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Abstract The problem of storing permutations in a distributed manner arises in several
common scenarios, such as efficient updates of a large, encrypted, or compressed data set.
This problem may be addressed in either a combinatorial or a coding approach. The former
approach boils down to presenting large sets of permutations with locality, that is, any symbol
of the permutation can be computed from a small set of other symbols. In the latter approach,
a permutation may be coded in order to achieve locality. Both approaches must present low
query complexity to allow the user to find an element efficiently. We discuss both approaches,
andgive a particular focus to the combinatorial one. In the combinatorial approach,weprovide
upper and lower bounds for the maximal size of a set of permutations with locality, and
provide several simple constructions which attain the upper bound. In cases where the upper
bound is not attained, we provide alternative constructions using a variety of tools, such as
Reed-Solomon codes, permutation polynomials, andmulti-permutations. In addition, several
low-rate constructions of particular interest are discussed. In the coding approach we discuss
an alternative representation of permutations, present a paradigm for supporting arbitrary
powers of the stored permutation, and conclude with a proof of concept that permutations
may be stored more efficiently than ordinary strings over the same alphabet.
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1 Introduction

For an integer n, let Sn be the group of all permutations on n elements. Given a permutation
π ∈ Sn we consider the problem of storing a representation of π in a distributed system
of storage nodes. This problem arises when considering efficient permutation updates to a
distributed storage system. For example, in a system which stores large entries whose order
commonly changes, one might prefer to store the permutation of the entries, rather than
constantly shift them around. Alternatively, the stored file may be signed or hashed (using
cryptographic primitives), and storing the permutation alongside the file allows to update
the file without altering its signature. The given file may also be compressed using a source
code, and storing the permutation enables to perform permutation updates without the need
to decompress the file. Perhaps the most natural example for such a scenario is the common
operation of cut and paste, which may be modelled as a permutation update, and briefly
discussed in Sect. 1.1.

Above all questions of efficiency, in very simple storage schemes, a permutation update
might require to decode the file (see Sect. 1.1). Storing the permutation alongside x allows
a permutation update to be made without decoding the file, at the price of storage overhead.

The crux of enabling efficient storage lies in the notion of locality, that is, any failed storage
node may be reconstructed by accessing a small number of its neighbors. The corresponding
coding problem is often referred to as symbol locality, in which every symbol of a codeword
is a function of a small set of other symbols [26]. Another approach towards efficient storage
stems from array codes, in which each storage node stores a large set of symbols from the
codeword (e.g., [28] and references therein). For simplicity, in this paper we consider symbol
locality. Furthermore, since our underlying motivation is allowing small updates to be done
efficiently, we disregard the notion of minimum distance between the stored permutations,
and focus solely on locality. Occasionally, we will discuss local correction of simultaneous
erasures, as in [22].

As mentioned earlier, locality in permutations may be considered in either a combina-
torial or a coding approach. Under the combinatorial one, the underlying motivation is set
aside, and the problem boils down to finding (or bounding the maximum size of) sets of
permutations which present locality; i.e., such that any symbol in any permutation in this set
may be computed from small number of other symbols. This approach is the main one in this
paper. Under the coding approach, the given permutation may be coded in order to achieve
locality, e.g., by using a locally recoverable code (LRC). The combinatorial approach clearly
outperforms the use of LRCs in terms of redundancy (see Sect. 2), at the price of not being
able to store any permutation. Furthermore, it is also shown in Sect. 2 that storing a subset
of Sn using an LRC while maintaining the same overhead as in the combinatorial approach
does not enable an instant access to the elements of the permutation, as discussed further in
this section.

The combinatorial approach may also be applied in rank modulation coding for flash
memories [16], in which each flash cell contains an electric charge, and a block of cells con-
tains the permutation which is induced by the charge levels. Flash memories are susceptible
to various types of hardware failures, some of which result in a complete loss of the charge
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in a cell, i.e., an erasure [15]. A rank modulation code which enables local erasure correction
allows quick recovery from a such loss of charge. Yet, this application requires some further
adjustments of our techniques, since the charge levels usually represent relative values rather
than absolute ones.

Several natural questions, which are irrelevant in ordinary storage, may arise when dis-
cussing storage of permutations. For example, a storage system which stores π ∈ Sn may
be required to answer either π−1(i) =? or π(i) =? quickly. These questions are denoted by
Q1 and Q2, respectively, and notice that without this additional requirement, storing permu-
tations reduces to storing binary strings of length �log(n!)� by enumerative encoding. In the
combinatorial approach, either one of Q1 or Q2 becomes trivial, depending if we consider
the permutation at hand as (π(1), . . . , π(n)) or

(
π−1(1), . . . , π−1(n)

)
. For example, when

storing the latter, answering Q1 is straightforward, and answering Q2 is possible by inspect-
ing π−1(i), π−1(π−1(i)), . . . , etc., until i is found (see [12, Chap. 1.3, p. 29]). Hence, the
number of required queries for Q1 is 1 (or log n bits), and for Q2 it is at most the length of
the longest cycle in π . Although it is not the general purpose of this research, we take initial
steps towards efficient retrieval of π(i) and π−1(i) simultaneously. Clearly, allowing the
permutation to be encoded provides more freedom in devising storage techniques. However,
maintaining a concise representation which enables Q1 and Q2 to be answered quickly is
a rather involved question, which was studied in the past in a non-distributed setting (e.g.
[20,21], see further details in Sect. 2).

Since a variety of mathematical techniques are used throughout this paper, in each
technique we consider the permutations in Sn as operating on a different sets of sym-
bols. These sets may be either [n] � {1, . . . , n} or {0, . . . , n − 1}. Alternatively, we may
assume that n is a power of prime, and {0, 1, . . . , n − 1} is an enumeration of the ele-
ments in Fn , the finite field with n elements, where the additive identity element of Fn is
denoted by “0” and the multiplicative identity element is denoted by “1”. Unless otherwise
stated, we consider permutations in the one line representation (one-liner, in short), that is,
π � (π1, . . . , πn) = (

π−1(1), . . . , π−1(n)
)
. A well known tool in the analysis of permu-

tations, that will be used several times in the sequel, in the disjoint cycle representation [7,
Sec. 3.1]. In this regard, for distinct integers i0, . . . , is−1 ∈ [n], a cycle (i0 i1 . . . is−1)

represents the permutation π such that π(i j ) = i j+1 mod s for all j ∈ {0, . . . , s − 1}, and
π(k) = k for all k ∈ [n]\{0, . . . , s − 1}. The product between cycles is defined naturally
as the composition of the respective cycles. It is widely known that any permutation can be
represented as a product of disjoint cycles, and this representation is unique up to the order
of the cycles, and up to cyclic rotations of each cycle.

Given a set S ⊆ Sn , we say that S has locality d if for any π ∈ S, any symbol πi may be
computed from d other symbols of π . In order to formally define this notion, we follow an
outline similar to [26, Sect. II]. For a set of permutations S ⊆ Sn , an integer i ∈ [n], and a
symbol a ∈ [n], let S(i, a) � {π ∈ S|πi = a}. For a set of integers I ⊆ [n] let SI be the
restriction of the permutations in S to the index set I , i.e., the set which results from deleting
all entries indexed by [n]\I for any π ∈ S.

Definition 1 For positive integer d and n such that d < n, a set of permutations S ⊆ Sn is
said to have locality d if for every i ∈ [n], there exists a subset Ii ⊆ [n]\{i}, |Ii | ≤ d , such
that S(i, a)Ii ∩ S(i, a′)Ii = ∅ for any distinct a and a′ in [n].

The rate of S is defined as log |S|/ log(n!), the identity permutation is denoted by Id, and
◦ denotes the concatenation of sequences.

This paper is organized as follows. Additional motivation for studying storage of permu-
tations is given in Sect. 1.1. Section 2 summarizes related previous work. Section 3 discusses
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upper and (existential) lower bounds on the maximal possible size of subsets of Sn which
present locality. Section 4 provides several simple constructions, some of which attain the
upper boundwhich is presented in Sect. 3. A construction which shows a connection to Reed-
Solomon codes via permutation polynomials, and a construction via multi-permutations are
also given in Sect. 4. In Sect. 5 two sets of permutations of particular interest are presented.
These sets have low rate, and low locality. The set from Sect. 5.1 will be later shown to have
a more efficient representation (Sect. 6.1). The coding approach is discussed in Sect. 6, in
which the main result is a technique which allows to compute every power of the stored per-
mutation very efficiently, and is strongly based on [20]. Section 6.3 shows a preliminary proof
of concept that permutations may be stored using less redundancy bits than ordinary strings,
and shows a concrete technique of doing so, attaining a negligible advantage. Concluding
remarks and problems for future research are given in Sect. 7.

1.1 Motivation

This subsection presents a general motivation for distributed storage of permutations through
common file updates, and through applications in cryptography. We begin by showing that
in a certain simple scenario, permuting the coordinates of the stored file without decoding is
impossible.

Assume that a file x , which contains n entries, is divided into two halves x1, x2 and stored
in three nodes using the simplest parity check code x1, x2, x1 + x2 (as in the RAID4 storage
system). In addition, assume that the user would like to apply π ∈ Sn/2 on x1. Applying π

only over the systematic part, that is, update the system to contain π(x1), x2, x1 + x2, clearly
does not maintain the error correction capability. On the other hand, updating the parity node
to containπ(x1)+x2 without knowing either x1 or x2 is information theoretically impossible.
Hence, given π , the storage node which contains x1 + x2 cannot update its own content to
π(x1) + x2. This fact is illustrated in the following lemma.

Lemma 1 If x1 and x2 are strings of length n/2 over a field Fq , then given a nontrivial
π ∈ Sn/2 and x1 + x2, it is information theoretically impossible to compute π(x1) + x2.

Proof It is widely known that given x1 + x2, one cannot infer any information on either of x1
and x2.1 We show that if π(x1) + x2 may be computed, then some information about certain
symbols of x1 can be inferred.

Knowing x1 + x2 and π(x1) + x2, we may calculate α � π(x1) + x2 − (x1 + x2) =
π(x1) − x1. Furthermore, since π ∈ Sn/2 is nontrivial, we may arbitrarily choose one cycle
(i1, i2, . . . , it ) from the disjoint cycle representation of π , for some t > 1. Hence, we may
assemble the following linear system of equations, in the variables xi11 , xi21 , . . . , xit1 .

⎛

⎜⎜⎜⎜⎜
⎝

−1 1
1 −1 0
0 1 −1 0

. . .
. . .

...

0 1 −1

⎞

⎟⎟⎟⎟⎟
⎠

·

⎛

⎜⎜⎜⎜
⎝

xi11
xi21
...

xit1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

αi1
αi2
...

αit

⎞

⎟⎟⎟
⎠

(1)

Since the matrix in (1) has rank t − 1 > 0, and since the system has a solution, we have
that the affine space of solutions of this system is of dimension 1. Therefore, the sequence

1 In other words, if X1 and X2 are two uniform random variables that take values on F
n/2
q , then the mutual

information I (X1; X1 + X2) is zero.
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xi11 , . . . , xit1 may have either one of q possible values, rather than qt values. Since t > 1, the
claim follows. 
�

Permutation updates arise in everyday scenarios. Two very common updates may be
modeled as a special case of permutation updates. One is the well-known cut-paste operation,
in which a portion of data is removed and placed elsewhere in the file. The other one is
the replacement operation, in which two distinct portions of equal size switch places. The
following definitions formalize these common notions.

