
5124 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

On the Capacity of Write-Once Memories
Michal Horovitz, Student Member, IEEE, and Eitan Yaakobi, Member, IEEE

Abstract— Write-once memory (WOM) is a storage device
consisting of q-ary cells that can only increase their value.
A WOM code is a coding scheme that allows writing multiple
times to the memory without decreasing the levels of the cells.
In the conventional model, it is assumed that the encoder can
read the memory state before encoding, while the decoder reads
only the memory state after encoding. However, there are three
more models in this setup, which depend on whether the encoder
and the decoder are informed or uninformed with the previous
state of the memory. These four models were first introduced by
Wolf et al., where they extensively studied the WOM capacity in
these models for the binary case. In the non-binary setup, only
the model, in which the encoder is informed and the decoder is
not, was studied by Fu and Vinck. In this paper, we first present
constructions of WOM codes in the models where the encoder is
uninformed with the memory state (that is, the encoder cannot
read the memory prior to encoding). We then study the capacity
regions and maximum sum-rates of non-binary WOM codes for
all four models. We extend the results by Wolf et al. and show
that the capacity regions for the models in which the encoder is
informed and the decoder is informed or uninformed in both the
ε-error and the zero-error cases are all identical. We also find the
ε-error capacity region; in this case, the encoder is uninformed
and the decoder is informed and show that, in contrary to the
binary case, it is a proper subset of the capacity region in the
first two models. Several more results on the maximum sum-rate
are presented as well.

Index Terms— Coding theory, flash memories, write-once mem-
ory (WOM)-codes, multi-level memories, capacity region, maxi-
mum sum-rate, z-channel, erasure channel, asymmetric errors.

I. INTRODUCTION

WRITE-ONCE memory (WOM) is a storage medium
consisting of cells that can only increase their level.

WOM codes were first introduced by Rivest and Shamir [19]
and were designed to record data more than once in a WOM.
Examples of such storage media are punch cards and optical
disks, and more recently flash memories. The goal in designing
a WOM code is to maximize the total number of bits which
are written to the memory in t writes, while the cells can only
increase their level. The rate on each write is the ratio between
the number of bits stored in the memory and the number of

Manuscript received June 2, 2016; revised March 6, 2017; accepted
March 7, 2017. Date of publication March 29, 2017; date of current version
July 12, 2017. This work was supported in part by the Israel Science
Foundation under Grant 1624/14 and in part by the German-Israeli Foundation
under Grant I-1356-407.6/2016. This paper was presented in the IEEE
Information Theory Workshop [14] and in the IEEE International Symposium
on Information Theory [15]. (Corresponding author: Eitan Yaakobi.)

The authors are with the Department of Computer Science, Tech-
nion, Israel Institute of Technology, Haifa 32000, Israel (e-mail:
michalho@cs.technion.ac; yaakobi@cs.technion.ac.il).

Communicated by J. Chen, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2689034

cells, and the sum-rate is the sum of all individual rates. The
capacity region of the WOM is the set of all achievable rate
tuples.

It is usually assumed that the encoder can read the current
state of the cells before programing, while the decoder has
access only to the state of the cells after programming but
not before that. This is the most practical model in which the
encoder reads the memory before encoding, and the decoder
reads the memory only after the encoding ends. However,
there are four models of WOM which depend on whether
the encoder and decoder on each write are informed with the
previous state of the memory before encoding [26].

The case where the encoder is informed with the previous
state of the memory is called Encoder Informed (EI) and
otherwise Encoder Uninformed (EU). The cases of Decoder
Informed (DI) and Decoder Uninformed (DU) are defined
similarly. For shorthand, we refer to these four models as
follows: model 1 - EI:DI, model 2 - EI:DU, model 3 - EU:DI,
and model 4 - EU:DU. Note that all these models can be
seen as a special case of coding for communication over a
discrete memoryless channel (DMC) with state, where the
state is known/unknown to the encoder and decoder; for more
details see [25].

The model which was mostly studied in the literature is
model 2 due to its practical relevance; see e.g. [3], [4], [10],
[11], [13], [25], [27]. From the information-theoretic point of
view, model 1 is the easiest one, while the most difficult one
is model 4 since in model 4, both the encoder and decoder
cannot read the memory before a new message is programmed.
However, model 4 has significant practical advantage as it
provides fast programming by saving an additional read before
a write. Additionally, models 3 and 4 can be used for the
construction of RIO codes, which are designed for fast pro-
gramming and reading in flash memories [20], [28].

The binary case of these four models was rigorously defined
and studied by Wolf et al. in [26]. The authors studied the
capacity regions and maximum sum-rates for the four models
in this case. In particular, they calculated the ε-error and the
zero-error capacity regions in models 1 and 2 and showed
that they are all identical and thus the maximum sum-rates in
these cases as well. They also showed that this is the capacity
region for model 3 for the ε-error case. Note that the zero-
error capacity region and the maximum sum-rate in model 3
are still unknown. The ε-error capacity region for model 4 was
partially solved by an achievable region (i.e., it is not known
whether it is a tight region), however, it was still possible
to calculate its maximum sum-rate [26]. For example, for
two-write binary WOM in model 4, the maximum sum-rate
is 1.3881 and for three writes, it is 1.600.

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5125

Much less is known in the non-binary case, where only
the zero-error capacity region for model 2 was calculated by
Fu and Vinck [8] and the maximum sum-rate was shown to

be log
(q−1+t

q−1

)
.1 In [10], Gabrys and Dolecek investigated the

rates achieved in each write in capacity achieving WOM codes
in model 2, and the distribution of symbols in such WOM
codes. They also studied the fixed-rate case, where the rates
in all writes are equal. Noisy WOM in model 2 was studied by
Heegrad [13] and by Wang and Kim [25]. In [25], the authors
investigated the capacity region and maximum sum-rate in this
model, where in [13] a more general case was considered.
In this paper we assume that the WOM is noiseless.

We study all four models. First, constructions for WOM
codes are proposed for models 3 and 4, the models in which
the encoder is uninformed. For model 4, where the decoder is
uninformed with the previous state, we show how codes in the
Z channel provide constructions of binary WOM codes. This
result is extended for non-binary WOM codes in which codes
correcting non-binary asymmetric errors are used. Similarly
in model 3, erasure-correcting codes are invoked for such
constructions, and in the non-binary setup we use codes for
handling asymmetric erasures. For the non-binary case in these
two models we use codes for the Manhattan distance.

We also study the capacity regions of non-binary WOM
for models 1, 2, and 3, and generalize some of the results
by Wolf et al. for the non-binary setup. We first show that
the same property of binary WOM in models 1 and 2 holds
for non-binary as well. That is, the ε-error and the zero-
error capacity regions for models 1 and 2 are all the same.
Then, we notice and show that in contrast to the binary
case, model 3 for non-binary does not behave the same
as models 1 and 2 and its ε-error capacity region is a
proper subset of the capacity regions in models 1 and 2.
Furthermore, its maximum sum-rate is also smaller than
the one for models 1 and 2. We derive more results to
get upper and lower bounds on the maximum sum-rates in
models 3 and 4.

The rest of this paper is organized as follows. In Section II,
we formally define all four possible models of WOM and
discuss existing results. We follow by presenting constructions
of WOM codes for model 4 in Section III and for model 3
in Section IV. In Section V, we prove that the capacity regions
of non-binary WOM in the first two models, both for the
ε-error and the zero-error cases, are equal. Thus these four
regions are all equal to the capacity region which was studied
in [8] for non-binary WOM in the zero-error case of model 2.
In Section VI, we calculate the ε-error capacity region of non-
binary WOM in model 3, which in Section VII, is proved to be
a proper subset of the capacity region in models 1 and 2. Addi-
tionally, Section VII includes results regarding the maximum
sum-rates in the four models. Lastly, Section VIII concludes
the paper and lists some open problems.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the models studied in the
paper and review the related previous results. The memory

1All logarithms in this paper are taken according to base 2.

consists of n q-ary cells, where initially all of them are in the
zero state. On each write, it is only possible to increase the
level of each cell. For a positive integer q , the set {0, . . . , q−1}
is denoted by [q]. A vector c ∈ [q]n will be called also
a cell-state vector. The vector c = max{c1, c2} is given
by ci = max{c1,i , c2,i } for all i ∈ [n]. For two vectors
x, y ∈ [q]n, we say that x ≤ y if for all i ∈ [n],
xi ≤ yi and x < y is defined similarly. For a vector of
probabilities p = (p1, . . . , pn), H (p) denotes the entropy
function, H (p) = −∑n

i=1 pi log pi .
There are four families of WOM codes which were defined

first in [26]. We follow the definition presented in [15] for
both the zero-error and the ε-error cases.

Definition 1: A q-ary t-write WOM code with error
probability vector pe = (pe1, . . . , pet), denoted by
[n, t; M1, . . . , Mt] k©, pe

q , for k ∈ {1, 2, 3, 4}, is a coding
scheme comprising of n q-ary cells and is defined by t
encoding and decoding maps E i ,Di . For the map Ei ,
Im(Ei) is the image of the map. By definition Im(E0) =
{(0, . . . , 0)}, and for i , 1 ≤ i ≤ t , Im∗(Ei) ={
max{c1, . . . , ci } : c j ∈ Im(E j), 1 ≤ j ≤ i

}
. For a message

m we denote by Indm(x) the indicator function, where
Indm(x) = 0 if m = x, otherwise Indm(x) = 1. The encoding
and decoding maps are defined as follows:

1) If k = 1 (encoder and decoder informed - EI:DI) then
for each i

Ei : [Mi] × Im(Ei−1) → [q]n,

Di : {(Ei (m, c), c) : m ∈ [Mi], c ∈ Im(Ei−1)} → [Mi]
such that for all (m, c) ∈ [Mi]× Im(Ei−1), Ei (m, c) ≥ c,
and

∑

(m,c)∈[Mi]×I m(Ei−1)

Pr(m)Pr(c)·Indm(Di (Ei (m, c), c))≤pei .

