2 = 44m, M3 = 212m−(τ+1).

Moreover, the construction complexity is polynomial O(n3)
and if we set ` = b1.768mc, these codes approach sum-rate
1.809 with polynomial rate.

B. Second Construction

Our second construction for three-write WOM codes is non-
explicit. Nevertheless, the construction yields the best known
sum-rate for block lengths up to 100. For that we first show a
modification for the two-write construction from Theorem 3.

Observe that in Theorem 3, we require τ + 1 6 n/2. In
the next theorem, we propose a two-write WOM code, where
τ is possibly greater than n/2. While we do not obtain new
points in the capacity region, these codes will be useful in the
constructions of three-write WOM codes in this section. These
codes are similar to the codes constructed in [5] and hence,
the proof is omitted.

Theorem 6. Let n, τ , r, k, and d be integers such that
1) τ + r 6 (n + k)/2,
2) there exists an [n, k, d] linear code, and
3) there does not exist an [n− τ , r, d] linear code.

Then there exists an [n, 2; M1, M2] two-write WOM code,
where

M1 =
τ

∑
i=0

(
n
i

)
, M2 = 2n−(τ+r).

Moreover, on the first write, at most τ cells are programmed.

Example 1. Let n = 100, τ = 76, r = 3, k = 58, and
d = 14, so it holds that τ + r 6 (n + k)/2. From [14],
we know that an [100, 58, 14] linear code exists, while an
[24, 3, 14] linear code does not exist. Therefore, we have
a
[
100, 2; ∑

76
i=0 (

100
i ), 221

]
two-write WOM code. Here, the

rates are given by R1 ≈ 1 and R2 = 0.21. 2

We are now ready to present the construction for three-write
WOM codes. As with most three-write WOM constructions,
the key idea is to minimize the number of programmed cells
after the second write. To do so, instead of using all subspaces
in the spread, we only choose certain good ones to encode as
the messages for the second write.

Theorem 7. Let τ1 and τ2 be integers such that
1) τ1 + 1 6 n/2,
2) ∑

n−τ2−1
i=0 (n

i ) < 2n−(τ1+1), and
3) Theorem 6 yields an

[
n, 2; ∑

τ2
i=0 (

n
i ), M3

]
two-write

WOM.
Then, there exists an [n, 3; M1, M2, M3] three-write WOM,
where

M1 =
τ1

∑
i=0

(
n
i

)
, M2 = 2n−(τ1+1) −

n−τ2−1

∑
i=0

(
n
i

)
.

Proof: Consider a (τ1 + 1)-partial spread, given by the
collection of M = 2n−(τ1+1) subspaces V1, . . . , VM. We say
that a subspace is bad if it contains a nonzero vector of weight
at most n−τ2− 1. Since there are at most ∑

n−τ2−1
i=0 (n

i ) words
of weight at most n− τ2 − 1, we have at most ∑

n−τ2−1
i=0 (n

i )
bad subspaces. We expurgate these bad subspaces and use the
remaining M2 subspaces to encode the second write.

Note that any nonzero vector x in these subspaces have
weight at least n− τ2. Since we program the vector x, there
are at most τ2 programmed cells after the second write.
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For the third write, we use the
[
n, 2; ∑

τ2
i=0 (

n
i ), M3

]
two-

write WOM from Theorem 6. This completes the proof.
The next example demonstrates this construction.

Example 2. Let n = 100, τ1 = 23, and τ2 = 76. Then

M1 =
23

∑
i=0

(
100

i

)
≈ 274.9, and

M2 = 276 −
23

∑
i=0

(
100

i

)
≈ 275.1.

From Example 1, we have a
[
100, 2; ∑

76
i=0 (

100
i ), 221

]
two-

write WOM code, and we set

M3 = 221.

Therefore, the sum-rate is approximately 0.749 + 0.751 +
0.21 = 1.71.

In contrast, we consider the three-write WOM codes from
Theorem 5. For 1 6 m 6 8, or n 6 101, the best sum-rate
achievable is 1.68. Therefore, Theorem 7 yields the best
known sum-rate for lengths up to 100. 2

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we studied efficient constructions of WOM
codes. In the two-write case, we provided a capacity achieving
construction which has polynomial complexity and polyno-
mial convergence rate. For three writes, we gave WOM codes
which improved upon the best known sum-rate of explicit
WOM codes.

While the results in the paper provide a significant con-
tribution in the area of WOM codes, there are still several
interesting problems which are left open. Namely, finding
better explicit constructions for the three-write case and ca-
pacity achieving construction with polynomial complexity
and polynomial convergence rate. These problems are even
more challenging and stimulating for more than three writes,
where much less is known.
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