Definition 2 A cut-paste update is a permutation update whose corresponding permutation
is either

π = (1, . . . , t − 1, t + α, . . . , s, t, t + 1, . . . , t + α − 1, s + 1, . . . , n), or

π = (1, . . . , t − 1, s − α + 1, . . . , s − 1, s, t, t + 1, . . . , s − α),

for some t and s in [n] such that t < s, and for some α ≤ s − t .

It should be noted that for α = 1 and s �= t , Definition 2 describes a set of permuta-
tions called translocations. Translocations are the building blocks of the Ulam metric [14,
Proposition 3], which is an essential tool for error-correction in rank modulation for flash
memories [14] and DNA research [5,11].

Definition 3 A replacement update is a permutation update whose corresponding permuta-
tion is

π = (1, . . . , t − 1, s, s + 1, . . . , s + α − 1, t + α, . . . ,

s − 1, t, t + 1, . . . , t + α − 1, s + α, . . . , n),

for some t and s in [n] such that t < s, and for some α such that α < min{s − t, n − s + 1}.
Transpositions can be seen as the building blocks of the transposition metric, considered

in [17]. The number of cut-paste and replacement operations is rather small, as shown in the
following lemma, which is easy to prove.

Lemma 2 The number of replacement updates on a file of n elements is O(n3), and the
number of cut-paste update on a file of n elements is O(n3).

Clearly, storing one of O(n3) possible values requires O(log n) bits. Therefore, providing
an efficient answer to Q1 and Q2 becomes trivial, since obtaining all information about one
of these permutations is possible by reading O(log n) bits. Thus, these specific permutations,
however common, will not be discussed further in this paper. Yet, other interesting types of
permutations arise in daily scenarios, see Sect. 5.

Similar questions were studied from a cryptographic perspective. The works of [3,4]
initiated the researchof cryptographic primitives, such as hash functions or signature schemes,
that enable efficient updates. That is, small changes in the file may be incorporated into its
hash (or signature) efficiently, without requiring to recompute it from scratch. The updates
considered in [3,4] are of different nature (replacement rather than permutations), and the
file is not stored in a distributed manner, yet the underlying motivation is highly similar, that
is, how to perform efficient updates to a stored file, without the need to encode it anew.

Our work may be used in conjunction with any existing (distributed) cryptosystem, which
was not necessarily meant for updates, while enabling permutation updates to be done
efficiently. Furthermore, in coding-based cryptosystems (such as the McEliece cryptosys-
tem [18]) any update of the un-encrypted file is inefficient. This is since any change of a
symbol in the un-encrypted file requires changing at least as many symbols of its encrypted
counterpart as the minimum distance of the underlying code.
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2 Previous work

Coding over Sn , endowedwith either of several possiblemetrics [11], was extensively studied
under many different motivations. For example, codes in Sn under the Kendall’s τ metric [2]
and the infinity metric [27] were shown to be useful for non-volatile memories, and codes
under the Hamming metric (also known as permutation arrays) were shown to be useful
for power-line communication [9]. In all of these works, the permutations are encodings of
messages, and hence should maintain minimum distance constraints. In this work, however,
the permutation itself is of interest, thus minimum distance is not considered, and certain
sets of permutations with low rate are also of interest. In addition, when taking the coding
approach, the added redundancy need not to comply with any combinatorial constraints, e.g.,
to result in a permutation of a larger base set.

As mentioned in the Introduction, we consider permutations in their one line represen-
tation (one-liner, in short). Our problem may be seen as allowing local erasure correction
of permutations in the one-liner. Erasure and deletion correction of permutation codes was
discussed in [15], in which it was shown that the most suitable metric for erasure correc-
tion (called “stable erasure” in [15]) is the Hamming metric, that measures the number of
entries in which the one-liners differ. However, the work of [15] was motivated by the rank
modulation scheme in flash memories and thus locality was not discussed.

Furthermore, it is obvious that a permutation array with minimum Hamming distance
n−d +1 allows local erasure correction of any symbol from any d other symbols. However,
constructing permutation arrays with minimum Hamming distance is an infamously hard
problem, let alone in the high distance region [6]. Moreover, construction of permutation
arrays with minimum Hamming distance is not equivalent to finding sets of permutations
with locality, since the inverse is clearly untrue, that is, a set with locality d does not imply
a permutation array with minimum Hamming distance n − d + 1.

A similar motivation lies behind the work of [24], where the authors considered updates
of a distributed storage systemwhich involve deletions and insertions to a file which is stored
in a distributed system. Clearly, a permutation update can be seen as a series of deletions and
insertions. The so-called “scheme P” [24, Sect. 4.2] provides a framework for maintaining a
file x ∈ F

n
q in a distributed storage system under insertions and deletions. The entire file is

assumed to be stored using an arbitrary array-code, and the deletions and insertions are taking
place with respect to any specific block. Interestingly, a deletion is treated as a permutation,
where the deleted symbol is replaced with the symbol 0 and pushed to the end of the block.
A set of permutation matrices {A(i)}, one for each block, is stored in the system to keep track
of the permuted symbols. An insertion is treated similarly, keeping track of the location of
insertion using the permutation matrices. The overhead of storing the matrices {A(i)}i∈[n] is
improved by using the fact that the entire matrices need not to be stored, and we may settle
for the locations of the edits. Our work may be seen as an extension of scheme P from [24]
to permutation updates, as we handle various types of larger sets of permutations.

Recall that we are interested in supporting the queries Q1 or Q2. A similar problem, which
relates to general strings rather than to permutations, was addressed in the past as a problem
about data structures. A representation technique called “the succincter”, which enables one-
symbol recovery,2 was discussed in [21]. This representation requires only slightly more
bits than the optimal one, but it seems to be superfluous when discussing large alphabets.
Formally, according to [21, Theorem 1], for any t , a file x of length n over an alphabet Σ

2 One-symbol recovery is the term used in [21] for returning a given entry of the stored string, without
requiring to decode it.
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can be represented by O(|Σ | log n) + f (n, x, t) for some function f , while allowing one-
symbol recovery in O(t) time. In our scenario we have thatΣ = [n], and optimal one-symbol
recovery is trivially possible by using an n log n bit representation.

When considering the coding approach, a standard technique may be the use of Locally
RecoverableCodes (LRCs).An (m, k, d)LRC is a code that produces anm-symbol codeword
from a k-symbol message, such that any symbol of the produced codeword may be recovered
by contacting at most d other symbols. LRCs have been subject to extensive research in
recent years [26], mainly due to their application in distributed storage systems. Consider
any permutation π ∈ Sn as a string over the alphabet3 [n], and encode it to m symbols using
an optimal systematic LRC (e.g., [26]). Singleton-optimal LRCs that encode n = k symbols
to m symbols and admit locality of d must satisfy q ≥ m, and [26, Theorem 2.1]

n

m
≤ d

d + 1
, (2)

i.e., their rate is bounded from above by d/(d+1). Thus, n/d redundant information symbols
are required to achieve locality of d . Using the combinatorial approach (and some of the
techniques in the coding approach, see Sect. 6.1) we achieve smaller storage overhead, in
the price of not being able to store any permutation. Notice that by restricting our attention
to a subset S ⊆ Sn it is possible to obtain locality of d (assuming each storage node may
contain log n bits) by using LRCs with log |S| · d+1

d bits of storage. This amount of storage
outperforms the combinatorial approach if log |S| · d+1

d ≤ n log n, that is, the rate of S is at
most d

d+1 . It will be shown in the sequel (Theorem 3 and Lemma 5) that sets of permutations
of this rate and locality d do exist. Moreover, the use of LRC for storing the subset S with
this much overhead seems to require enumerative decoding of S, a procedure that eradicates
the ability for quick answer to Q1 and Q2. Therefore, there exist scenarios in which the
combinatorial approach outperforms the coding one, both in terms of redundancy and in
terms of instant access.

In addition, simple LRCswill be used for proof of existence of optimal sets of permutations
with locality (i.e., having maximum possible rate). In particular, in Sect. 3.2 it will be shown
that there exists a coset of an optimal locally recoverable code C , which contains a set S of
words that can be considered as permutations. However, this claim is merely existential, and
does not provide any significant insights on the structure of S.

3 Bounds

Let A(n, d) be the maximum size of a subset of Sn with locality d . This section presents an
upper bound and an existential lower bound on A(n, d). The upper bound in Sect. 3.1 is an
adaptation of a bound for LRCs ([26, Theorem 2.1], given in (2)). This upper bound is later
improved for d = 1, and is attained by a certain construction in Sect. 4.2 to follow. To obtain
an existential lower bound, in Sect. 3.2 it is shown that a certain LRC has a coset which
contains a set of permutations with the same locality as the LRC itself. For certain small
values of locality, an equivalent lower bound will also be derived in Sect. 3.2 by a connection
to a classical problem in chess.

Notice that in this section the combinatorial approach is considered. This clearly does
not fully reflect the entire spectrum of techniques that might be used to store permutations.

3 More precisely, the alphabet [n] when seen as a subset of a large enough finite field Fq , over whom the
construction of the LRC is possible.
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Nevertheless, it presents the limitation of a certain approach towards storage of permutations,
which is the main one in this paper.

3.1 Upper bounds

The bound for LRCs (2) can be used as-is if n is a power of prime, and the set of permutations
is considered as a non-linear code in F

n
n . By a simple adaptation of [26, Theorem 2.1] to

non-linear codes, we have that a non-linear code in F
n
n with locality d contains at most

n�dn/(d+1)� codewords. This bound may be improved by utilizing the combinatorial structure
of permutations.

The following bound, as the one given in (2), assumes a non-adaptive decoder. That is,
it is assumed that for a given erased entry i , the decoder accesses a set Ii of d entries, and
receives all their content at once. A different approach, which is partially implemented in
Sect. 5.2, is to access the non-erased symbols in an adaptive manner, where the locations of
the latter ones depend on the content of the former ones. The following lemma, due to [26],
is a variant of a classic result by [1].

Lemma 3 [26, Theorem A.1] If G is a directed graph on n vertices then there exists an
induced directed acyclic subgraph of G on at least

n

1 + 1
n

∑
i d

out
i

vertices, where douti is the outgoing degree of vertex i .

This lemma provides the following adaptation of [26, Theorem 2.1] to permutations.

Theorem 1 A(n, d) ≤ n!
� n
d+1 �! .