2) If k = 2 (encoder informed, decoder uninformed -
EI:DU) then for each i

Ei : [Mi] × Im(Ei−1) → [q]n,Di : Im(Ei) → [Mi]
such that for all (m, c) ∈ [Mi]× Im(Ei−1), Ei (m, c) ≥ c,
and

∑

(m,c)∈[Mi]×I m(Ei−1)

Pr(m)Pr(c) · Indm(Di (Ei (m, c))) ≤ pei .

3) If k = 3 (encoder uninformed, decoder informed -
EU:DI) then for each i

Ei : [Mi] → [q]n,Di : Im∗(Ei) × Im∗(Ei−1) → [Mi]
such that
∑

(m,c)∈[Mi]×I m∗(Ei−1)

Pr(m)Pr(c)· Indm(Di (max{c, Ei (m)}, c))≤ pei .

4) If k = 4 (encoder and decoder uninformed - EU:DU)
then for each i

Ei : [Mi] → [q]n,Di : Im∗(Ei) → [Mi]

5126 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

such that
∑

(m,c)∈[Mi]×I m∗(Ei−1)

Pr(m)Pr(c)·Indm(Di (max{c, Ei (m)}))≤pei .

If pei = 0 for all 1 ≤ i ≤ t , then the code is called a zero-
error WOM code and is denoted by [n, t; M1, . . . , Mt] k©,z

q .
If q = 2 then the WOM code is called a binary WOM

code, and q is usually omitted from the notation, otherwise it
is called a non-binary WOM code. The rate of the i -th write
is the ratio between the number of written bits and the total
number of cells, i.e., Ri = log Mi

n , and the sum-rate of the
WOM code is the sum of the individual rates on all writes,
i.e., Rsum

t = ∑t
i=1 Ri . A rate tuple r = (R1, . . . ,Rt) is

called ε-error achievable in model k, k ∈ {1, 2, 3, 4}, if for
all ε > 0 there exists an [n, t; M1, . . . , Mt] k©, pe

q WOM code
with error probability vector pe = (pe1, . . . , pet) ≤ (ε, . . . , ε),
such that log Mi

n ≥ Ri − ε. The rate tuple r will be called
zero-error achievable if for all 1 ≤ i ≤ t , pei = 0. The
capacity region of q-ary t-write WOM is the set of all the
achievable rate tuples. Let C

k©,ε
q,t , C

k©,z
q,t denote the capacity

region, and R k©,ε
q,t , R k©,z

q,t denote the maximum sum-rate of
q-ary t-write WOM in model k for the ε-error, the zero-error
case, respectively.

In [26], Wolf et al. studied the binary case, and proved
that the capacity regions of binary t-write WOM in the first
two models (EI models) are equal, both for the ε-error and
the zero-error cases. They also showed that this region is the
capacity region of model 3 for the ε-error case. That is,
the following holds for all t ≥ 1:

C2,t � C
1©,z

2,t = C
1©,ε

2,t = C
2©,z

2,t = C
2©,ε

2,t = C
3©,ε

2,t , (1)

where

C2,t =
{
(R1, . . . ,Rt)| R1 ≤ h(p1),

R2 ≤ h(p2)(1 − p1), . . . ,

Rt−1 ≤ h(pt−1)
∏t−2

i=1
(1 − pi),

Rt ≤
∏t−1

i=1
(1 − pi),

where 0 ≤ p1, . . . , pt−1 ≤ 1/2
}
. (2)

It is also known that the maximum sum-rate in all these
cases is log(t + 1). Note that the zero-error capacity region
of model 3, i.e. C

3©,z
2,t , is still unknown, even for the binary

case.
In the non-binary case, only model 2 was studied by

Fu and Vinck [8]. They calculated the zero-error capacity
region C

2©,z
q,t , and found that the maximum sum-rate in this

model, denoted by R 2©,z
q,t , is log

(q−1+t
q−1

)
. In this paper we

show that the capacity regions of models 1 and 2 for both
the ε-error and the zero-error cases are all the same, and
thus log

(q−1+t
q−1

)
is the maximum sum-rate in these four cases.

One can readily conclude that this is an upper bound on the
sum-rate also for the other models. However we prove that in
models 3 and 4 this bound is not tight.

In Section III and Section IV we show how codes in the
Z channel, and the binary erasure channel (BEC) provide
constructions of binary WOM codes in model 4 and model 3,

respectively. The Z channel is a channel with binary inputs
and outputs in which only a zero can change to a one and not
vice versa. These are called asymmetric errors. The BEC is a
channel with binary inputs and outputs in which a bit value
can be erased.

For each channel (Z channel or BEC), we use the following
two models: the coding theory model, which is used for zero-
error WOM codes, and the information theory model which is
applied for the ε-error case. The coding theory model mimics
an adversarial channel, where the adversary knows the entire
codeword prior to transmission and can corrupt up to �pn	
locations to each specific transmission, where p ∈ [0, 1].
This is the worst-case noise model studied in coding theory.
In the information theory model, the errors are generated in an
independent identical distribution, with probability p. We call
p the channel error probability. For more details about these
two models, see for example [7].

We say that a length-n code C with M codewords is an
(n, M, τ, pe)B EC erasure-correcting code, if it can correct at
most any τ erasures with decoding error probability pe. The
decoding error probability, pe, is defined as the probability
of decoding incorrectly the transmitted message, where the
erasure vector is chosen independently uniformly from the
set of all the vectors of Hamming weight at most τ . Note
that pe can be defined as maximal or average decoding
error probability where the maximum and average measures
are computed over the set of the messages, since both of
these problems have the same capacity in discrete mem-
oryless channel (DMC) [6, pp. 194, 204]. If pe = 0
then we omit this parameter, and we have an (n, M, τ)B EC

erasure-correcting code, which is capable of correcting any τ
erasures. An (n, M, τ, pe)Z asymmetric-error-correcting code,
and (n, M, τ)Z asymmetric-error-correcting code are defined
similarly. Note, that pe is usually defined to be the decoding
error probability where each bit is corrupted independently
uniformly with probability p. For τ = �pn	, this definition
is equivalent to our definition described above, with respect
to the capacity results. We use our definition to simplify
the construction and to clarify the connection between the
two models of the used channel.

Let K be the Z channel or the BEC with channel error
probability p. It is said that R is an achievable rate in
the information theory model of channel K , if for each
ε > 0 there exists an (n, M, τ, pe)K error-correcting code
consisting of M ≥ 2n(R−ε) codewords of length n, which is
capable of correcting τ = �pn	 errors which occurred by K
with decoding error probability pe < ε. Similarly, R is an
achievable rate in the coding theory model of a channel K ,
if for each ε > 0 there exists an (n, M, τ)K error-correcting
code with the same parameters except for pe = 0.

III. CONSTRUCTIONS FOR MODEL 4 -
THE EU:DU MODEL

In this section we study constructions of WOM codes
in model 4. We first present some known results [26] about the
capacity region and the maximum sum-rate of binary WOM
in the ε-error case.

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5127

In subsection III-A we study the binary two-write case.
We show a very simple construction for the zero-error
case using only two cells which already achieves a signif-
icantly high sum-rate. Then, using codes for the Z chan-
nel we give a more general construction of binary WOM
codes in this model. We use codes in the informa-
tion theory model in the Z channel, in order to con-
struct WOM codes for the ε-error case, which obtain
each point in the achievable region presented in [26] and

thus the maximum sum-rate R 4©,ε
2,2 as well. By the same ideas,

codes in the coding theory model are applied to construct
WOM codes in the zero-error case. Based on the two-write
constructions, we then show in subsection III-B a recur-
sive construction of binary multiple-write WOM codes. The
generalization for non-binary two-write WOM is presented
in Appendix A.

The capacity region of a binary t-write WOM in model 4 for
the ε-error case was studied in [26]. The following region was
shown to be achievable

C̃t =
{
(R1, . . . ,Rt)|R1 ≤ h(p1),

R2 ≤ h(p1 p2) − p2h(p1), . . . ,

Rt−1 ≤h(
∏t−1

j=1
p j)− pt−1h(

∏t−2

j=1
p j),

Rt ≤ h(
∏t

j=1
p j) − pth(

∏t−1

j=1
p j),

where 0 ≤ p1, . . . , pt ≤ 1
}
, (3)

that is, C̃t ⊆ C
4©,ε

2,t . However, it is not known if the converse
holds as well, i.e., whether every achievable rate tuple belongs
to this region. Here, 1− pi is the probability for programming
a bit on the i -th write. For example, for t = 2 we get

C̃2 =
{
(R1,R2) | R1 ≤ h(p1),

R2 ≤ h(p1 p2) − p2h(p1),

where 0 ≤ p1, p2 ≤ 1
}
. (4)

Even though, this capacity region is not necessarily a tight
region, the authors in [26] could still give an achievable
upper bound on the sum-rate in this model. Specifically,
the maximum sum-rate, denoted by Pt in [26], was shown
to be given by

R 4©,ε
2,t = sup

0≤p1,...,pt≤1

⎧
⎨

⎩
h(

t∏

j=1

p j) +
t∑

i=2

((1 − pi)h(

i−1∏

j=1

p j))

⎫
⎬

⎭
.

(5)

Furthermore it was shown that for all t ≥ 1, R 4©,ε
2,t ≤ π2

6 ln 2 ≈
2.37, and lim

t→∞R 4©,ε
2,t = π2

6 ln 2 ≈ 2.37. Table I presents the

values of R 4©,ε
2,t for 2 ≤ t ≤ 5, along with the probabilities

vectors p = (p1, p2, . . . , pt) that maximize this term.
Fig. 1 illustrates the capacity regions for binary two-write

WOM in all the models. It demonstrates that C̃2
(see Equation (4)), which is an achievable region for binary
WOM in model 4 for the ε-error case (inner line), is a proper
subset of C2,2 (see Equation (2)), the capacity region of binary
WOM in all the other models, (outer curve).

TABLE I

MAXIMUM SUM-RATES IN MODEL 4

Fig. 1. A comparison between C2,2-the capacity regions for binary two-write
WOM in models 1, 2, and 3, and C̃2- an achievable region for binary
two-write WOM in model 4. The points are rates of specific constructions of
zero-error WOM codes in model 4.

A. Binary Two-Write WOM Codes

Let us start with a simple two-write WOM code
construction.