Proof Let C ⊆ Sn be a set of permutations with locality d , and let G be a directed graph
whose vertex set is [n], and (i, j) is an edge if entry j in π ∈ C is required for the local
correction of entry i . Notice that since C has locality d , Lemma 3 implies that G has an
induced directed acyclic subgraph on a set U of at least � n

d+1� vertices. Since this subgraph
is acyclic, it contains a vertex i with no outgoing edges. Hence, entry i is a function of
entries in [n]\U . Repeating this argument for the induced graph onU\{i}, we have that there
exists a vertex i ′ with no outgoing edges to U\{i}. Hence, entry i ′ is a function of entries in
[n]\(U \ {i}). Since entry i is a function of entries in [n]\U , we have that i ′ is also a function
of entries in [n]\U . Iterating over all vertices in U , we have that there are at least � n

d+1�
entries that depend on the other � dn

d+1� entries.
Therefore, there exists a set of at most � dn

d+1� entries, which determines the entire permu-

tation. There are
( n
� dn
d+1 �

)
different ways to choose the elements in these entries, and � dn

d+1�!
ways to permute them. Therefore, the size of C is at most
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(
n

� dn
d+1�

)
· � dn

d + 1
�! = n!

� dn
d+1�! ·

(
n − � dn

d+1�
)
!
· � dn

d + 1
�!

= n!
(
n − � dn

d+1�
)
!

= n!
� n
d+1�!


�
As a simple corollary of Theorem 1 we obtain an upper bound on the rate of a set of per-

mutations with locality d . Notice that by the Stirling approximation of the factorial function,
we have that log(n!) ≈ n log n, and hence the optimal rate implied by Theorem 1 is

log
(

n!
� n
d+1 �!

)

log(n!) = 1 −
log

(
� n
d+1�!

)

log(n!)
n→∞−→ 1 −

n
d+1 · log

(
n

d+1

)

n log n

= d

d + 1
+ log(d + 1)

n log n(d + 1)
n→∞−→ d

d + 1
. (3)

Hence, in the sequel a setC of permutations with locality d is called optimal if its rate is d
d+1 ,

and asymptotically optimal if its rate tends to d
d+1 as n tends to infinity.

The trivial subset C = Sn admits locality of d = n − 1, and attains the upper bound. In
addition, the alternating group, and its complement, have locality of n − 2 (see Sect. 4.1).
According to these examples, it is clear that A(n, n − 1) = n! and A(n, n − 2) = n!/2, and
hence, any upper bound will coincide with the one given in Theorem 1 for d ∈ {n−1, n−2}.

For d < n−2 there exists a large gap between this bound and the sizes of the sets presented
in this paper. This gap may be resolved for d = 1 by using a graph theoretic argument on the
dependency graph in the proof of Theorem 1. In what follows, we say that a directed graph G
is connected if removing the directions from the edges of G yields an undirected connected
graph T . If T is not connected, then every connected component of T is considered as a
connected component of G.

Lemma 4 If G is a directed graph of constant out-degree one, then any connected component
of G contains precisely one cycle.

Proof Let G ′ be a connected component of G. If G ′ contains no vertex with in-degree zero,
then it is a cycle, and the claim is clear. Else, let v1 be a node in G ′ with in-degree zero. Since
G has constant out-degree one, it follows that there exists a unique path v1 → · · · → vt ,
such that all vertices are distinct, and t is maximal. Since vt has out-degree one, it follows
that G ′ contains a cycle.

If G ′ contains no other nodes besides v1, . . . , vt , then it contains precisely one cycle,
and the claim follows. If G ′ contains no other node with in-degree zero, we have that G ′
contains two connected components, a contradiction. Hence, let vt+1 be another node in G
of in-degree zero. Similarly, G also contains a path vt+1 → · · · → vs with distinct nodes
and a maximal s such that s /∈ {v1, . . . , vt }. The node vs has out-degree one, and hence must
be connected to another node u in G ′. If u ∈ {vt+1, . . . , vs}, we have that G ′ contains two
connected components, a contradiction. Therefore, the path vt+1, . . . , vs is connected to one
of the nodes v1, . . . , vt , and thus no additional cycle is possible. By iterating this argument
until all vertices of G ′ are traversed, we have that G ′ contains precisely one cycle. 
�
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As a result, we obtain the following bound on the maximal size of sets of permutations
with locality one.

Theorem 2 A(n, 1) ≤ n!! �
∏�n/2�−1

i=0 (n − 2i).

Proof Let C ⊆ Sn be a set with locality one, and let G be a directed graph whose vertex
set is the set of entries [n], and (i, j) is an edge if entry j in π ∈ C is required for the local
correction of entry i . Since G has locality one, it follow that any vertex in G has out-degree
one. Furthermore, for any edge (i, j), fixing value of π j determines the value of πi .

Let G1, . . . ,Gt be the connected components of G. According to Lemma 4, each Gi

contains precisely one cycle. Clearly, fixing the value of any entry in such a cycle, determines
the value of all other entries in its connected component. Hence, the entire permutationπ ∈ C
is determined by fixing the value of t of its entries, one entry in the unique cycle in each
connected component. Since each connected component contains at least two nodes, we have
that the maximum size of C is

n · (n − 2) · (n − 4) · · · · ·
(
n − 2

(
�n
2
� − 1

))
.


�

Since the set constructed in Sect. 4.2 below attains the bound of Theorem 2 for d = 1,
we have that A(n, 1) = n!!. Generalizing the techniques in the proof of Theorem 2 to any
locality seems to be related to extinction problems in cellular automata on graphs [29], and
might improve the bound given in Theorem 1 for many special cases.

3.2 Lower bound

A locally recoverable code C of optimal rate, length n, and locality d , may easily be con-
structed overZn � {0, 1, . . . , n−1}, the set of integers modulo n with the respectivemodular
addition operation. This is done by adding n/(d + 1) “parity checks” to all disjoint sets of d
consecutive symbols in Z

n−n/(d+1)
n .

Example 1 For n = 6 and d = 2 the set

{(a, b, c, d, a + b, c + d)|a, b, c, d ∈ Z6}

is an LRC of optimal rate 2
3 over Z6.

The rate of C attains the upper bound of n−n/(d+1)
n = d

d+1 , given in (2). Also, it is readily
verified that C is closed under component-wise addition, and hence it is a subgroup of the
additive group Z

n
n . Therefore, cosets of C may be defined, and note that each such coset has

the same locality d as the code C .

Theorem 3 A(n, d) ≥ n!/nn/(d+1).

Proof Let C be an LRC of optimal rate, length n, and locality d over Zn . Since C is a
subgroup of the additive group Z

n
n , it has

nn

ndn/(d+1) = nn/(d+1) cosets, and each of which has
locality d as well. Since n! of the words in Z

n
n are permutations, it follows by the pigeonhole

principle that one of the cosets of C contains a set of at least n!/nn/(d+1) permutations. 
�

123



Coding for locality in reconstructing permutations

The rate which is implied by Theorem 3 asymptotically attains the rate of the upper bound
from Theorem 1, given in (3), since

log

(
n!

n
n

d+1

)

log(n!) = 1 −
n

d+1 · log n
log(n!)

n→∞−→ d

d + 1
.

On the other hand, Theorem 3 provides a set with higher redundancy than the potential
upper bound, where the redundancy of a set S is defined as log(n!) − log(|S|). Using the
same techniques as in (3), we have that the redundancy of the set from Theorem 3 is

log(n!) − log

(
n!

nn/(d+1)

)
≈ n

d + 1
log n,

where the potential redundancy implied by Theorem 1 is

log(n!) − log

(
n!

� n
d+1�

)

≈ n

d + 1
log

n

d + 1
.

Therefore, itmay be possible to achieve setswith redundancy up to n · log(d+1)
d+1 bits smaller

than the one obtained in Theorem 3.

Remark 1 The proof of Theorem 3 relies on a simple construction ofC , an LRCwith optinal
rate but with low minimum Hamming distance. Similarly, it is possible to replace C with an
LRC of higher minimum Hamming distance (e.g., [26]) and obtain an existence proof for a
set of permutations with locality and minimumHamming distance. Since minimum distance
constraints are not discussed in this paper, we choose the former approach for simplicity.

For certain small values of d , a similar lower bound can be derived from a well-studied
problem in combinatorics, which is described in the remainder of this subsection. A Latin
square of order n is a square n×n matrix with entries in {0, . . . , n−1}, such that in each row
and in each column, all entires are distinct. A cyclic Latin square is a Latin square such that
entry (i, j) equals (i − j) mod n [19]. A transversal in a Latin square is a set of positions
such that no two share the same row, column, or value. A transversal in a cyclic Latin square
is equivalent to the following chess problem. A semi-queen is a queen that cannotmove on the
north-east south-west diagonal. In an n×n toroidal chessboard, it is possible to move across
the generalized diagonals {(i, j)|i − j ≡ t mod n} for all t ∈ {0, . . . , n − 1}, even if the
positions are not connected in the ordinary chessboard. It is readily verified that a transversal
in a cyclic Latin square of order n corresponds to a configuration of n non-attacking semi-
queens in an n × n toroidal chess board, which in turn corresponds to a permutation σ ∈ Sn
such that Id + σ ∈ Sn , where the sum is taken mod n (see Fig. 1).

For a permutation π ∈ Sn let P(π) � {σ ∈ Sn |π + σ ∈ Sn}. For any two permutations
π1, π2 ∈ Sn , by applying a proper permutation of entries we get a bijection between P(π1)

and P(π2), and hence, |P(π1)| = |P(π2)|. Therefore, for any π ∈ Sn , the size of P(π)

depends only on n, and is thus denoted by tn . Estimating tn is a well-known problem which
was resolved only recently [13]. However, givenπ ∈ Sn , constructing the set P(π) efficiently
is still an open problem.

Theorem 4 [13, Theorem 1.2] If n is an odd integer then

tn = (
e−1/2 + o(1)

)
n!2/nn−1.
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Fig. 1 The equivalence of a transversal in a cyclic Latin square, an arrangement of non attacking semi-queens
in a torodial chessboard, and a permutation σ such that Id + σ is a permutation

Assume that there exists an efficient algorithm B that on input (p, i), where p ∈ Sn and
1 ≤ i ≤ tn , outputs the i-th permutation σ ∈ Sn such that p + σ ∈ Sn . The existence
of B provides an efficient algorithmic construction of a set of permutations with locality and
asymptotically optimal rate. In the following theorem, al additions are taken modulo n

d+1 .

Lemma 5 For an odd n, an integer d = 2o(log n) such that d +1|n, and integers i1, . . . , id−1

such that 1 ≤ i j ≤ tn for all j ∈ [d − 1], let
p1 ∈ S n

d+1

p2 � B(p1, i1)

p3 � B(p1 + p2, i2)

p4 � B(p1 + p2 + p3, i3)

. . .

pd � B

⎛

⎝
d−1∑

j=1

p j , id−1

⎞

⎠

pd+1 �
d∑

j=1

p j ,

and define

πp1,i1,...,id−1 � p1 ◦
(
p2 + 1 · n

d + 1

)
◦

(
p3 + 1 · 2n

d + 1

)
◦

(
p4 + 1 · 3n

d + 1

)
◦ . . .

◦
(
pd + 1 · (d − 1)n

d + 1

)
◦

(
pd+1 + 1 · dn

d + 1

)

where 1 is the all 1’s vector of length n
d+1 . The resulting set

S � {πp1,i1,...,id−1 |p1 ∈ Sn/(d+1), 1 ≤ i1, . . . , id−1 ≤ tn}
is a set of permutations in Sn with locality d, and optimal asymptotic rate d

d+1 .

Proof Since for any k, 2 ≤ k ≤ d , we have that pk = B(
∑k−1

j=1 p j , ik−1), it follows from
the definition of the algorithm B that pi ∈ S n

d+1
for all i ∈ {1, . . . , d + 1}. Therefore,

any π ∈ S results from a concatenation of d + 1 permutations on disjoint n
d+1 -subsets

of {0, . . . , n − 1}, and thus S ⊆ Sn . Since pd+1 = ∑d
j=1 p j , it follows that any symbol
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of any π � (π0, . . . , πn−1) ∈ S can be computed from d other symbols, since for all
j ∈ {0, . . . , n

d+1 − 1} we have

π dn
d+1+ j − dn

d + 1
=

d∑

i=1

(
π in

d+1+ j − in

d + 1

)
.

According to Theorem 4, the size of S is

n

d + 1
!(t n

d+1
)d−1 = Θ

⎛

⎜
⎜
⎝

n
d+1 !2d−1

(
n

d+1

)(
n

d+1−1
)
(d−1)

⎞

⎟
⎟
⎠ .

Since d = 2o(log n) we have that log d
log n

n→∞−→ 0, and thus the asymptotic rate of S is

log |S|
log(n!)

n→∞−→
(2d − 1) n

d+1 log
n

d+1 −
(

n
d+1 − 1

)
(d − 1) log n

d+1

n log n

=
d

d+1 · n + d − 1

n
· log

n
d+1

log n
n→∞−→ d

d + 1
.


�
A non-efficient implementation of A may be obtained simply by traversing all permu-

tations in Sn . However, providing an efficient implementation of A requires a rigorous
understanding of the structure of the permutations in P(Id), which seems beyond the scope

of contemporary knowledge. A subset of P(Id) of approximate size
√
n

√
n is given in [10],

but it is too small to provide a non-trivial construction.

Remark 2 We note that a converse claim may also be made. That is, given an optimal set of
permutations with constant locality d ≥ 2, which is constructed according to the outline of
Lemma 5, one may explicitly construct the set P(Id). Since an explicit construction of P(I d)

is not known, this may serve as a hardness result for the construction of a set of permutations
with constant locality d ≥ 2. However, since the outline of the construction in Lemma 5 is
highly restrictive, such a hardness result might not seem insightful enough.

4 High rate constructions

This section presents several simple constructions of sets of permutations with locality, some
of which attain the upper bound given in Sect. 3.1. The well-known alternating group and
its complement will be shown in Sect. 4.1 to have locality of n − 2, and attain the upper
bound given in Theorem 1. Another simple set of permutations, discussed in Sect. 4.2, is
those that may be seen as a concatenation of n/h permutations in Sh , for some h which
divides n. The locality of the latter relies on the trivial observation that any single erasure
in a permutation may be corrected without requiring additional redundancy. For h = 2,
this set attains the upper bound given in Theorem 2. Section 4.3 shows a similar technique
which achieves high locality. Sections 4.4 and 4.5 enhance the construction of Sect. 4.2 by
using Reed-Solomon codes over permutation polynomials, and by using multi-permutations.
The results of this section are summarized in Table 1, in which three locality regimes are
considered for comparison.
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Table 1 Summary of the results in Sect. 4

Section Technique Locality Asymptotic rate Comments

4.1 The alternating group n − 2 1 Strictly optimal

4.2 Concatenation d = O(1) 1
d+1 Strictly optimal for d = 1

At least n times smaller than Sect. 4.4

Θ(nε) ε –

Θ(n) 1 –

4.3 Range-restriction Θ(n) 1 –

4.4 Reed-Solomon codes 6 1/2 n = 2k for some k

7 1/2 n = ±2 mod 5, and a prime power

7 1/2 n = 5k for some k

4.5 Multi-permutations. Θ(1) 1/2 Incomparable with Sect. 4.4

Θ(nε) (1 + ε)/2 Larger rate than Sect. 4.2 for same locality

Θ(n) 1 –

4.1 The alternating group

It is widely known [7] that any permutation may be represented as a product of transpositions
(cycles of length two). Although many different products of transpositions may represent the
same permutation, all representations of a given permutation either contain an even or an
odd number of transpositions. For a permutations π ∈ Sn , if the number of transpositions in
any representation is even, we say that π is even and its sign is 1. Otherwise it is odd, and
its sign is -1. The set of all even permutations, which forms a subgroup of Sn of size n!/2,
is called the alternating group and denoted by An . In what follows we show that the sets An

and Sn\An have locality of n − 2. This fact will follow from the next simple lemma.

Lemma 6 If π and σ are two distinct permutations in Sn whose one-liners agree on n − 2
entries, then one of {π, σ } is odd and the other is even.

Proof Let {i j } j∈[n−2] be the set of entries on whom π and σ agree, and let {α j } j∈[n−2] be
the subset of [n] such that for all j ∈ [n − 2], πi j = σi j = α j . Clearly, π and σ differ only
in the arrangement of the elements in [n]\{α j } j∈[n−2]. Therefore, π may be obtained from σ

by applying a single transposition which switches between the elements of [n]\{α j } j∈[n−2],
and hence π and σ have opposite signs. 
�
Corollary 1 The sets An and Sn\An have locality of n − 2.

Proof If a symbol of the stored permutation π is missing, by observing any n − 2 of the
remaining symbols there exists exactly two possibilities for π . According to Lemma 6, one
of these options is an odd permutation and the other is even. Hence, restricting the system to
store only permutations from either An or Sn\An , we have only one possible permutation,
and thus both An or Sn\An admit locality of n − 2. 
�

Although the results in this subsection are rather simple, they shed some light on the
tightness of the bound given in Theorem 1. Since d = n−2 we have that n!/(�n/(d+1)�!) =
n!/(�n/(n − 1)�! = n!/2, and thus An and Sn\An are optimal sets with locality n − 2.
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4.2 Concatenation of short permutations

Obviously, in the one-line representation, any single symbol may easily be computed from
all other symbols. This principle leads to simple sets of permutations which can be stored
efficiently.

Consider the set S of permutations in Sn which may be viewed as a concatenation of n/h
shorter permutations on h elements, for some integer hwhich divides n. That is, their one-liner
may be viewed as a concatenation of n/h one-liners, each of which is a permutation of either
of the sets {1, . . . , h}, {h+1, . . . , 2h}, etc. Clearly, S contains (h!)n/h · (n/h)! permutations.
A subset of S, in which the i-th permutation is on the set {(i − 1)h + 1, . . . , i · h}, was
considered in [27, Corollary 19], where it was shown to be an optimal anticode under the
infinity metric d∞ (see Definition 7 in Sect. 5.1 to follow).

Lemma 7 If π ∈ S then any symbol πi can be computed from h − 1 other symbols, i.e., the
set S has locality d = h − 1.

Proof Sinceπ ∈ S it follows that {πh·�i/h�+1, . . . , πi , . . . , π(h+1)·�i/h�} = { jh+1, . . . , ( j+
1)h}. Hence, observing the value of πh·�i/h�+1, . . . , π(h+1)·�i/h� (excluding πi ), the range
{ jh + 1, . . . , ( j + 1)h} can be identified, and πi is the missing value in it. 
�

Note that multiple erasures can be corrected simultaneously, as long as they do not reside
in the same short permutation. Two erasures from the same short permutation cannot be
corrected simultaneously. In addition, Q1 can be answered trivially, and Q2 requires finding
the suitable sub-permutation in n/h queries, and additional h queries to locate the desired
element.

Since d = h − 1, we have that |S| = (d + 1)!n/(d+1) · (n/(d + 1))!, and for d = 1 we
have that

|S| = 2n/2 · (n/2)! =
(n
2

)
· 2 ·

(n
2

− 1
)

· 2 · . . . · (1) · 2
= n · (n − 2) · (n − 4) · · · · · 2 = n!!.

Hence, for d = 1 this construction attains the bound of Theorem 2with equality. However,
for any d = O(1), d ≥ 2, it can be shown that these sets do not attain the optimal rate, since
they are superseded by the existential lower bound of Theorem 3.

Lemma 8 If h = O(1), the set S (of locality d = h− 1) have rate 1
d+1 as n tends to infinity.

Proof By the construction above, we have that

log
(
(d + 1)! n

d+1 ·
(

n
d+1

)
!
)

log(n!) = log ((d + 1)!)
d + 1

· n

log(n!) +
log

(
( n
d+1 )!

)

log(n!) ,

and since d is constant, it follows that

n→∞−→ log ((d + 1)!)
log(n) · (d + 1)

+
n

d+1 · log
(

n
d+1

)

n log(n)

= log ((d + 1)!)
log(n) · (d + 1)

+ 1

d + 1
− log(d + 1)

log(n) · (d + 1)

= log(d!)
log(n) · (d + 1)

+ 1

d + 1
n→∞−→ 1

d + 1
.


�
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By choosing h = Θ(nε) for some constant 0 < ε < 1, we achieve a non-vanishing rate.

Corollary 2 If h = Θ(nε), the sets S (of locality d = h−1) have rate ε as n tends to infinity.

Proof

log
(
(d + 1)! n

d+1 ·
(

n
d+1

)
!
)

log(n!)
n→∞−→ n(d + 1) log(d + 1) + n log( n

d+1 )

(d + 1)n log n
n→∞−→ ε.


�

In the high locality regime, where d = Θ(n), we may similarly prove that the rate of these
codes approaches 1 as n approaches infinity.

Corollary 3 If h = Θ(n), the sets S (of locality d = h−1) have rate 1 as n tends to infinity.

4.3 Concatenation of range-restricted permutations

In this subsectionwe provide a technique for producing sets of permutationswith high locality
d ≥ n/2. For a set of symbols Σ let S(Σ) denote the set of all permutations of Σ , that is,
the set of all injective functions from [|Σ |] to Σ . In this subsection we use the alphabet
Σ = {0, . . . , n − 1}, and hence S(Σ) = Sn . Let h be an integer which divides n, and for
i ∈ {0, . . . , n/h − 1} let

Ki � S({ih, ih + 1, . . . , (i + 1)h − 1}) ◦ S([n]\{ih, ih + 1, . . . , (i + 1)h − 1}).

Lemma 9 The set Sh � ∪n/h−1
i=0 Ki has locality d = n − h − 1.

Proof To repair a missing symbol π j , 0 ≤ j ≤ n − 1 in π ∈ Sh , distinguish between the
cases j ≤ h−1 and j ≥ h. If j ≤ h−1,π j may clearly be computed from {πi }i∈{0,...,h−1}\{ j}.
If j ≥ h, the set of symbols {πi }i∈{h,...,n−1}\{ j} must contain a gap of h consecutive numbers,
which are located in the prefix of π . After identifying this gap, the missing symbol π j may
easily be deduced. 
�

The set Sh contains n
h · h! · (n − h)! = n · (h − 1)! · (n − h)! and it does not attain the

upper bound given in Theorem 1. For constant h the rate of Sh asymptotically approaches 1
as n goes to infinity, since

log(n · (h − 1)! · (n − h)!)
log(n!) ≥ log((n − h)!)

log(n!)
n→∞−→ 1.