Example 1: In this example, we show a construction of a
binary [2, 2; 3, 2] 4©,z WOM code. On the first write a ternary
symbol is written according to the encoding map

0 → (0, 0), 1 → (0, 1), 2 → (1, 0).

Then, on the second write one more bit is written. If the bit
value is zero the memory state does not change, that is the
cells are programmed with (0, 0). Otherwise, the cells are
programmed to the (1, 1) state. The decoding on each write is
clear from the encoding. The sum-rate of this construction is
log 3+1

2 ≈ 1.29. By concatenation, one can construct for each
positive integer n, a [2n, 2; 3n, 2n] 4©,z WOM code with the
same sum-rate.

According to Table I, the maximum sum-rate of two-write
WOM codes in the ε-error case is R 4©,ε

2,2 = 1.388, which is
an upper bound for the zero-error case. Thus, this very simple
example already achieves sum-rate which is fairly close to the
upper bound. We show how to close on this gap for the ε-error
case by using codes for the Z channel.

The construction of binary two-write WOM code we next
propose is based on a reduction to the Z channel. We use
two models of the channel, the coding theory model, which
is invoked for constructing zero-error WOM codes, and the
information theory model which is applied for the ε-error case,

5128 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

and achieves the capacity region C̃2 and thus the maximum

sum-rate R 4©,ε
2,2 .

Recall that a length-n code C with M codewords is
an (n, M, τ, pe)Z asymmetric-error-correcting code if it can
correct at most τ asymmetric errors with decoding error
probability pe.

Theorem 1: Let C be an (n, M, τ, pe)Z asymmetric-error-
correcting code. Then there exists an [n, 2; M1, M2] 4©, pe

WOM code with error probability vector pe = (0, pe), where
M1 = �τ

i=0

(n
i

)
and M2 = M. If pe = 0 then the constructed

WOM code is a zero-error WOM code.
Proof: The proof will consist of describing the encoding

and decoding maps of the WOM code. On the first write,
M1 messages are written by simply programming at most τ
cells. We assume here, and later on, that there is a mapping
between the set [M1] and the set of all binary vectors of
Hamming weight at most τ . This mapping defines also the
decoding of this write.

Let E,D be the encoding, decoding map of the asymmetric-
error-correcting code C, respectively. The encoder on the
second write receives a message m ∈ [M2] to be encoded
to the memory and programs the cells with the vector E(m),
given by applying the encoding map of C. We denote the cell-
state vector after the first write by c1. Since the vector c1 is
already programmed to the memory, the cell-state vector on
the second write becomes c2 = max{c1, E(m)}. The decoder
on the second write applies the decoding map of C on c2.
We have the following three observations:

1) E(m) is a codeword in C,
2) c2 ≥ E(m),
3) dH (E(m), c2) ≤ wH (c1) ≤ τ .

That is, the cell-state vector c2 is the outcome of at most τ
asymmetric errors with respect to the codeword E(m). Since
the code C is capable of correcting at most τ asymmetric errors
with decoding error probability pe, we have that D(c2) = m
with probability at least 1 − pe, as required. �

Note that Example 1 is a special case of Theorem 1,
in which the code C is a (2, 2, 1)Z asymmetric-error-correcting
code. That is, the code is of length two, contains the two code-
words (0, 0) and (1, 1) and it can correct a single asymmetric
error.

The capacity of the Z channel in the information theory
model was well studied in the literature before [22], [24]. Let
α be the probability for occurrence of 1 in the codewords, and
p be the crossover 0 → 1 probability, then the capacity was
shown to be

h((1 − α)(1 − p)) − (1 − α)h(p).

Thus, the capacity of the Z channel with the crossover 0 → 1
probability p equals to

cap(Z) = max
0≤α≤1

{h((1 − α)(1 − p)) − (1 − α)h(p)}

= log
(

1 + (1 − p)p p/(1−p)
)
.

which is achieved for

α = 1 − 1

(1 − p)
(
1 + 2h(p)/(1−p)

) .

In [26], Wolf et al. proved that it is possible to achieve all
points in the region C̃2 by random coding. The next theorem
proves this fact by using the construction from Theorem 1,
and using capacity achieving codes in the Z channel in the
information model. Theorems 1 and 2 provide more explicit
constructions and important insight about the connection to
the Z channel. Note that all the capacity achievable WOM
codes are for the ε-error case.

Theorem 2: For any r ∈ C̃2, r is ε-error achievable by the
construction from Theorem 1.

Proof: We prove that for any (R1,R2) ∈ C̃2, and ε > 0
there exists an [n, 2; 2nR′

1, 2nR′
2] 4©, pe WOM code, constructed

by Theorem 1, with error probability vector pe = (0, pe) ≤
(ε, ε), and R′

1 ≥ R1 − ε, R′
2 ≥ R2 − ε.

Let p1, p2 ∈ [0, 1] be such that R1 ≤ h(p1) and R2 ≤
h(p1 p2) − p2h(p1). Let p = 1 − p1, α = 1 − p2, and ε > 0.
Based on the existence of capacity achieving codes for the
Z channel, there exists an (n, M, τ, pe)Z asymmetric-error-
correcting code C, such that τ = �pn	 if p ∈ [0, 0.5]2 and
otherwise τ = �pn�, pe ≤ ε, and

log M

n
≥ h((1 − α)(1 − p)) − (1 − α)h(p) − ε.

According to the construction from Theorem 1, there exists
an [n, 2; M1, M2] 4©, pe WOM code with error probability
vector pe = (0, pe), where M1 = ∑τ

i=0

(n
i

)
and M2 = M .

Based on Lemma 4.8 in [17]
τ∑

i=0

(
n

i

)
≥ 1

n + 1
2nh(τ

n).

Therefore, for n large enough, the rates of this WOM code
satisfy

R′
1 = log(

∑τ
i=0

(n
i

)
)

n
≥ h

(τ

n

)
− log(n + 1)

n

≥ h(p) − log(n + 1)

n
≥ R1 − ε,

and

R′
2 = log M2

n
≥ h((1 − α)(1 − p)) − (1 − α)h(p) − ε

= h(p1 p2) − p2h(p1) − ε ≥ R2 − ε.

�
As an immediate result from Theorem 2, we conclude

that there exists a family of binary two-write WOM codes
in model 4 for the ε-error case which achieve the maximum

sum-rate R 4©,ε
2,2 .

Although the Z channel can provide us with capacity
achieving codes for two writes for the ε-error case, yet it is not
easy to find specific WOM codes with high sum-rates, mostly
because the problem of finding such codes in the Z channel
is still far to be solved.

By the same techniques, we can use codes for the coding
theory model, which provide (n, M, τ)Z asymmetric-error
codes with decoding error probability zero, in order to con-
struct zero-error WOM codes. However, the capacity in the

2If τ = 0.5, we assume, without loss of generality, that n is even

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5129

TABLE II

AN [n, 2; M1, M2] 4©,z WOM CODE CONSTRUCTED BY AN

(n, M, τ)Z ASYMMETRIC-ERROR-CORRECTING CODE

coding theory model is unknown, and an upper-bound on

the capacity is given by log

(
(τ + 1)2n

∑τ
j=0

(n
j

)

)

[1], [2]. Hence,

if τ ≈ pn, and n goes to infinity, then the maximum
sum-rate is upper-bounded by 1 − h(p). Thus, unfortunately,
the maximum sum-rate of this construction for the zero-error
case where τ ≈ pn, approaches 1 asymptotically.

We used some of the existing code constructions for asym-
metric errors [12], and found WOM codes with the following
parameters for the zero-error case, as described in Table II.
The rates of these WOM codes are marked also in the plot
of Fig. 1.

Note that the best sum-rate that we could find remains
1.29 which is achieved by the WOM code from Example 1
using two cells. The problem of closing this gap with specific
WOM code constructions still remains an open problem. The
extension of this construction to two-write non-binary WOM
codes appears in Appendix A.

B. Binary t-Write WOM Codes

Given a binary two-write WOM code in model 4, we can
construct binary t-write WOM codes for all t . We accomplish
this goal by a recursive construction which is proved in the
next theorem.

Theorem 3: If Ct is an [n, t; M1, M2, . . . , Mt] 4©, pe WOM
code, then there exists a [2n, t + 1; 3n, M1, M2, . . . , Mt] 4©, p′

e

WOM code, Ct+1, where p′
e = (0, pe1, . . . , pet)

Proof: The proof will consist of describing the encoding
and decoding maps of the (t + 1)-write WOM code Ct+1.
On the first write of Ct+1, we invoke the first write of the
two-write WOM code from Example 1. Thus, the 2n cells are
divided into pairs, where each pair can be programmed to one
of the following vectors (0, 0), (0, 1), or (1, 0), resulting with
3n messages.

For the next writes, each pair of two cells represents one
logical cell, where the pair (1, 1) represents a logical value
one and the other three pairs represent a logical value zero.
Thus, on the i -th write, 2 ≤ i ≤ t + 1, Mi−1 messages can
be encoded, decoded by using the encoder, decoder, of the
(i − 1)-st write of Ct over the n logical cells, respectively. �

By applying the construction of Theorem 3 recursively,
and using a two-write WOM code with sum-rate Rsum

2 as
the parameter of the recursion, the sum-rate of the obtained
t-write WOM code equals

Rsum
t = log 3 ·

t−2∑

i=1

(2−i) + 22−t · Rsum
2

= log 3 + 22−t · (Rsum
2 − log 3).

TABLE III

A COMPARISON BETWEEN VALUES OF Rsum
t AND R 4©,ε

2,t

Thus, the value Rsum
t approaches log 3 as t gets large enough.

In Table III, we present the results for the values of Rsum
t

in case that Rsum
2 = 1.29 from Example 1, and for Rsum

2 =
R 4©,ε

2,2 = 1.388, which is the maximum value for Rsum
2 and

can be asymptotically achieved by Theorem 2. These results
are compared with the upper bound on the sum-rate, given by
the value of R 4©,ε

2,t .