Equal rate may be obtained for lower locality, where h = Θ(n); if h = δn for some
constant 0 < δ < 1, then

log(n · (h − 1)! · (n − h)!)
log(n!)

n→∞−→ δn log(δn) + (1 − δ)n log((1 − δ)n)

n log n
= δ + (1 − δ) = 1.

An identical rate is also obtained by choosing h = Θ(nε). Hence, the best choice of param-
eters for this technique seems to be h = Θ(n), since it results in low locality and optimal
rate.
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4.4 Extended construction from error-correcting codes

This section provides a construction of a set of permutations in Sn with locality, from two
constituent ingredients. The first ingredient is a set of permutations S ⊆ Sn−t with locality
d , for some given t and d . The second ingredient is an error-correcting code T , in which all
codewords consist of t distinct symbols.

A symbol replacement function f is an injective function which maps one alphabet to
another. Given a permutation π and a symbol replacement function f let f (π) be the result
of replacing the symbols of π according to f . For a set of permutations S let f (S) �
{ f (π)|π ∈ S}. The construction of this section relies on the following observation.

Observation 1 If S ⊆ Sn−t is a set of permutations with locality d and f is a symbol
replacement function, then f (S) is a set of permutations with locality d as well.

Using a proper symbol replacement function f , a permutation f (π) for π ∈ S is con-
catenated to a codeword from T to create a permutation in Sn . This symbol replacement
function is given in the following definition, which is followed by an example. In this def-
inition, for a set of integers E � {e1, e2, . . . , e|E |} such that e1 < e2 < · · · < e|E | and an
integer s, s ≤ |E |, the s-smallest element of E is es .

Definition 4 For any integers 1 < t < n, let π be a permutation in Sn−t and e ∈ [n]t be
a word with t distinct symbols {σ1, . . . , σt } � E ⊆ [n]. Let fE be the following symbol
replacement function

fE : [n − t] → ([n − t] \E) ∪ {n − t + 1, . . . , n − t + |E ∩ [n − t]}

fE (i) =

⎧
⎪⎪⎨

⎪⎪⎩

i, i /∈ E .

j , For some integer s, i and j are the s-smallest numbers
in E ∩ [n − t] and {n − t + 1, . . . , n}\E , respectively.

That is, fE maps each element which does not appear in E to itself, and each element which
appears in E is mapped to a symbol in {n − t + 1, . . . , n} which does not appear in E , in an
increasing manner. Using fE , define the operator � as

π � e � fE (π) ◦ e,

where ◦ denotes the ordinary concatenation of strings.

Since symbols in π which occur in both π and e are replaced with symbols that do not appear
in either π nor e, we have that π � e is a permutation in Sn , as illustrated by the following
example.

Example 2 For n = 7 and t = 3, let π = (1, 2, 3, 4), e = (3, 4, 7), and E = {3, 4, 7}. By
Definition 4 we have that

fE (1) = 1, fE (2) = 2, fE (3) = 5, fE (4) = 6, and

π � e = fE (π) ◦ e = (1, 2, 5, 6, 3, 4, 7) ∈ S7.

The operation � is used to extend an existing set S ⊆ Sn−t with locality to a subset of Sn
with a larger locality by using an error-correcting MDS code T .

Lemma 10 For integers 1 < t < n, if S ⊆ Sn−t is a set with locality d and T is anMDS code
in [n]t withminimumdistance δ anddistinct symbols, then S�T � {s�e|s ∈ S, e ∈ T } ⊆ Sn
is a set of permutations with locality d + t − δ + 1.
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Proof Let π = s�e be a permutation in S�T . To repair a missing symbol π j for 1 ≤ j ≤ n
we distinguish between the cases j ≤ n − t and j > n − t . If j > n − t , by the minimum
distance property of the MDS code T we may obtain π j by accessing t − δ +1 symbols from
e. If j ≤ n − t , then by accessing t − δ + 1 symbols from e we may identify the function
fE used to define the operator � (Definition 4). Once fE is known, the locality follows from
Observation 1. 
�

This technique can be used to obtain explicit sets with constant locality d ≥ 2, which are
the largest ones in this paper for this locality. Unfortunately, to the best of our knowledge the
asymptotic rate of these sets does not exceed 1

2 , and hence they are not optimal. Moreover,
since a set with locality 1 also has locality d ≥ 2 for any d , the sets of locality 1 from Sect. 4.2
can be used for any locality greater than 1, while obtaining rate of 1

2 as well. Nevertheless,
for small values of d we are able to construct explicit sets with locality d which contain more
permutations than the sets with locality 1 from Sect. 4.2.

To provide good examples by this technique, we must construct error-correcting codes in
which all codewords consist of distinct symbols. For this purpose, assume that n is a power
of prime, and {0, 1, . . . , n − 1} are representations of the elements of Fn .

Recall that a Reed-Solomon code is given by evaluations of degree restricted polynomials
on a fixed set of distinct elements from a large enough finite field. These codes contain sub-
codes which are suitable for our purpose. The codewords in these sub-codes are obtained by
evaluations of permutation polynomials. A permutation polynomial is a polynomial which
represents an injective function from Fn to itself. In spite of the very limited knowledge on
permutation polynomials in general, all permutation polynomials of degree at most 5 are
known (see [9, Table 2]). For example, we have the following lemma.

Lemma 11 [9, Table 2]

1. If n is a power of 2, then there exist at least (n−1)(2n+ n(n2+2)
3 ) permutation polynomials

of degree at most 4 over Fn.
2. If n is a primepower andn ≡ ±2 ( mod 5), then there exist at least n3(n − 1)permutation

polynomials of degree at most 5 over Fn.
3. If n is a prime power and n ≡ 0 (mod5), then there exist at least 1

2n
2(n − 1)2 permuta-

tion polynomials of degree at most 5 over Fn.

As a corollary, we obtain the following constructions.

Example 3

1. Let n be an integer power of 2, and let S ⊆ Sn−6 be an optimal set with locality 1 (which
exists by Sect. 4.2, since n − 6 is even). Let T be a subset of a Reed-Solomon code of
dimension 5 and length 6 over Fn , which corresponds to all permutation polynomials of
degree at most 4. According to Lemmas 10 and 11 (part 1), the set B1 � S � T contains

(n − 6)!! · (n − 1)(2n + n(n2+2)
3 ) permutations, and has locality 6.

2. Let n be a odd prime power and n ≡ ±2 (mod5) (such as 7, 17, 23, . . . etc.), and
let S ⊆ Sn−7 be an optimal set with locality 1, as above. Let T be a subset of a Reed-
Solomon code of dimension 6 and length 7 overFn , which corresponds to all permutation
polynomials of degree at most 5. According to Lemmas 10 and 11 (part 2), the set
B2 � S � T contains (n − 7)!! · n3(n − 1) permutations, and has locality 7.

3. Let n be a prime power and n ≡ 0 (mod5) (i.e., n is a power of 5), and let S ⊆ Sn−7 be
an optimal set with locality 1, as above. Let T be a subset of a Reed-Solomon code of
dimension 6 and length 7 over Fn , which corresponds to all permutation polynomials of
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degree at most 5. According to Lemmas 10 and 11 (part 3), the set B3 � S � T contains
(n − 7)!! · 1

2n
2(n − 1)2 permutations, and has locality 7.

Notice that an optimal set A ⊆ Sn with locality 1, which may be seen as having any
larger locality, contains n!! permutations (see Sect. 4.2). The set B1 is larger, since n!! =
(n − 6)!! · Θ(n3) and |B1| = (n − 6)!! · Θ(n4). Similarly, for odd values of n, Sect. 4.2
provides a set A of size (n − 1)!! and locality 1. The sets B2 and B3 are larger, since
|A| = (n − 1)!! = (n − 7)!! · Θ(n3), where both |B2| and |B3| equal (n − 7)!! · Θ(n4).
Hence, the construction of this section provides sets which are at least n times larger than
those given in Sect. 4.2, and have larger constant locality.

4.5 High-locality construction from multi-permutations

While constructing sets of permutations with constant locality d ≥ 2 and rate above 1
2 seems

hard, it is fairly easy to construct sets with such rate and locality d = Θ(nε), for constant
0 < ε < 1. Such a set is obtained from Sect. 4.2 by taking h = Θ(nε). However, the resulting
rate is

log
(
(h!)n/h

( n
h !))

log n!
n→∞−→ log nε

log n
+ n1−ε(1 − ε) log n

n log n
= ε,

where Theorem 3 guarantees that for this locality, there exist sets with rate which tends to 1
as n tends to infinity.

In this subsection it is shown that the construction from Sect. 4.2 may be enhanced by
using multi-permutations, achieving a rate of 1

2 + ε
2 for locality d = Θ(nε). The methods

and notations in this subsection are strongly based on [8].
For nonnegative integers 
 andm, a balanced multi-set {1m, 2m, . . . , 
m} is a collection of

the elements in [
], where each element appearsm times. Amulti-permutation on a balanced
multi-set is a string of length 
m, which is given by a function σ : [
m] → [
] such that for
all i ∈ [
], |{ j |σ( j) = i}| = m. The set of all multi-permutations is denoted by S
,m , and its
size is (m
)!

(m!)
 . To distinguish between different appearances of the same element in a multi-

permutation σ , for j ∈ [m
], i ∈ [
], and r ∈ [m] we denote σ( j) = ir and σ−1(ir ) = j if
the j-th position of σ contains the r -th appearance of i .

Example 4 If m = 2 and 
 = 3 then π = (1, 1, 2, 3, 2, 3) is a multi-permutation on
the balanced multi-set {1, 1, 2, 2, 3, 3}. To refer to the second appearance of 2 we say that
π(5) = 22.

We are interested in multi-permutations with two appearances of each element, and there-
fore assume that m = 2 and 
 = n/2 (although some of the definitions in the sequel have
counterparts for any m and 
 such that n = m
). In particular, we consider such multi-
permutations in which any two appearances of the same element are not too far apart. To this
end, the following definition is required.

Definition 5 If π ∈ Sn/2,2 and t ∈ [n] then,
w(π) � max

i∈[n/2]
∣∣π−1(i1) − π−1(i2)

∣∣ , and

Bt � {π ∈ Sn/2,2|w(π) ≤ t}.
That is, w(π) indicates the maximum distance between two appearances of the same

element, or alternatively, w(π)−1 indicates the maximum number of elements between two
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appearances of the same element in π . For a given t , Bt is the set of all multi-permutations in
Sn/2,2 in which every two identical elements are separated by at most t − 1 other elements.
Clearly, the multi-permutation π which was given in Example 4 is in B2.

To construct “ordinary” permutations in Sn from multi-permutations in Sn/2,2 we use the
term assignment of permutations. As in Sect. 4.3, for a set of elementsΣ we denote by S(Σ)

the set of all permutations of Σ (that is, the set of all injective functions f : {1, . . . , |Σ |} →
Σ).

Definition 6 If π ∈ Sn/2,2 and γ1, . . . , γn/2 are permutations such that γi ∈ S ({2i − 1, 2i})
for all i , then σ = π(γ1, . . . , γn/2) is the permutation in Sn such that for all 1 ≤ j ≤ n, if
π( j) = ir then σ( j) = γi (r).

Example 5 If π = (1, 1, 2, 3, 2, 3) ∈ S3,2 and γ1 = (1, 2), γ2 = (4, 3), and γ3 = (6, 5)
then σ = π(γ1, γ2, γ3) = (1, 2, 4, 6, 3, 5) ∈ S6.

Note that by choosing h = 2 in the construction which appears in Sect. 4.2, the resulting
set S can be described as

S = {π(γ1, . . . , γn/2) | ∀i, γi ∈ S({2i − 1, 2i}) and π ∈ B1}.
Hence, the construction in the following lemma may be seen as a generalization of the
construction from Sect. 4.2.

Lemma 12 For a nonnegative integer t , the set

At � {π(γ1, . . . , γn/2) | ∀i, γi ∈ S({2i − 1, 2i}), and π ∈ Bt }
has locality 4t .

Proof For i ∈ [n/2] we say that the elements {2i − 1, 2i} are counterparts. Assume that a
symbol πi is erased, and let

D � {πi−t , . . . , πi−1, πi+1, . . . , πi+t }
D � {πi−2t , . . . , πi−1, πi , πi+1, . . . , πi+2t },

where we omit all π j ’s for which j /∈ [n]. By the definition of At , all the counterparts of the
elements in D are in D. However, there exists σ ∈ D which is the counterpart of πi , and
hence, σ ’s counterpart is not to be found in D\{πi }. Therefore, computing πi is possible by
inspecting D\{πi }, and returning the counterpart of the only element in D whose counterpart
is not in D\{πi }. The claim follows since |D\{πi }| = 4t . 
�

Using this lemma, we are able to provide a set with high locality Θ(nε), and asymptotic
rate strictly above 1

2 . To bound this rate from below we require a lower bound on the size of
Bt from Definition 5.

Lemma 13 |Bt | ≥
(

t !
(t/2)!

)n/t · n
2 ! · 2−n/2.

Proof Since our goal is an asymptotic computation, we may w.l.o.g. assume that t |n and 2|t .
Let E be the set of multi-permutations π ∈ Sn/2,2 that can be written as a concatenation
π = π(1) ◦ . . . ◦ π(n/t) of n

t multi-permutations on t/2 pairs of identical elements. A simple
combinatorial calculation shows that
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|E | ≥
n/t∏

i=1

(no. of options to choose π(i))

≥
((

n/2

t/2

)
· t !
2t/2

)
·
((

n/2 − t/2

t/2

)
· t !
2t/2

)
· . . . ·

(
1 · t !

2t/2

)

=
(

t !
2t/2

)n/t

· (n/2)!
(n/2 − t/2)!(t/2)! · (n/2 − t/2)!

(n/2 − 2 · t/2)!(t/2)! · · · · · (t/2)!
(t/2)!

=
(

t !
2t/2

)n/t

· (n/2)!
(t/2)!n/t

=
(

t !
(t/2)!

)n/t

· n
2
! · 2−n/2.

Since clearly E ⊆ Bt , the claim follows. 
�
Lemma 13 allows us to bound the asymptotic rate of the set At which was defined in
Lemma 12.

Theorem 5 If t = Θ(nε) then limn→∞ log |At |
log n! ≥ 1

2 + ε
2 .

Proof According to Lemma 13, we have that |At | ≥ |Bt |·2n/2. Using the fact that t = Θ(nε)

and the approximation log(n!) ≈ n log n, we have

log |At |
log n! ≥ log(|Bt | · 2n/2)

log n!

=
log

((
t !

(t/2)!
)n/t · n

2 !
)

log n!
= n log(t !) − n log((t/2)!)

t log n! + log((n/2)!)
log n!

n→∞−→ nt log t − n t
2 log((t/2))

tn log n
+

n
2 log((n/2))

n log n

= ε log n − ε
2 log n + 1

2

log n
+ log n − 1

2 log n
n→∞−→ 1

2
+ ε

2
.


�

5 Construction of specific families

5.1 Light permutations by the infinity norm

In this subsection it is shown that permutations which involve small-magnitude shifts (in
comparison with the original file), can be stored efficiently. Answering Q1 requires down-
loading one symbol, whereas answeringQ2 requires downloading a small number of adjacent
symbols. An alternative and shorter representation, in which Q2 requires downloading one
symbol and Q1 requires downloading a few, will be discussed in Sect. 6.1.

These permutations arise naturally when considering any ranking of items, in which an
initial conjectured ranking is imposed, and any item is not expected to exceed its initial
ranking by more than a certain bound.
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Definition 7 If π and σ are two permutations in Sn , then

d∞(π, σ ) � max {|π(i) − σ(i)|}i∈[n] .

If e is the identity permutation in Sn then 
∞(π) � d∞(π, e), and for any r ∈ {0, . . . , n −
1}, let B∞(e, r) (Br in short) be the ball of radius r around e, that is, B∞(e, r) � {π ∈
Sn | 
∞(π) ≤ r}.

Recall that we denote π = (π1, . . . , πn) � (π−1(1), . . . , π−1(n)), and for convenience,
we say that π j = 0 for any j /∈ [n].

Providing a closed-form expression for |Br | is a notorious open problem.An efficient algo-
rithm for computing |Br | is given in [25, Corollary 5], fromwhich the estimation |B2| ≈ 2.16n

follows [25, Example 2]. This estimation clearly implies that |Br | is (at least) exponential in
n for any r . On the other hand, by [27, Theorem 18] we have that the size of an anti-code
of maximum d∞-distance 2r is at most (2r + 1)!n/(2r+1). As Br is clearly an anti-code of
maximum d∞-distance 2r , we have that |Br | ≤ (2r + 1)!n/(2r+1). Since the exact size of Br

is not known, the rate of this set is also unknown. However, for constant r , the upper bound
implies that the rate of Br goes to zero as n goes to infinity.

The locality of the set Br relies on the following series of lemmas. The first lemma shows
that an erasure in π ∈ Br can be corrected by inspecting the entries in radius 2r from it.

Lemma 14 If π ∈ Br then for all j ∈ [n], π j is a function of π j−2r , . . . , π j−1,

π j+1 . . . , π j+2r .

Proof Since π ∈ Br , for any t ∈ [n] we have that t ∈ {πt−r , . . . , πt+r } and πt ∈
{t − r, . . . , t + r}. Therefore,

π j ∈ { j − r, . . . , j, . . . , j + r}, and

{ j − r, . . . , j, . . . , j + r} ⊆ {π j−2r , . . . , π j , . . . , π j+2r }.
This implies that

{ j − r, . . . , j, . . . , j + r}\{π j−2r , . . . , π j−1, π j+1, . . . , π j+2r } = {π j },
and hence, π j may be computed given π j−2r , . . . , π j−1, π j+1, . . . , π j+2r . 
�

Lemma 14 implies a correction algorithm for simultaneous erasures, in scenarios where
the correction by Lemma 14 is impossible.

Lemma 15 If π ∈ Br , then any set of erasures in which any two are separated by at least
2r − 1 non-erased symbols can be corrected.

Proof Let E � {s1, . . . , st } be the set of erased symbols in π . For each si ∈ E define the
radius of possibility R(si ) � {si − r, . . . , si + r} (a radius, in short), which is the set of the
possible locations of themissing symbol si . Clearly, ifπ contains a single erasure in locations
R(si ), then this erasure can be corrected to si . Hence, it suffices to show that for every t , the
set {R(si )}ti=1 contains at least one radius which contains a single erasure.

Assume for contradiction that every radius in {R(si )}ti=1 contains at least two erasures.
Notice that since the erasures are at least 2r − 1 apart, every radius contains exactly two
erasures. Let j be the location of the leftmost erasure, and assume w.l.o.g that it is contained
in two radii R(s1) and R(s2). Since both radii contain two erasures, they both must contain
the erasure located to the right of j , at j + 2r . Hence, since the size of both radii is 2r + 1,
we have that R(s1) = R(s2) = { j, . . . , j + 2r}, and thus s1 = s2, a contradiction. 
�
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Since permutations in Br involve small-magnitude shifts, Q2 can be answered by inspect-
ing the values of 2r locations, r to the right and r to the left of location i . Permutations in Br

admit a shorter representation, for which Q2 can be answered immediately, and Q1 requires
inspecting 2r other symbols (see Sect. 6.1).

5.2 MinMax permutations

The following set of permutations, called “MinMax”, includes many natural ones. E.g., all
single left (right) cyclic shifts of any prefix (suffix) of the file. These permutations arise in
the context of content consumption, such as news or tweets, in which the consumer begins
with an arbitrary item of a feed, and either proceeds forward or backwards from the set of
consecutive items which he read so far.

Definition 8 The set of MinMax permutationsM consists of two subsets denotedML and
MR . The subset ML (MR) consists of all permutations in which every element is either
greater than the maximal element to his left (right) by 1, or smaller than the minimal element
to his left (right) by 1. That is,

ML �
{
π ∈ Sn | ∀i, πi ∈ {max

j<i
π j + 1,min

j<i
π j − 1}

}
,

MR �
{
π ∈ Sn | ∀i, πi ∈ {max

j>i
π j + 1,min

j>i
π j − 1}

}
, and

M � ML ∪ MR .

Example 6 For n = 7,

– The permutation (3, 4, 5, 2, 1, 6, 7) is in ML but not in MR .
– The permutation (1, 2, 3, 4, 5, 6, 7) is in ML and in MR .
– The permutation (3, 5, 1, 2, 7, 6, 4) is neither in ML nor in MR .

The following lemma provides an alternative to Definition 8, and will be used in the sequel.

Lemma 16 π ∈ ML if and only if for all i ∈ [n], the set {π1, . . . , πi } contains consecutive
numbers. Similarly, π ∈ MR if and only if for all i ∈ [n], the set {πi , . . . , πn} contains
consecutive numbers.

Proof For π ∈ ML we prove by induction on i that the set {π1, . . . , πi } contains consecutive
numbers. For i = 1 the claim is clear. For an arbitrary i > 1, by the induction hypothesis
we have that {π1, . . . , πi−1} is a set of consecutive numbers. By the definition of ML we
have that πi ∈ {max j<i π j + 1,min j<i π j − 1}, and hence the set {π1, . . . , πi } is a set of
consecutive numbers as well.

On the other hand, if for all i the set {π1, . . . , πi } contains consecutive numbers, we show
by induction on i that πi ∈ {max j<i π j + 1,min j<i π j − 1}. For i = 1 the claim is clear.
For an arbitrary i > 1, by the induction hypothesis we have that πi−1 ∈ {max j<i−1 π j +
1,min j<i−1 π j − 1}. W.l.o.g assume that πi−1 = max j<i−1 π j + 1, and hence πi−1 > π j

for all j < i − 1. Therefore, since the set {π1, . . . , πi } contains consecutive numbers, we
have that either πi > πi−1, and hence πi = max j<i π j + 1, or πi < πi−1, and hence
πi = min j<i π j − 1. For the case πi−1 = min j<i−1 π j − 1, the proof is similar, and if
π ∈ MR , the proof is similar as well. 
�
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Corollary 4 If π ∈ ML then πn ∈ {1, n}, and if π ∈ MR then π1 ∈ {1, n}.
Proof If π ∈ ML , by Lemma 16 we have that {π1, . . . , πn−1} is a set of consecutive
numbers from [n], and hence it is either {1, . . . , n−1} or {2, . . . , n}. Therefore, πn ∈ {1, n}.
If π ∈ MR , the proof is similar. 
�

Albeit the simple structure of their elements, the sets ML and MR are rather large, as
shown below.