IV. CONSTRUCTIONS FOR MODEL 3 -
THE EU:DI MODEL

In this section we describe some constructions of WOM
codes in model 3. First, we recall some known results [26]
regarding the capacity region and the maximum sum-rate
of binary WOM in the ε-error case in this model. Then,
we study the binary two-write case. We show a very simple
construction for the zero-error case. We also give a more
general construction of binary WOM codes in this model,
by using codes for the binary erasure channel (BEC).

As stated before in (1), the capacity regions of binary
t-write WOM in model 1 and model 2 in both the ε-error and
the zero-error cases, and the capacity region of binary t-write
WOM in model 3 in the ε-error case are all identical [26].
This capacity region, denoted by C2,t , is presented in (2), and
the maximum sum-rate in these cases is log(t + 1).

We start with a very simple construction for a zero-error
WOM code using only three cells which is derived from a
similar construction by Rivest and Shamir for model 2 [19].

Example 2: In this example, we show a construction of
a binary [3, 2; 4, 4] 3©,z WOM code, achieving sum-rate 4/3.
Table IV describes the encoders’ maps. The encoding map
of the first write defines also the decoding of this write.
We denote the cell-state vector after the first, second write by
c1,c2, respectively. Let u be the vector which was encoded in
the second write. The decoder input is c1 and c2 = max{c1, u}.
It is possible to verify the following equation.

u =

⎧
⎪⎨

⎪⎩

(0, 0, 0) if wH (c2) ≤ 1

c2 if wH (c2) = 2

c2 + c1 if wH (c2) = 3

Thus, the decoder can reveal u, and the message of the second
write is decoded by the second column in Table IV.

We next give a general construction for binary two-write
WOM in this model. This construction is based on a reduction
to the BEC. We construct ε-error WOM codes by codes in

5130 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

TABLE IV

THE ENCODER’S MAPS OF EXAMPLE 2

the information theory model of the BEC, which achieve the
capacity region C

3©,ε
2,2 , and thus the maximum sum-rate log 3

as well, while for the zero-error case, we invoke codes in the
coding theory model.

The construction is specified directly by codes correcting
erasures. Recall that a length-n code C with M codewords is
an (n, M, τ, pe)B EC erasure-correcting code if it can correct
at most τ erasures with decoding error probability pe. In par-
ticular, codes with minimum Hamming distance τ + 1 can
correct τ erasures with pe = 0.

Theorem 4: Let C be an (n, M, τ, pe)B EC erasure-
correcting code. Then there exists an [n, 2; M1, M2] 3©, pe

WOM code with decoding error probability pe = (0, pe),
where M1 = �τ

i=0

(n
i

)
and M2 = M. If pe = 0 then the

constructed code is zero-error WOM code.
Proof: The proof will consist of describing the encod-

ing and decoding maps of the WOM code. On the first
write M1 messages are written by simply programming at
most τ cells. Let E,D be the encoding, decoding maps
of the erasure-correcting code C, respectively. The encoder
on the second write receives a message m ∈ [M2] to be
encoded to the memory and programs the cells with the vec-
tor E(m). We denote the cell-state vector after the first, second
write by c1,c2, respectively. Thus, c2 = max{c1, E(m)}. Let
S = {i : c1,i = 1}. We have the following four observations:

1) E(m) is a codeword in C,
2) c2 ≥ E(m),
3) dH (E(m), c2) ≤ wH (c1) = |S| ≤ τ ,
4) the set S is known to the decoder.

That is, the cell-state vector c2 is the outcome of at most τ
erasures in the codeword E(m) where the set of the erasures’
locations is S. Since the code C is capable of correcting at
most τ erasures, we have that D(c2) = m with probability at
least 1 − pe, as required. �

Note that Example 2 is a special case of Theorem 4, in
which the code C is a (3, 4, 1)B EC erasure-correcting code.
That is, the code is of length three, contains the following
four codewords (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), and can
correct a single erasure.

The next theorem proves that by capacity achieving codes
in the BEC in the information model, it is possible to achieve
all points in the region C2,2 = C

3©,ε
2,2 through the construction

from Theorem 4 for the ε-error case. Recall that the capacity
of the BEC in the information theory model is known to be
1 − p, where p is the erasure probability [6, pp. 189].

Theorem 5: For any r ∈ C2,2, r is achievable by the
construction form Theorem 4.

Proof: We prove that for any (R1,R2) ∈ C2,2, and ε > 0
there exists an [n, 2; 2nR′

1, 2nR′
2] 3©, pe WOM code, constructed

by Theorem 4, with error probability vector pe = (0, pe2) ≤

(ε, ε), and R′
1 ≥ R1 − ε, R′

2 ≥ R2 − ε.
Let p ∈ [0, 0.5] be such that R1 ≤ h(p) and R2 ≤ 1 − p.

By capacity achieving codes in the BEC in the information the-
ory model, for p and ε > 0, there exists an (n, M, τ, pe)B EC

erasure-correcting code C, such that τ = �pn	, pe < ε, and

log M

n
≥ 1 − p − ε.

According to the construction from Theorem 4, there exists
an [n, 2; M1, M2] 3©, pe WOM code with error probability
vector pe = (0, pe) ≤ (ε, ε), where M1 = ∑τ

i=0

(n
i

)
and

M2 = M . Using Lemma 4.8 in [17], as in Theorem 2, the
rates of this WOM code satisfy

R′
1 = log(

∑τ
i=0

(n
i

)
)

n
≥ R1 − ε,

and R′
2 = log M2

n ≥ 1 − p − ε for n large enough. �
By the same techniques, we can use codes for the coding

theory model, which provide (n, M, τ)B EC erasure-correcting
codes with decoding error probability zero, in order to con-
struct zero-error WOM codes in model 3. However, the capac-
ity in the coding theory model is unknown. The best known
achievable scheme for the coding model corresponds to codes
suggested by Gilbert and Varshamov [9], [23] which achieve
a rate of 1 − h(p) where pn is the maximum number of
erased indices. Thus, unfortunately, this lower-bound doesn’t
provide sum-rate greater than 1. On the other hand, the best
known upper bound is the MRRW (McEliece-Rodemich-
Rumsey-Welch) bound obtained as the solution of an LP [16].
This bound, called the second MRRW bound, strengthens
the following three bounds: the Hamming (sphere-packing)
1 − h(p

2), the Elias-Bassalygo and the first MRRW bound
h(1

2 −√
p(1 − p)) for 0 < p < 1

2 . This upper-bound provides
us a limit on the power of this construction for the zero-error
case. In particular, according to this bound the maximum sum-
rate in this construction is upper bounded by 1.18. Note that
by the WOM code in Example 2, we have already managed
to achieve sum-rate 1.33. The extension of this construction
to non-binary WOM codes appears in Appendix B.

V. CAPACITY REGION OF MODELS 1 AND 2 – EI MODELS

In this section we follow the derivations from [8] and [26] to
prove equality between the capacity regions of q-ary t-write
WOM in models 1 and 2 (EI models), and additionally to
show equality between the ε-error and the zero-error capacity
regions in these models. That is, we extend the result for
models 1 and 2 stated in (1), for the non-binary case and
show that for all q and t ,

C
2©,z

q,t = C
2©,ε

q,t = C
1©,ε

q,t = C
1©,z

q,t . (6)

Clearly, C
2©,z

q,t ⊆ C
2©,ε

q,t ⊆ C
1©,ε

q,t , and C
2©,z

q,t ⊆ C
1©,z

q,t ⊆
C

1©,ε
q,t . Thus, in order to establish the equalities in (6), it is

enough to prove that C
1©,ε

q,t ⊆ C
2©,z

q,t .
Let us introduce several more notations to be used in this

section. For 1 ≤ i ≤ t , and 0 ≤ j1 ≤ j2 ≤ q − 1, let pi, j1→ j2
be the conditional probability of writing the symbol j2 on the
i -th write given that the cell is in state j1, and pi, j is the prob-
ability vector pi, j = (pi, j→ j , pi, j→(j+1), . . . , pi, j→(q−1)).

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5131

If j1 > j2, then pi, j1→ j2 = 0, so pi,(q−1)→(q−1) = 1, and
pi,q−1 = (pi,(q−1)→(q−1)) is a probability vector of length 1.
We let Qi, j denote the probability that a cell’s state after i
writes is j , and Qi = (Qi,0, Qi,1, . . . , Qi,q−1). Note that Qi

is a function of p1, j , p2, j , . . . , pi, j , j ∈ [q], and can be
computed recursively for all i ≥ 1 and j ∈ [q] as follows:

Q0, j =
{

1, if j = 0.
0, else

Qi, j =
j∑

k=0

Qi−1,k pi,k→ j . (7)

We define the following region Cq,t in order to show that
it is the capacity region of models 1 and 2. This region can
be readily verified to be equivalent to the one presented by
Fu and Vinck [8] for the zero-error case, though its represen-
tation was more general.

Cq,t =
{
(R1,R2, . . . ,Rt)|∀1 ≤ i ≤ t :

Ri ≤
q−2∑

j=0

Qi−1, j H (pi, j),

∀1 ≤ i ≤ t, j ∈ [q] :
pi, j is a probability vector,

Qi, j is defined in (7)
}
. (8)

Note that for i = t , the upper bound log(q − j) of
H (pt, j) can be achieved. So, one can also write Rt ≤
∑q−2

j=0 Qt−1, j log(q − j).

For example, the capacity region of binary t-write WOM
in models 1 and 2 is presented in (2), where for 1 ≤ i ≤ t ,
pi in (2) is the probability to write symbol 1 on the i -th write,
which was denoted in Cq,t by pi,0→1. Therefore 1− pi equals
pi,0→0, and Qi,0 =∏i

j=1(1 − p j).
In addition, the capacity region of 3-ary two-write WOM

in models 1 and 2 is

C3,2 =
{
(R1,R2)|R1 ≤ H (p1,0→0, p1,0→1, p1,0→2),

R2 ≤ p1,0→0 · log 3

+ p1,0→1 · log 2,

where p1,0 = (p1,0→0, p1,0→1, p1,0→2)

is a probability vector
}
.