Lemma 17 |ML | = |MR | = 2n−1.

Proof LetML ,i be the setML for n = i , and let ML ,i be its size. According to Corollary 4,
for any i , if π ∈ ML ,i then πi ∈ {1, i}. Therefore, π ∈ ML ,i corresponds to exactly two
permutations π(1), π(2) ∈ ML ,i+1. The first permutation is π(1) = (π1, . . . , πi , i + 1),
where the second is π(2) = (π1 + 1, . . . , πi + 1, 1). Since this mapping clearly covers the
entire set ML ,i+1, we have that ML ,i+1 = 2ML ,i , and since ML ,1 = 1, the claim follows.
The proof for MR is symmetric. 
�
Lemma 18 ML ∩ MR = {(1, . . . , n), (n, . . . , 1)}.
Proof If π ∈ ML ∩ MR , then according to Corollary 4 we have that {π1, πn} = {1, n}.
By Definition 8, if (π1, πn) = (1, n) then π = (1, . . . , n), and if (π1, πn) = (n, 1) then
π = (n, . . . , 1). 
�
Corollary 5 |M| = 2n − 2.

Proof By Lemmas 17 and 18, |M| = |ML | + |MR | − |ML ∩ MR | = 2n − 2. 
�
The locality of ML and MR relies on the following lemma.

Lemma 19 If π ∈ ML , then every πi is a function of at most three other symbols of π .

Proof We distinguish between the following three cases.

i = 1 We compute π1 from π2 and π3. Notice that by Definition 8, |π3 − π2| ≤ 2,
since otherwise π3 does not comply with the definition. Given the value of π2,
we have that either π1 = π2 + 1 or π1 = π2 − 1. If π3 = π2 ± 1, we are done. If
π3−π2 = 2, then by Definition 8 we have that π3 = max{π1, π2}+1, and hence
π1 = π2 + 1. Similarly, if π2 − π3 = 2 we have that π3 = min{π1, π2} − 1, and
hence π1 = π2 − 1.

i = n We compute πn from πn−1 and πn−2. By Corollary 4, we have that πn ∈ {1, n},
and hence, if {1, n} ∩ {πn−1, πn−2} �= ∅, we are done. Else, if πn−1 > πn−2, we
have that πn−1 > π j for all j < n − 1. Since πn−1 is larger than n − 2 numbers
in [n] we have that πn−1 ∈ {n − 1, n}. Since the case πn−1 = n was already
considered, we have that πn−1 = n − 1, and hence, πn = n. On the other hand,
if πn−1 < πn−2, then similarly, πn−1 < π j for all j < n − 1, and hence πn = 1.

i /∈ {1, n} We compute πi from πi−1, πi+1, and if i > 2 we require an arbitrary π j for j <

i − 1. Let A � {π1, . . . , πi } and n � {π1, . . . , πi−2}. According to Lemma 16
and Definition 8, if πi−1 < πi+1 we have that A = {πi+1 − i, . . . , πi+1 − 1},
and if πi−1 > πi+1, we have that A = {πi+1 + 1, . . . , πi+1 + i}. If i = 2,
and thus n = ∅, we have that πi is the only element in the singleton A\{πi−1}.
Otherwise, we examine any π j for j < i − 1 in order to distinguish between the
cases n = {πi−1 +1, . . . , πi−1 + i −2} and n = {πi−1 − (i −2), . . . , πi−1 −1}.
Knowing n, we have that πi is the only symbol in the singleton A\(n ∪ {πi−1}).


�
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Since permutations in MR are entirely symmetric to the ones in ML , we have that by
replacing i for n − i + 1 in the proof of Lemma 19, we are able to prove the following.

Lemma 20 If π ∈ MR, then every πi is a function of at most three other symbols of π .

Notice that the repair algorithms, which are induced by Lemma 19, slightly differ for
π ∈ ML and π ∈ MR . Therefore, the user must know if the stored permutation belongs
to ML or to MR . Clearly, this information may be stored in the system with one additional
bit. Alternatively, it can also be differed by querying either one of π1, πn , as shown in the
following lemma.

Lemma 21 For π ∈ M, if π1 /∈ {1, n} then π ∈ ML , and if π1 ∈ {1, n} then π ∈ MR.
Similarly, if πn /∈ {1, n} then π ∈ MR, and if πn ∈ {1, n} then π ∈ ML .

Proof If π1 /∈ {1, n} then by Corollary 4 we have that π /∈ MR , and hence π ∈ ML . On the
other hand, if π1 ∈ {1, n} then π may be either in ML or in MR . However, if π ∈ ML and
π1 ∈ {1, n}, it follows by Definition 8 that either π = (1, . . . , n) or π = (n, . . . , 1), which
by Lemma 18 implies that π ∈ MR . The second part of the proof is similar. 
�

As a corollary of Lemmas 19, 20, and 21, we have the following.

Corollary 6 If π ∈ M, then every πi is a function of at most four other symbols of π .

In the sequel we analyse patterns of erasures that can be corrected simultaneously. To this
end, we devise the following graph G (Fig. 2), which follows from Lemma 19.

The vertices ofG correspond to subsets of locations in the permutation, where we denote i
instead of {i} for convenience.Adirected edge (i, S) exists if the repair ofπi requires precisely
one (arbitrary) symbol π j , j ∈ S. An analogue graph may be achieved for π ∈ MR by
replacing i for n − i + 1 in each set.

For a vertex v in G which corresponds to a singleton, let Γ (v) be its set of outgoing
neighbors. A vertex u which corresponds to a subset S is called active, if there exists j ∈ S
such that π j is available to the user. According to Lemma 19, a symbol πi is repairable if
all nodes in Γ (i) are active. The following lemma presents the sets of erasures that may be
simultaneously corrected. A symmetric analogue of Lemma 22 for π ∈ MR may be proved
similarly.

Lemma 22 Given a set of erased symbols, a permutation π ∈ ML can be reconstructed if
every path of erased symbols in G is finite, and terminates with a node i such that every node
in Γ (i) is active.

1

432

[2]

5

[3]

B − 2 B − 1 B

[B − 4] [B − 3]

Fig. 2 The dependency graph between the symbols of a MinMax permutation π ∈ ML . Nodes represent
subsets of symbol locations, where {i} is denoted by i . An edge (i, S) indicates that the repair of symbol πi
requires exactly one arbitrary symbol π j , j ∈ S
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Proof Assume that {πi }i∈E is a set of missing symbols, such that every path in G whose
vertex set is contained in E , terminateswith a node i such thatΓ (i) are active.Using induction
on the maximum length of those paths, we get that π can be reconstructed. If this maximum
length is 1, π clearly can be reconstructed. If it is greater than 1, we may repair all terminal
nodes in all maximum length paths, and use the induction hypothesis. 
�

6 Efficient representation of permutations

6.1 Light permutations by the infinity norm: an alternative representation

A permutation π ∈ Br can be mapped to a list of size n, which indicates the displacement
π(i) − i for each i ∈ [n]. This mapping, denoted by s(π), requires n(log r + 1) bits. By
storing this representation rather then the one-liner, we may answer Q2 simply by inspecting
s(π)i and returning i + s(π)i . Since permutations in Br involve small-magnitude shifts, to
answer Q1 we may look at s(π) j for j ∈ {i − r, . . . , i + r − 1}, return the unique j such
that j + s(π) j = i , or return i + r if no such j exists. The equivalent claims of Lemmas 14
and 15 are given below.

Lemma 23 If π ∈ Br then for all j ∈ [n], s(π) j is a function of s(π) j−2r , . . . ,

s(π) j−1, s(π) j+1, . . . , s(π) j+2r .

Proof The missing entry s(π) j , specifying the shift of the element j , is computed by main-
taining a binary array A which indicates which are the known “occupied” positions in the
one-liner of π . Once we are left with a single non-occupied position A
 for some 
, we infer
that element j could only be located at 
, and compute its shift.

Formally, initialize an array A of 2r + 1 zeros, whose entries are indexed by
{ j − r, . . . , j, . . . , j + r}, which are all possible positions of j . Set entry Ai to one if
and only if there exists t ∈ { j − 2r, . . . , j − 1, j + 1, . . . , j + 2r} such that t + s(π)t = i .
Consequently, entry Ai will indicate if one of the elements { j −2r, . . . , j −1, j +1, j +2r},
whose location is known from s(π) j−2r , . . . , s(π) j−1, s(π) j+1, . . . , s(π) j+2r , is located in
position i .

Since π ∈ Br , for each i ∈ { j − r, . . . , j, . . . , j + r} there exist a unique t ∈
{ j − 2r, . . . , j, . . . , j + 2r} such that t + s(π)t = i . Therefore, there exists a unique entry

 in A which remains zero, and hence, s(π) j = 
 − j . 
�
Lemma 24 If π ∈ Br , then any set of erasures in s(π), in which any two are separated by
at least 2r − 1 non-erased symbols, can be corrected.

Proof As in the proof of Lemma 23, we use an auxiliary array whose entries specify which
are the occupied positions in the one-liner of π .

Initialize an array A of n zeros, and for each non-erased symbol s(π) j set As(π) j+ j to one.
Let E = {ui }ti=1 be the set of indices of zeros in A, that is, A
 = 0 if and only if 
 ∈ E , and
notice that the number of zeros in A equals the number of erasures. For each i ∈ [t] define
the radius of possibility R(i) � {max{ui − 
, 1}}−r


=r (radius, in short). Clearly, if there exists
a single erasure among {s(π)
 | 
 ∈ R(i)}, say in s(π)
0 , then it may be corrected to ui − 
0.
Hence, it suffices to show that for any t , there exists an i ∈ [t] such that there is a single
erasure among {s(π)
 | 
 ∈ R(i)}.

Assume for contradiction that all radii contain at least two erasures. Since any two erasures
have at least 2r − 1 non-erased symbol between them, and since all radii consist of 2r + 1
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consecutive integers, we have that each radius contains exactly two erasures. Now let e1 <

. . . < et be the indices of the erasures in s(π), and notice that each radius must contain
exactly ei and ei+1 for some i ∈ [t − 1]. Therefore, the maximum number of radii is t − 1,
a contradiction. 
�
6.2 Supporting arbitrary powers: a framework

In this section we present a framework for storing a permutation π from a set T , while
allowing the user to query πk(i) for any i ∈ [n] and any integer k (positive or negative,
where π0(i) = i for all i ∈ [n]). This framework will be presented with respect to a general
set T , and the properties of the resulting system will depend on the specific choice of T .

This framework is strongly based on [20], which provides an algorithm for representing
any permutation π ∈ Sn . In [20], the queries πk(i) =? are answered using a rank-select
data structure which is maintained separately from π . This data structure requires as much
as n + o(n) additional bits of storage, and is required in its entirety for any operation. For
this reason, we modify the techniques of [20] to achieve a scheme which is applicable for
distributed storage systems. In addition, to obtain locality, this scheme can be combined with
the techniques that were developed in earlier sections.