Since Fu and Vinck [8] have already showed that Cq,t = C
2©,z

q,t ,
to complete the proof of (6) we are only required to prove that
C

1©,ε
q,t ⊆ Cq,t , i.e. the converse part. In this proof and in the

rest of the paper, we denote by Xi the vector written on the
i -th write to the memory, and by Yi the cell-state vector after
the i -th write. We let Y0 be the zero vector.

Theorem 6 (Converse part): If there exists an
[n, t; M1, . . . , Mt] 1©, pe

q WOM code, where pe =
(pe1, . . . , pet), then
(

log M1

n
− ε1,

log M2

n
− ε2, . . . ,

log Mt

n
− εt

)
∈ Cq,t ,

where εi = H(pei)+pei log(Mi)

n .

Proof: Let S1, . . . , St be independent random variables,
where Si is uniformly distributed over the messages set [Mi].
The data processing yields the following Markov chain:

Si |Yi−1 — Xi |Yi−1 — Yi |Yi−1 — Ŝi |Yi−1

and therefore, I (Xi ; Yi |Yi−1) ≥ I (Si ; Ŝi |Yi−1). Additionally,

I (Si ; Ŝi |Yi−1) = H (Si |Yi−1) − H (Si |Ŝi , Yi−1)

≥ H (Si) − H (Si |Ŝi)

≥ log(Mi) − H (pei) − pei log(Mi).

The first inequality follows from the independence of Yi−1
and Si which implies that H (Si |Yi−1) = H (Si), and from
the fact that conditioning does not increase the entropy. The
second inequality follows from Fano’s inequality [6, pp. 38]
H (Si |Ŝi) ≤ H (pei) + pei log(Mi). Let L be an index random
variable, which is uniformly distributed over the index set [n].
Since L is independent of all other random variables we get

1

n
I (Xi ; Yi |Yi−1)

≤ 1

n
H (Yi |Yi−1)

(a)≤ 1

n

∑n−1

k=0
H (Yi,k |Yi−1,k)

(b)= H (Yi,L |Yi−1,L , L)
(c)≤ H (Yi,L |Yi−1,L)

=
∑q−1

j=0
Pr(Yi−1,L = j)H (Yi,L |Yi−1,L = j)

(d)=
∑q−2

j=0
Pr(Yi−1,L = j)H (Yi,L|Yi−1,L = j),

where steps (a) and (c) follow from the fact that entropy of
a vector is not greater than the sum of the entropies of its
components, and conditioning does not increase the entropy.
Step (b) follows from the fact that

H (Yi,L |Yi−1,L , L) =
∑n−1

k=0
Pr(L = k)H (Yi,k |Yi−1,L , L =k)

= 1

n

∑n−1

k=0
H (Yi,k |Yi−1,k),

and step (d) follows from H (Yi,L |Yi−1,L = q − 1) = 0.
Now, we set pi, j1→ j2 = Pr(Yi,L = j2|Yi−1,L = j1) and

thus conclude that

Qi, j � Pr(Yi,L = j)

=
∑ j

k=0
Pr(Yi,L = j, Yi−1,L = k)

=
∑ j

k=0
Pr(Yi,L = j |Yi−1,L = k)Pr(Yi−1,L = k)

=
∑ j

k=0
pi,k→ j Qi−1,k ,

and

log(Mi)

n
− εi ≤ 1

n
I (Xi ; Yi |Yi−1)

≤
∑q−2

j=0
Pr(Yi−1,L = j)H (Yi,L |Yi−1,L = j)

=
∑q−2

j=0
Qi−1, j H

(
pi, j→ j , . . . pi, j→(q−1)

)
,

5132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

where εi = H(pei)+pei log(Mi)

n , and the converse part is
implied. �
Later on, we denote the capacity region Cq,t by C

12©
q,t , and

the maximum sum-rate of this region by R 12©
q,t . Recall that

R 12©
q,t = log

(q−1+t
q−1

)
[8].

VI. CAPACITY REGION OF MODEL 3 – EU:DI MODEL

In this section we study the ε-error capacity of model 3.
The binary case of this model was proved in [26], and was
shown to be the same as the capacity C2,t . We observe in our
analysis that this property no longer holds for the non-binary
case. Note that the capacity region in the zero-error case in
this model is still unknown even for the binary case.

The programming probabilities in this case are not defined
as in models 1 and 2, simply because the encoder can no
longer read the memory state prior to encoding on each write.
We let pi, j be the probability of writing the symbol j on the
i -th write. Denote the probability vector pi, j for 1 ≤ i ≤ t
and j ∈ [q − 1] to be

pi, j =
(
�

j
k=0 pi,k, pi, j+1, . . . , pi,q−1

)
. (9)

We let Qi, j be the probability of a cell’s state to be in level j
after the i -th write, and Qi = (Qi,0, Qi,1, . . . , Qi,q−1). Note
that Qi is a function of pi, j which is calculated recursively
for all i ≥ 1 and j ∈ [q] as follows:

Q0, j =
{

1, if j = 0.

0, else

Qi, j = Qi−1, j (
∑ j−1

k=0
pi,k) + pi, j (

∑ j

k=0
Qi−1,k). (10)

We define the region Ĉq,t , and then prove that Ĉq,t = C
3©,ε

q,t ,

Ĉq,t =
{
(R1,R2, . . . ,Rt)|∀1 ≤ i ≤ t :

Ri ≤
∑q−2

j=0
Qi−1, j H (pi, j),

∀1 ≤ i ≤ t, j ∈ [q] :
pi, j is a probability vector

as defined in (9), and

Qi, j is defined in (10)
}
. (11)

For example, the capacity region of 3-ary 2-write WOM is

Ĉ3,2 =
{
(R1,R2)| R1 ≤ H (p1,0, p1,1, p1,2),

R2 ≤ p1,0 H (p2,0, p2,1, p2,2)

+ p1,1 H (p2,0 + p2,1, p2,2)

where 0 ≤ pi, j ,
∑2

j=0
pi, j = 1

}
.

Theorem 7: Ĉq,t is the capacity region of ε-error q-ary
t-write WOM in model 3, i.e., Ĉq,t = C

3©,ε
q,t .

The proof of Theorem 7 consists of two parts, which are
presented in the following two sub-sections.

A. Proof of Direct Part – Theorem 7

For the direct part, we prove that for each
ε > 0, and (R1,R2, . . . ,Rt) ∈ Ĉq,t there exists
an [n, t; M1, . . . , Mt] 3©, pe

q,t WOM code, where pe =
(pe1, . . . , pet) ≤ (ε, . . . , ε), and log Mi

n ≥ Ri − ε for all
1 ≤ i ≤ t . We use the well-known random channel-coding
theorem [6, pp. 200]. We describe the encoding and decoding
on each write.

On the i -th write, the encoder writes the symbol j with
probability pi, j , i.e., for k ∈ [n]: Pr(Xi,k = j) = pi, j . It is
readily verified that that for k ∈ [n]: Pr(Yi,k = j) = Qi, j ,
where Qi, j is defined in (10). The decoder on the i -th round
knows both Yi−1, Yi . Thus, the i -th write presents a DMC with
input Xi , output Zi = (Yi−1, Yi), and transition probabilities,
Pr(Yi,k |Xi,k), determined by the probability Qi−1, j . Let xi =
Xi,k , yi−1 = Yi−1,k , yi = Yi,k for some index k. By the
random coding theorem, for n large enough, we can have
highly reliable transmission with pei ≤ ε and provided rate
Ri = I (xi ; zi)− ε. That is, the following region is achievable

{
(R1, . . . ,Rt)|Ri ≤ I (xi ; zi = (yi−1, yi))

}
,

where

I (xi ; zi) = H (zi = (yi−1, yi)) − H (zi |xi)

= H (yi−1) + H (yi |yi−1) − H (zi = (yi−1, yi)|xi)
(a)= H (Qi−1) + H (yi |yi−1) − H (Qi−1)

= H (yi |yi−1)

=
∑q−1

j=0
Pr(yi−1 = j)H (yi|yi−1 = j)

(b)=
∑q−2

j=0
Pr(yi−1 = j)H (yi|yi−1 = j)

(c)=
∑q−2

j=0
Qi−1, j H (pi, j).

Step (a) follows from H ((yi−1, yi)|xi) = H (yi−1|xi) since yi

is a function of xi , yi−1, and H (yi−1|xi) = H (yi−1) because
yi−1 and xi are independent. Also, H (yi |yi−1 = q − 1) = 0
implies (b), and (c) is provided by

Pr(yi = �|yi−1 = j) =

⎧
⎪⎨

⎪⎩

∑ j
k=0 pi,k , if � = j

pi,�, if � > j

0, else.

Thus, this region is exactly Ĉq,t , and we have Ĉq,t ⊆ C
3©,ε

q,t .

B. Proof of Converse Part – Theorem 7

In this section we prove the converse part of the capacity
region. We use the same techniques as in model 1. Thus, many
details, which are identical to the proof of Theorem 6, are
omitted.

Converse part of Theorem 7: If there exists an
[n, t; M1, . . . , Mt] 1©, pe

q WOM code, where pe =
(pe1, . . . , pet), then
(

log M1

n
− ε1,

log M2

n
− ε2, . . . ,

log Mt

n
− εt

)
∈ Ĉq,t ,

where εi = H(pei)+pei log(Mi)

n .

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5133

Proof: Let S1, . . . , St be independent random variables as
defined in the proof of Theorem 6. We can follow the same
steps as in this proof to get

I (Xi ; Yi |Yi−1) ≥ I (Si ; Ŝi |Yi−1)

≥ log(Mi) − H (pei) − pei log(Mi)

and
1

n
I (Xi ; Yi |Yi−1) ≤

∑q−2

j=0
Pr(Yi−1,L = j)H (Yi,L|Yi−1,L = j)

where L is an index random variable, which is uniformly
distributed over the index set [n], and is independent of all
other random variables. The random variables Xi,L and Yi−1,L

are independent in model 3, and Yi,L = max{Xi,L , Yi−1,L }.
Therefore

Pr(Yi,L = �|Yi−1,L = j) =

⎧
⎪⎨

⎪⎩

∑ j
k=0 Pr(Xi,L = k), if � = j

Pr(Xi,L = �), if � > j

0, else.

Now, by choosing pi, j � Pr(Xi,L = j), we can conclude that

log(Mi)

n
− εi ≤ 1

n
I (Xi ; Yi |Yi−1)

≤
∑q−2

j=0
Pr(Yi−1,L = j)H (Yi,L |Yi−1,L = j)

=
∑q−2

j=0
Qi−1, j H

(
pi, j
)
,

where pi, j = (
∑ j

k=0 pi,k , pi,k+1, . . . , pi,q−1) defined in (9),

and Qi, j defined in (10), and εi = H(pei)+pei log(Mi)

n . Thus,
the converse part is implied. �

VII. COMPARISON BETWEEN THE

CAPACITIES OF THE MODELS

The main goal of this section is to compare between the
capacity regions of models 1 and 2 (EI models), and model 3
(EU:DI model). We prove that for all q > 2 and t ≥ 2, the
ε-error capacity region of q-ary t-write WOM in model 3 is
a subset of the interior of the capacity region of q-ary t-write

WOM in models 1 and 2. This implies that C
3©,ε

q,t � C
12©
q,t

and R 3©,ε
q,t < R 12©

q,t , however, we will see that the difference

between R 3©,ε
q,t and R 12©

q,t is upper bounded by a constant
which depends only on q but not on t . We also examine
the probabilities which attain the maximum sum-rate. These
results are demonstrated in Fig. 2 and Fig. 3. In addition,
finding the capacity region of model 4 is an open question,
even for the binary case. However, in [26] it was proved that
the maximum sum-rate of binary t-write WOM in model-4 is
finite where t → ∞, while in the other models it goes to
infinity. We generalize this result for all q > 2.

Even though the next lemma is a straightforward property
we use its proof in deriving the other results in this section.

Lemma 1: If r ∈ Ĉq,t then r ∈ Cq,t , i.e., Ĉq,t ⊆ Cq,t .
Proof: The claim is derived simply by

Ĉq,t = C
3©,ε

q,t ⊆ C
1©,ε

q,t = Cq,t .

However we present another proof, which examines the
probabilities for which r is attained in Cq,t .

Let r = (R1,R2, . . . ,Rt) ∈ Ĉq,t where r is achieved by
probabilities pi, j , and define

p̂i, j1→ j2 =

⎧
⎪⎨

⎪⎩

∑ j2
k=0 pi,k , if j2 = j1

pi, j2 , if j2 > j1
0, else.

Thus, one can readily verify that r is achieved in Cq,t for
probabilities p̂i, j1→ j2 . It is possible to show that the probabil-
ities to have symbol j in a cell after the i -th write, denoted
by Qi, j , are equal in both regions, Cq,t and Ĉq,t . �

Lemma 2: If r = (R1,R2, . . . ,Rt) ∈ Ĉq,t and
0 �= (R1,R2, . . . ,Ri−1), then there exists r ′ =
(R′

1,R′
2, . . . ,R′

t) ∈ Ĉq,t such that r ≤ r ′ and r ′ is attained
by p′

i, j , 1 ≤ i ≤ t , j ∈ [q], with Q′
i−1,0, Q′

i−1,1 > 0 where
Q′

i−1,0, Q′
i−1,1 are defined in (10).

Proof: Denote by pi, j , 1 ≤ i ≤ t , j ∈ [q], the parameters
for which r is attained Ĉq,t . We prove that the exist a set of
parameters p′

i, j , 1 ≤ i ≤ t , j ∈ [q], which correspond to a rate
vector r ′ such that r ′ ≥ r. Let j be the smallest number such
that R j > 0. Note that j < i since 0 �= (R1,R2, . . . ,Ri−1).
We can choose p′

1,0 = p′
2,0 = . . . = p′

j−1,0 = 1 provides
R′

1 = R′
2 = . . . = R′

j−1 = 0. Note the entropy of a vector is
determined by the values of its components disregarding their
order. Thus, on the j -th write, we can choose the probability
vector (p j,0, p j,1, . . . , p j,q−1) in non-increasing order which
provides R′

j ≥ R j , and p′
j,0 ≥ p′

j,1 > 0 since R j > 0. For

the next writes, let � > j , if p�,0 = 0, then let k be the smallest
number in [q] such that p�,k > 0. If k = 1, then p′

�,0 = p′
�,1 =

p�,1
2 else, k > 1, then p′

�,0 = p′
�,1 = p′

�,k = p�,1
3 . It can be

easily verified the R′
� ≥ R� for all � > j , and Q′

i ′,0, Q′
i ′,1 > 0

for all i ′ ≥ j , and in particular Q′
i−1,0, Q′

i−1,1 > 0 as
required. �

In the next three lemmas, we will show that Ĉq,t is a subset
of the interior of Cq,t .

Lemma 3: If r = (R1,R2, . . . ,Rt) ∈ Ĉq,t and 0 �=
(R1,R2, . . . ,Rt−1), then there exists an ε > 0 such that
r t,+ε � (R1,R2, . . . ,Rt + ε) ∈ Cq,t .

Proof: If there exists an ε > 0 such that r t,+ε ∈ Ĉq,t ,
then by Lemma 1, the claim is obviously true. Otherwise,
by Lemma 2, there exists r ′ = (R′

1,R′
2, . . . ,R′

t) ∈ Ĉq,t such
that r ≤ r ′ and r ′ is attained by pi, j , 1 ≤ i ≤ t , j ∈ [q],
where Qt−1,0, Qt−1,1 > 0 are defined in (10). We can assume
that R′

t = Rt , and ∀ε > 0 : r ′
t,+ε /∈ Ĉq,t (else, there exists

an ε > 0 such that r t,+ε ∈ Ĉq,t , and this is the first case).
Thus, we can conclude that R′

t is equal to

max
(p′

t,0,...,p′
t,q−1)

prob. vector

⎧
⎨

⎩

q−2∑

j=0

Qt−1, j H

⎛

⎝(

j∑

k=0

p′
t,k), p′

t, j+1, . . . , p′
t,q−1

⎞

⎠

⎫
⎬

⎭
,

where p′
t, j is a probability to write symbol j on the t-th write,

and Qt−1, j is defined in (10). By the proof of Lemma 1, r ′ ∈
Ĉq,t implies r ′ ∈ Cq,t , where Qt−1, j , the probabilities to have
symbol j after the (t − 1)-th write, are equals in both regions,
Cq,t and Ĉq,t . Let us define R̂t �

∑q−2
j=0 Qt−1, j log(q − j).

Clearly (R′
1,R′

2, . . . , R̂t) ∈ Cq,t , and we prove now

5134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

that R′
t < R̂t . Note that for each x, a probability vector of

length m,

H (x0, x1, . . . , xm−1) ≤ log(m),

with equality if and only if xi = 1
m for all i ∈ [m].

Additionally, R′
t = R̂t if and only if for all j ∈ [q − 2]

Qt−1, j H

⎛

⎝(
j∑

k=0

pt,k), pt, j+1, . . . , pt,q−1

⎞

⎠= Qt−1, j log(q− j).

Recall that Qt−1,0, Qt−1,1 > 0. Thus, from j = 0 we derive
pt,k = 1

q for all k ∈ [q], and similarly from j = 1 we have

pt,k = 1
q−1 for all 2 ≤ k ∈ [q], and pt,0 + pt,1 = 1

q−1 . These
two conditions cannot hold simultaneously. Thus, we conclude
that Rt = R′

t < R̂t .
Therefore, one can readily verify that there exists ε > 0

such that r t,+ε ∈ Cq,t �
We can extend Lemma 3 so it is possible to increase each

coordinate in a rate tuple.
Lemma 4: If r = (R1,R2, . . . ,Ri , . . . ,Rt) ∈ Ĉq,t and

0 �= (R1,R2, . . . , Ri−1), then there exists an ε > 0 such
that r i,+ε � (R1,R2, . . . ,Ri + ε, . . . ,Rt) ∈ Cq,t .

Proof: If there exists ε > 0 such that r i,+ε ∈ Ĉq,t ,
then by Lemma 1, the claim is obviously true. Otherwise
we prove it by induction of i , where the base case is i = t
which was proved in Lemma 3. By induction hypothesis, for
all � ∈ {i + 1, i + 2, . . . , t} there exists ε� > 0 such that
r�,+ε� ∈ Cq,t . Thus, by time-sharing technique, for ε′ =
min {ε�/(t − i)}t

�=i+1 we have r1 = (R1, . . . ,Ri ,Ri+1 + ε′,
Ri+2 + ε′, . . . ,Rt + ε′) ∈ Cq,t . By Lemma 2, there exists
r ′ = (R′

1,R′
2, . . . ,R′

t) ∈ Ĉq,t such that r ≤ r ′ attained by
pi, j , 1 ≤ i ≤ t , j ∈ [q], where Qi−1,0, Qi−1,1 > 0. By the
same techniques as in the previous lemma, we can prove
that there exists ε′′ > 0 such that r2 = (R′

1,R′
2, . . . ,R′

i−1,
R′

i + ε′′, 0, . . . , 0) ∈ Cq,t . Using r1, r2 ∈ Cq,t and time shar-
ing method, we can conclude that there exists an ε > 0, such
that r ≤ r∗ = (R∗

1,R∗
2, . . . ,R∗

i−1,R′
i + ε,R∗

i+1, . . . ,R∗
t) ∈

Ct,q , and therefore r i,+ε ∈ Ct,q . �
Based on Lemma 4 by using time-sharing technique,

we conclude the following lemma.
Lemma 5: If (R1,R2, . . . ,Rt) ∈ Ĉq,t then there exists an

ε > 0 such that (R1 + ε,R2 + ε, . . . ,Rt + ε) ∈ Cq,t .
Finally, the next corollary summarizes the discussion above.
Corollary 1: For all q > 2 and t ≥ 2, C

3©,ε
q,t � C

12©
q,t and

R 3©,ε
q,t < R 12©

q,t .
To illustrate the results in Corollary 1, we show in Fig. 2,
the capacity regions of C3,2, Ĉ3,2 which compare between
models 1 and 2 and model 3.

Fu and Vinck [8] found the probabilities which attain the
maximum sum-rate for models 1 and 2. Even though we
cannot carry the same analysis for model 3, we can still
have the following result for the probabilities that achieve the
maximum sum-rate in this case.