A permutationπ ∈ Sn maybe given in its disjoint cycle representation. This representation
is not unique, as each cycle may be cyclically shifted, and cycles may be permuted. For a
disjoint cycle representation y(π) of a permutation π , let y(π) denote the string obtained by
omitting all brackets from y(π), e.g.,

y(π) = (123)(45)

y(π) = 1 2 3 4 5.

Clearly, y(π) may be considered as a one-liner of a different permutation. Relying on this
principle, we present a framework for storing permutations.

Let S ⊆ Sn be a set of permutations with locality d , enabling an answer for Q1 by
downloading q1 symbols, and an answer for Q2 by downloading q2 symbols. In addition,
let t be the maximum length of a cycle in a permutation in S. Let γ (S) be the set of all
permutations π ∈ Sn that have a disjoint cycle representation y(π), such that the one-liner
y(π) is in S. That is,

γ (S) �
{
π ∈ Sn | ∃y(π) s.t. y(π) ∈ S

}
.

Notice that S and γ (S) are not equal. E.g., for n = 4, by Corollary 5 there are 14 MinMax
permutations, but a simple computer search shows that 23 permutations π ∈ S4 have a
disjoint cycle representation y(π) such that y(π) is a one-liner of a MinMax permutation.

We encode a permutation π ∈ γ (S) to a sequence of n triples {(ψi , ci , 
i )}ni=1, where for
all i , ψi ∈ [n] and ci , 
i ∈ [t]. Each triple is then placed in a storage node. Let i1, i2, . . . be
integers such that the representation

y(π) = (i1, π(i1), π
2(i1), . . .)(i2, π(i2), π

2(i2), . . .) . . .

satisfies y(π) ∈ S, and let ψ ∈ S be the permutation whose one-liner is y(π). That is,

ψ = (ψ1, . . . , ψn) � (i1, π(i1), π
2(i1), . . . , i2, π(i2), π

2(i2), . . .).

For a symbol ψi , let ci be the length of the cycle in y(π) that contains ψi , and let 
i be the
location of ψi in this cycle.

123



N. Raviv et al.

If node vi fails, use the repair algorithm for S to obtain ψi . In addition, download
ci−1, 
i−1, ci+1, 
i+1 from nodes vi−1, vi+1 and obtain ci , 
i by the following guidelines.

if ci−1 = 
i−1 then

{
ci = 
i = 1 if 
i+1 = 1

ci = ci+1, 
i = 1 if 
i+1 �= 1
, and

if ci−1 �= 
i−1 then ci = ci−1, 
i = 
i−1 + 1.

Lemma 25 This system is capable of providing πk(i) for any π ∈ Sn, i ∈ [n], and any
integer k by downloading (q1 + q2) log n + 2 log t bits.

Proof Given i and k, perform the following algorithm.

1. Find j � ψ(i) by downloading q1 log n bits.
2. Download c j and 
 j from v j (2 log t bits).
3. Compute s � j − 
 j + (
 j + k) mod c j .
4. Return ψs = ψ−1(s) by downloading q2 log n bits.

Clearly, these steps require downloading (q1 + q2) log n + 2 log t bits. We are left to show
that ψs = πk(i). Step 1 of the algorithm provides the location of symbol i in the one-liner
ψ , since ψ j = ψ−1( j) = i . In step 3, the expression j − 
 j is the starting point of the cycle
which contains symbol i , and by adding (
 j +k) mod c j we have the location s of the element
πk(i). 
�
Example 7 Let y(π) = (1 0 2)(4 3 5)(7 6) be a disjoint cycle representation of a permutation
π on eight elements. Clearly, y(π) = (1 0 2 4 3 5 7 6) is a one-liner of a permutation
ψ ∈ B∞(e, 1) = B1 (see Sect. 5.1), and thus q1 = 1 and q2 = 2. The permutation π is
stored on v0, . . . , v7 as follows.

v0 v1 v2 v3 v4 v5 v6 v7

ψi 1 0 2 4 3 5 7 6
ci 3 3 3 3 3 3 2 2

i 0 1 2 0 1 2 0 1

For example, follow the algorithm in Lemma 25 for answering π2(3) (that is, i = 3
and k = 2). Using the algorithm for B1, in step 1 the user finds the location of 3 in the
one-liner, which is j = 4. The user later downloads (c4, 
4) = (3, 1) from v4, computes
s = 4− 1+ (1+ 2) mod 3 = 3. In step 4 the user downloads ψ3 = 4 from v3, which equals
π2(3).

The obvious drawback of this system is the large storage overhead of 2n log t , on top of
the n log n bits which are required to storeψ . With no known restriction on t , the total storage
in this system is approximately 3n log n. However, a considerable advantage is the ability to
obtain any power of the stored permutation, with a small computational overhead.

For a given set S ⊆ Sn , natural questions to ask are what is the size of γ (S), and what
is the structure of the permutations in γ (S). The answers to these two questions seem rather
involved. Therefore, in Table 2 we provide an insight towards the answer to the former, using
a computer search, and for small values of n. It is evident from this table that the size of γ (S)

is most likely much larger than the size of S.
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Table 2 Sizes of certain permutations sets for small values of n

n n! |M| (Definition 8) |γ (M)| |B1| (Definition 7) |γ (B1)| |B2| |γ (B2)|
3 6 6 6 3 6 6 6

4 24 14 23 5 22 14 24

5 120 30 99 8 66 31 117

6 720 62 400 13 192 73 567

7 5040 126 1532 21 560 172 2371

8 40,320 254 5713 34 1660 400 9262

6.3 Beating LRCs: a proof of concept

Consider the scenario in which we would like to store any permutation using minimal redun-
dancy. A possible simple solution is to use LRCs (Sect. 2), which will require at least n

d
additional symbols, or n

d log n additional bits, according to (2). This minimal redundancy
may be achieved by adding a “parity check” symbol for any of n/d disjoint d-subsets of
symbols. In this section, it is shown that the fact that we are operating over permutations may
be utilized to reduce the redundancy for d ∈ {2, 3}. Although the improvement is highly neg-
ligible, it may be shown to achieve the information theoretic lower bound, andmay constitute
a proof of concept for future research.

For locality d = 2, we present the following storage scheme, where we assume for
simplicity that n is even. To store a permutation π ∈ Sn , encode it as follows

(π1, . . . , πn) �→ (σ1, . . . , σn+n/2) � (π1, . . . , πn, π1 − π2, π3 − π4, . . .).

Notice that since π is a permutation, each of the elements σn+1, . . . , σn+n/2 may be
represented using log(n − 1) bits. For each i ∈ {1, . . . , �n/2�}, any one erasure from
{σ2i , σ2i−1, σn+i } can be repaired using the other two non-erased symbols.

For locality d = 3, we assume that n is a power of prime and the entries {0, 1, . . . , n−1} of
the permutation are the elements of the finite field Fn . We use the function f (x, y, z) = x−y

z−y ,
and the following lemma.

Lemma 26 For field elements a1, a2, a3, f (a1, a2, a3) ∈ {2, . . . , n − 1} if and only if
a1, a2, a3 are distinct.

Proof If f (a1, a2, a3) ∈ {2, . . . , n − 1} then f is well-defined over (a1, a2, a3), and hence
a2 �= a3. In addition, if a1 = a2 then f (a1, a2, a3) = 0, and similarly, if a1 = a3 then
f (a1, a2, a3) = 1. Hence, a1, a2, a3 are distinct. Conversely, if a1, a2, a3 are distinct, then
f (a1, a2, a3) is well-defined, and cannot output neither 0 nor 1. 
�
According to Lemma 26, when f is applied over a subset of symbols of a permutation,

the result may be represented by log(n−2) bits. This gives rise to the following scheme. For
simplicity assume that 3|n, although this scheme may be slightly changed to fit any prime
power. To store π ∈ Sn , encode it as follows

(π1, . . . , πn) �→ (σ1, . . . , σn+n/3) � (π1, . . . , πn, f (π1, π2, π3), . . . , f (πn−2, πn−1, πn)) .

Clearly, for each i ∈ {1, . . . , n/3}, any one erasure from {σ3i , σ3i−1, σ3i−2, σn+i } can be
repaired using the other three non-erased symbols.
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The above schemes use n log n + n
d log(n − d + 1) bits to store the n log n bits of any

permutation π , for d ∈ {2, 3}. For comparison, using the corresponding LRC requires
n log n + n

d log n bits.
Clearly, over an alphabet of size n, the information theoretic bound on the amount of

required redundancy for a single-erasure correcting code is log n. Note thatwith the additional
assumption that the string contains d distinct symbols, this bound reduces to log(n − d + 1).
The latter bound is achieved by the above schemes for d ∈ {2, 3}. We conjecture that for any
d , there exists a proper redundancy function f which allows single-erasure correction. That
is, the function f provides output from a set of size n − d + 1, when applied over inputs that
contain distinct values.

7 Discussion and open problems

In this paper we discussed locality in permutations, motivated by applications in distributed
storage and rank modulation coding. We have discussed two aspects of this problem, the
combinatorial one and the coding one. In the combinatorial aspect, we discussed locality in
permutations without any encoding, and in the coding aspect we allowed the permutation to
be encoded in order to obtain this locality.

In the combinatorial aspect, we provided upper and lower bound for the maximal size
of a set of permutations with locality, provided several simple constructions with high rate,
and several interesting constructions with low rate. In the coding aspect we presented a
method of encoding certain permutations in order to obtain locality, and to support arbitrary
powers of the permutation. We have concluded with a proof of concept which shows that any
permutation may be stored with smaller redundancy than an ordinary string.

Throughout the paper we assumed that low query complexity is to be maintained. Clearly,
if no such constraint is assumed, any permutation can be represented using �log(n!)� bits,
and stored using an LRC. However, when a query complexity requirement is imposed, there
seems to be much more to be studied, and our results are hardly adequate comparing with
the potential possibilities.

For simplicity, we assumed that each node stores a single symbol from [n], and focused
on symbol locality. This convention may be adjusted to achieve storage systems with dif-
ferent parameters. E.g., in Sect. 4.2 we considered permutation that can be considered as
a concatenation of permutations on h elements. These permutations may alternatively be
stored on h nodes, where node i stores all i-th elements of the concatenated permutations.
In this system any single node failure may be corrected by downloading the content of all
other nodes. To achieve better locality, the data may be partitioned among a larger number
of nodes. Techniques such as this open a gateway towards the equivalent of array codes for
permutations, which constitutes a vast area for future consideration as well.

Finally, we list herein a few specific open problems which were left unanswered in this
paper.

1. Close the gap between the upper bound in Theorem 1 and the lower bound in Theorem 3,
potentially by using the methods of Theorem 2.

2. Provide an explicit construction of sets with constant locality d ≥ 2 and optimal rate
d

d+1 . The existence of these sets is guaranteed by Theorem 3.
3. Find the connection between a set of permutations S and its corresponding γ (S)

(Sect. 6.2).
4. Find a proper “parity” function f for any d in Sect. 6.3.
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5. Find additional large sets of permutations that have good locality.
6. Explore the locality of permutations under different representation techniques.
7. Endow Sn with a suitable metric, and explore the locality of codes with a good minimum

distance by this metric.
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