Lemma 6: Assume that r ∈ Ĉq,t achieves the maximum
sum-rate. Then, there exist probabilities pi, j for 1 ≤ i ≤ t,
j ∈ [q] which correspond to the rate tuple r and pt,0 = pt,1.

Proof: according to Lemma 2, if r ∈ Ĉq,t then there exists
r ′ = (R′

1,R′
2, . . . ,R′

t) ∈ Ĉq,t such that r ≤ r ′ and r ′ attained

Fig. 2. A comparison between the capacity regions C3,2 (models 1 and
2—the outer line) and Ĉ3,2 (model 3—the inner line).

by pi, j , 1 ≤ i ≤ t , j ∈ [q], where Qt−1,0, Qt−1,1 > 0. Note
that r = r ′ since r is maximum sum-rate point, and

Rt =
⎧
⎨

⎩

q−2∑

j=0

Qt−1, j H

⎛

⎝(

j∑

k=0

pt,k), pt, j+1, . . . , pt,q−1

⎞

⎠

⎫
⎬

⎭
,

All the summands in Rt equation except for the first, use
only the value pt,0 + pt,1, while the first summand achieves
maximum for pt,0 = pt,1. Since r is a maximum sum-rate
point, we can conclude that pt,0 = pt,1. �

Even though we do not know the exact maximum sum-rate
for non-binary WOM in models 3 and 4, it is still possible
to derive a lower and upper bound in order to have better
estimations on these values. The following result is proved by
similar techniques from [11].

Lemma 7: For all q ≥ 2, t ≥ 1, k ∈ {3, 4}, x ∈ {z, ε}:
(q − 2)R k©,x

2,� t
q−1 � + R k©,x

2,t−(q−2)� t
q−1 � ≤ R k©,x

q,t ≤ (q − 1)R k©,x
2,t .

Proof: The left inequality proved by using a con-
struction described in [11]. Once we have binary WOM
codes in model k, C1 for t1 = � t

q−1� writes and C2 for
t2 = t − (q − 2)� t

q−1� writes, we can construction a q-ary
t-write WOM code by using the q levels “layer by layer”.
The t rounds are divided to q − 1 stages where each stage
(except the last) contains t1 writes. On the first stage, only
0, 1 symbols are used according to C1, on the next stage
only the 1, 2 levels are used according to C1 by mapping
0 �→ 1, 1 �→ 2, and so on. The last binary WOM code that
will be used is C2 contains t − (q − 2)� t

q−1� writes.
The proof of the right inequality consists of a reduction.

Given C , an [n, t; M1, . . . , Mt] k©, pe
q (1 ≤ k ≤ 4) WOM

code, with sum-rate Rsum
q,t =

∑t
i=1 log(Mi)

n , we can construct C ′,
an [n(q − 1), t; M1, . . . , Mt] k©, pe

2 WOM code, with sum-rate

Rsum
2,t =

∑t
i=1 log(Mi)
n(q−1) = Rsum

q,t
q−1 . Thus, we have

Rsum
q,t = (q − 1)Rsum

2,t ≤ (q − 1)R k©,x
2,t ,

where x = z if pe = 0, otherwise x = ε.

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5135

Fig. 3. A comparison between, R 12©
q,t , the maximum sum-rates in mod-

els 1 and 2, and R 3©,ε
q,t , the maximum sum-rates in model 3, for q ∈ {3, 4}.

Now we describe the encoding and decoding
maps C ′. Let f : [q] → {0, 1}q−1 be the mapping,
where j → 1 j 0q−1− j , and for v ∈ [q]n, f (v) is the
concatenating the values f (v1), f (v2), . . . , f (vn). Denote by
V the image of f , i.e., V = {0q−1− j 1 j : j ∈ [q]}. Note that
f : [q] → V is bijective, and so invertible.

Let Ei and Di be the encoding and decoding maps of C of
the i -th write, 1 ≤ i ≤ t . The encoder on the i -th write of C ′
receives a message m ∈ [Mi] to be encoded to the memory
and programs the cells with the vector f (Ei (m)), given by
applying f on the result of the encoding map Ei . We denote
the cell-state vector after the i -write by ci . It is easy to verify
that m = Di (f −1(ci)) with probability at least 1 − pei . �

By Corollary 1 we have that R 3©,ε
q,t < R 12©

q,t for each q > 2
and t > 1. However, in the sequel, we state that the difference
between these maximum sum-rates is bounded by a constant.

Lemma 8: For all q and t the following holds

Dq,t � R 12©
q,t − R 3©,ε

q,t ≤ (q − 1) log(q − 1),

that is the difference between the maximum sum-rates of an
ε-error q-ary t-write WOM in model 3 and a q-ary
t-write WOM in models 1 and 2 is bounded by Dq,t ≤
(q − 1) log(q − 1) for each t.

Proof: On one hand

R 12©
q,t = log

(
q − 1 + t

q − 1

)
≤ (q − 1) log(t + 1),

and on the other hand, by Lemma 7,

R 3©
q,t ≥ (q − 1) log

(⌊
t

q − 1

⌋
+ 1

)
.

Thus, we have

Dq,t ≤ (q − 1)(log(t + 1) − log(� t

q − 1
� + 1))

≤ (q − 1) log(q − 1).

�

In Fig. 3, we compare between the maximum sum-rates in
these models for q = 3, 4.

As a consequence of Lemma 7 we conclude with the fol-
lowing corollary, which illustrates the huge difference between
the maximum sum-rates of model 4 and the others.

Corollary 2: For all q ≥ 2,R 4©,ε
q,t ≤ (q − 1) · 2.37 and

therefore lim
t→∞R 4©,ε

q,t ≤ (q − 1) · 2.37 < ∞.

Proof: By Lemma 7, R 4©,ε
q,t ≤ (q−1)R 4©,ε

2,t . The maximum

sum-rate, R 4©,ε
2,t , is given by (5) [26], where for all t ≥ 1,

R 4©,ε
2,t ≤ π2

6 ln 2 ≈ 2.37, and lim
t→∞R 4©,ε

2,t = π2

6 ln 2 ≈ 2.37. Thus,

we have ∀q : R 4©
q,t ≤ (q − 1)R 4©,ε

2,t ≤ (q − 1) · 2.37. �

VIII. CONCLUSION AND OPEN PROBLEMS

In this paper, we studied constructions and the capacity
region of write-once memories. We first presented construc-
tions of WOM codes for models 3 (EU:DI) and 4 (EU:DU).
We then studied the capacity region and maximum sum-rate of
non-binary WOM for all four models both for the zero-error
and the ε-error cases. While the results in the paper expand the
state of the art knowledge on write-once memories, there are
still several interesting problems which are left open. Some of
them are summarized as follows:

1) Calculating the zero-error capacity region and maximum
sum-rate in model 3 (the EU:DI model) for all q ≥ 2
and t ≥ 2.

2) Calculating the zero-error and the ε-error capacity
regions and maximum sum-rate in these two cases,
in model 4 (the EU:DU model) for all q ≥ 2 and t ≥ 2.
Note that only the ε-error maximum sum-rate for binary
t-write WOM is known [26].

3) Find zero-error and ε-error WOM code constructions
for models 3 and 4, both for binary and non-binary.
In particular, it is left open to improve the zero-error
construction from Example 1 for model 4 with sum-rate
1.29 and the zero-error construction from Example 2 for
model 3 with sum-rate 1.33.

APPENDIX A
NON-BINARY TWO-WRITE WOM IN MODEL 4

In order to construct non-binary WOM codes in model 4,
we follow an analogy to the one from Theorem 1 which uses
codes in the Z channel for the binary setup. More specifically,
we consider here non-binary asymmetric errors, which can
only increase the level of each cell. That is, if a q-ary cell
is stored with the value b ∈ [q] and a q-ary asymmetric
error has occurred, then only the values {b + 1, . . . , q − 1}
can be received. Note that the Z channel is a special case
of this model for q = 2. Given two vectors u, v ∈ [q]n,
the Manhattan distance between u and v, dM (u, v), is defined
to be dM (u, v) = �n−1

i=0 |ui − vi |. The Manhattan weight of u,
wM (u) is defined to be wM (u) = dM (u, 0) = �n−1

i=0 ui .
Let u ∈ [q]n be a stored cell-state vector and u+e ∈ [q]n be

the received vector where e ≥ 0 is the error vector. We say that
a length-n code C over q-ary symbols with M codewords is an
(n, M, τ)q asymmetric-error-correcting code if it can correct

5136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

any asymmetric error vector with Manhattan weight at most τ .
We denote the number of q-ary length-n vectors of Manhattan
weight at most τ by Bq(n, τ). Using the inclusion-exclusion
principle, we conclude

Bq(n, τ) =
min{n,� τ

q �}
∑

k=0

(−1)k
(

n + τ − kq

k, n − k, τ − kq

)
.

Note that a length-n code over q-ary symbols with M
codewords and minimum Manhattan distance d is an
(n, M, � d−1

2 �)q asymmetric-error-correcting code.
The Lee metric is more investigated than the Manhattan

metric, and may be used here. Given two vectors u, v ∈ [q]n,
the Lee distance between u and v, dL(u, v), is defined to
be dL(u, v) = �n−1

i=0 min{|ui − vi |, q − |ui − vi |}. Note that
for each two vectors u, v ∈ [q]n, it holds that dL(u, v) ≤
dM (u, v). Therefore, a code C with minimum Lee distance d ,
has minimum Manhattan distance d ′, where d ′ ≥ d .

Theorem 8: Let C be an (n, M, τ)q asymmetric-error-
correcting code. Then there exists an [n, 2; M1, M2] 4©,z

q WOM
code, where M1 = Bq(n, τ) and M2 = M.

Proof: The proof will consist of describing the encoding
and decoding maps of the WOM code. On the first write M1
messages can be written by simply programming vectors with
Manhattan weight at most τ .

Let E , D be the encoding, decoding map of the error-
correcting code C, respectively. Then, the encoder of the sec-
ond write receives a message m ∈ [M2] to be encoded to the
memory and programs the cells by applying the encoding map
E(m) of C. Let c1 and c2 be the memory cell-state vectors after
the first and the second write, respectively. Denote by e the
error vector c2 − E(m). Note that c2 = max{c1, E(m)}, and
e ≤ c1 We have the following three observations:

1) E(m) is a codeword in C,
2) c2 ≥ E(m),
3) dM (E(m), c2) = wM (e) ≤ wM (c1) ≤ τ .

That is, the cell-state vector c2 is the outcome of the error
vector e. Since the code C is capable of correcting an asym-
metric error vector with Manhattan weight at most τ , we have
that D(c2) = m, as required. �

Even though the result from Theorem 8 provides us with a
specific construction of non-binary WOM codes in model 4,
it is not clear what the asymptotic result of this construction
is. That is, given n large enough what the best choice to
choose the value of τ is. Furthermore, codes in the Manhattan
distance are not easy to construct, and our attempts to find
efficient codes in the Lee metric for this construction were
unsuccessful. We also note that we are not limited to using
this type of asymmetric non-binary error-correcting codes.
We could use codes which correct limited magnitude errors [5]
as long as the programmed cell-state vectors on the first write
have the same limited magnitude.

APPENDIX B
NON-BINARY TWO-WRITE WOM IN MODEL 3

In order to construct non-binary WOM codes in model 3, we
follow an analogy to the one from Theorem 4 which uses codes

in the erasure channel for the binary setup. The techniques
are similar to those described in model 4, Appendix A.
More specifically, we consider here non-binary erasures. That
is, if a q-ary cell is stored with the value b ∈ [q] and an
asymmetric erasure has occurred, then a value from the set
{b, . . . , q − 1} can be received with the erasure mark. Thus,
if the value a ∈ [q] is received with the erasure mark, then
the correct value is in [a + 1]. Note that the binary erasure
channel is a special case of this model for q = 2.

Let u ∈ [q]n be a stored cell-state vector and v ∈ [q]n be
the received vector with erasures locations S ⊆ [n]. Denote by
e ∈ [q]n the erasure vector, i.e., ei = vi if i ∈ S, and otherwise
ei = 0. We say that a length-n code C over q-ary symbols with
M codewords is an (n, M, τ)q asymmetric-erasure-correcting
code if it can correct any asymmetric erasure vector with
Manhattan weight at most τ . Note that a length-n code over
q-ary symbols with M codewords and minimum Manhattan
distance d is an (n, M, d − 1)q asymmetric-erasure-correcting
code.

Theorem 9: Let C be an (n, M, τ)q asymmetric-erasure-
correcting code. Then there exists an [n, 2; M1, M2] 3©,z

q WOM
code, where M1 = Bq(n, τ) and M2 = M.

Proof: The proof will consist of describing the encoding
and decoding maps of the WOM code. On the first write
M1 messages can be written by simply programming vectors
with Manhattan weight at most τ . Let E,D be the encoding,
decoding map of the code C, respectively. Then, the encoder
of the second write receives a message m ∈ [M2] to be
encoded to the memory and programs the cells by applying
the encoding map E(m) of C. Let c1 and c2 be the memory
cell-state vector after the first, second write, respectively.
We have that c2 = max{c1, E(m)}. The input to the decoder on
the second write is c1 and c2. Let S be the set of the erasures’
locations, i.e., S = {i : c1,i = c2,i > 0}, and e be the erasure
vector. We have the following four observations.

1) E(m) is a codeword in C,
2) c2 ≥ E(m),
3) wM (e) =∑i∈S c2,i =∑i∈S c1,i ≤ wM (c1) ≤ τ ,
4) the set S is known to the decoder.

That is, the cell-state vector c2 is the outcome of an erasure
vector with Manhattan weight at most τ where the erasures
locations are known to the decoder. Since the code C is capable
to correct an erasure vector of Manhattan weight τ , there
exists exactly one codeword c ∈ C which match to c2 on the
indices in [n] \ S and c ≤ c2. Thus, we have that D(c2) = m,
as required. �

The disadvantages of the construction in Theorem 9 are
essentially the same as described in Appendix A for model 4.
Recall that a length-n code over q-ary symbols with M
codewords and Manhattan distance d , is an (n, M, � d−1

2 �)q

asymmetric-error-correcting code, and an (n, M, d − 1)q

asymmetric-erasure-correcting code. Thus, given such a code,
the construction in Theorem 9 for model 3, yields a better
sum-rate than the construction from Theorem 8 for model 4.
Nevertheless, we couldn’t find efficient codes also for this
model, by the same reasons.

HOROVITZ AND YAAKOBI: ON THE CAPACITY OF WRITE-ONCE MEMORIES 5137

ACKNOWLEDGMENT

The authors thank the anonymous reviewer and the asso-
ciate editor Prof. Jun Chen for their valuable comments and
suggestions, which have contributed for the clarity of the paper
and its presentation.

REFERENCES

[1] L. A. Bassalygo, “New upper bounds for error-correcting codes,” (in
Russian), Problemy Peredachi Informacij, vol. 1 no. 4, pp. 41–44, 1965,
(trans: Problems of Information Transmission vol. 1 no. 4, pp. 32–35).

[2] J. M. Borden, “Bounds and constructions for error correcting/detecting
codes on the Z-channel,” in Proc. IEEE Int. Symp. Inf. Theory, Feb. 1981,
pp. 94–95.

[3] D. Burshtein and A. Strugatski, “Polar write once memory codes,”
IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

[4] G. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Sep. 1986.

[5] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–1595,
Apr. 2010.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1st ed.
Hoboken, NJ, USA: Wiley, 1991.

[7] B. K. Dey, S. Jaggi, M. Langberg, and A. D. Sarwate, “Upper bounds
on the capacity of binary channels with causal adversaries,” IEEE Trans.
Inf. Theory, vol. 59, no. 6, pp. 3753–3763, Jun. 2013.

[8] F. W. Fu and A. J. H. Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[9] E. N. Gilbert, “A comparison of signalling alphabets,” Bell Syst. Tech. J.,
vol. 31, no. 3, pp. 504–522, 1952.

[10] R. Gabrys and L. Dolecek, “Constructions of nonbinary WOM codes
for multilevel flash memories,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1905–1919, Apr. 2015.

[11] R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy, and
J. K. Wolf, “Non-binary WOM-codes for multilevel flash memo-
ries,” in Proc. IEEE Inf. Theory Workshop, Paraty, Brazil, Oct. 2011,
pp. 40–44.

[12] C. Helgesen, “Asymmetric error-correcting codes with minimal block
length,” unpublished manuscript, Bergen, 1984.

[13] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[14] M. Horovitz and E. Yaakobi, “WOM codes with uninformed encoder,”
in Proc. IEEE Inf. Theory Workshop, Jerusalem, Israel, Apr./May 2015,
pp. 1–5.

[15] M. Horovitz and E. Yaakobi, “On the capacity of non-binary write-
once memory,” in Proc. IEEE Int. Symp. Inf. Theory, Barcelona, Spain,
Jul. 2016, pp. 945–949.

[16] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch, “New upper
bounds on the rate of a code via the Delsarte-MacWilliams inequalities,”
IEEE Trans. Inf. Theory, vol. 23, no. 2, pp. 157–166, Mar. 1997.

[17] J. H. van Lint, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[18] T. R. N. Rao and A. S. Chawla, “Asymmetric error codes for some
LSI semiconductor memories,” in Proc. Ann. Southeastern Symp. Syst.
Theory, 1975, pp. 170–171.

[19] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,”
Inform. Control., vol. 55, nos. 1–3, pp. 1–19, Oct./Dec. 1982.

[20] E. Sharon and I. Alrod, “Coding scheme for optimizing random I/O
performance,” in Non-Volatile Memories Workshop, San Diego, CA,
USA, Mar. 2013.

[21] A. Shpilka, “Capacity-achieving multiwrite WOM codes,” IEEE Trans.
Inf. Theory, vol. 60, no. 3, pp. 1481–1487, Mar. 2014.

[22] L. G. Tallini, S. Al-Bassam, and B. Bose, “On the capacity and codes
for the Z-channel,” in Proc. IEEE Int. Symp. Inf. Theory, Lausanne,
Switzerland, Jul. 2002, p. 422.

[23] R. R. Varshamov, “Estimate of the number of signals in error correcting
codes,” Doklady Akademii Nauk SSSR, vol. 117, no. 5, pp. 739–741,
1957.

[24] S. Verdu, “Channel capacity,” in The Electrical Engineering Handbook.
Boca Raton, FL, USA: CRC Press, 1997, ch. 73.5, pp. 1671–1678.

[25] L. Wang and Y. H. Kim, “Sum-capacity of multiple-write noisy mem-
ory,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Petersburg, Russia,
Jul./Aug. 2011, pp. 2527–2531.

[26] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for a write-
once memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112,
Aug. 1984.

[27] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

[28] E. Yaakobi and R. Motwani, “Construction of random input-output codes
with moderate block lengths,” IEEE Trans. Commun., vol. 64, no. 5,
pp. 1819–1828, May 2016.

Michal Horovitz was born in Israel in 1987. She received the B.Sc. degree
from the Open University of Israel, Ra’anana, Israel, in 2009, from the
department of Mathematics and from the department of Computer Science.
She is currently a Ph.D. student in the Computer Science Department at the
Technion—Israel Institute of Technology, Haifa, Israel. Her research interests
include coding theory with applications to non-volatile memories, information
theory, and combinatorics.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer Sci-
ence Department at the Technion—Israel Institute of Technology. He received
the B.A. degrees in computer science and mathematics, and the M.Sc. degree
in computer science from the Technion—Israel Institute of Technology, Haifa,
Israel, in 2005 and 2007, respectively, and the Ph.D. degree in electrical
engineering from the University of California, San Diego, in 2011. Between
2011-2013, he was a postdoctoral researcher in the department of Electrical
Engineering at the California Institute of Technology. His research interests
include information and coding theory with applications to nonvolatile mem-
ories, associative memories, data storage and retrieval, and voting theory.
He received the Marconi Society Young Scholar in 2009 and the Intel Ph.D.
Fellowship in 2010-2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

