
2016 IEEE International Symposium on Information Theory

Codes Correcting a Burst of Deletions or Insertions
Clayton Schoenyl, Antonia Wachter-Zeh2, Ryan Gabrys3, Eitan Yaakobi2

IUniversity of California, Los Angeles, CA, USA
2Computer Science Department, Technion-Israel Institute of Technology, Haifa, Israel

3Spawar Systems Center San Diego, CA, USA
emails:esehoeny@ucla.edu.antonia@es.teehnion.ae.il.ryan.gabrys@gmail.eom.yaakobi@es.teehnion.ae.il

Abstract-This paper studies codes that correct bursts of
deletions. Namely, a code will be called a b-burst-correcting code
if it can correct adeletion of any b consecutive bits. While the
lower bound on the redundancy of such codes was shown by
Levenshtein to be asymptotically log(n) + b - 1, the redundancy
of the best code construction by Cheng el al. is b(log(n/b+ 1)).
In this paper we dose on this gap and provide codes with
redundancy at most log(n) + (b - 1) log(log(n)) + b -log(b).

We also extend the burst deletion model to two more cases: 1.
a deletion burst of at most b consecutive bits and 2. adeletion
burst of size at most b (not necessarily consecutive). We extend
our code construction for the first case and study the second case
for b = 3,4. The equivalent models for insertions are also studied
and are shown to be equivalent to correcting the corresponding
burst of deletions.

I. INTRODUCTTON

In communication and storage systems, symbols are often
inserted or deleted due to synchronization errors. These errors
can be caused by a variety of disturbances such as timing
defects or packet-Ioss. Constructing codes that correct inser
tions or deletions is a notoriously challenging problem since
a relatively small number of edits can cause the transmitted
and received sequences to be vastly different in terms of the
Hamming metric.

For disconnected, intermittent, and low-bandwidth envi
ronments, the problem of recovering from symbol inser
tion/deletion errors becomes exacerbated [5]. From the per
spective of the communication systems, these errors manifest
themselves in bursts where the errors tend to cluster together.
Our goal in this work is the study of codes capable of
correcting from bursts of insertion/deletion errors. Such codes
have many applications pertaining to the synchronization of
data in wireless sensor networks and satellite communication
devices [7].

In the 1960s, Varshamov, Tenengolts, and Levenshtein laid
the foundations for codes capable of correcting insertions
and deletions. In 1965, Varshamov and Tenengolts created
a class of codes (now known as VT-codes) that is capable
of correcting asymmetric errors on the Z-channel [14], [13].
Shortly thereafter, Levenshtein proved that these codes can
also be used to correct a single insertion or deletion [9] and
he constructed a c1ass of codes that can correct two adjacent
insertions or deletions [10].

The main goal of this work is to study codes that correct
a burst 01 deletions which refers to the deletion of a fixed
number of consecutive bits. A code will be called a b-burst
deletion-eorreeting code if it can correct any deletion burst of
size b. For example, the codes studied by Levenshtein in [10]
are two-burst-deletion-correcting codes.

Establishing tight upper bounds on the cardinality of burst
deletion-correcting codes is achallenging task since the burst
deletion balls are not all of the same size. In [9], Levenshtein

derived an asymptotic upper bound on the maximal cardi
nality of a b-burst-deletion-correcting code, given by 2n~'+I.
Therefore, the minimum redundancy of such a code should be
approximately log(n) + b - 1.

On the other hand, the best construction of b-burst
correcting codes, that we are aware of, is Construction 1
by Cheng et al. [3]. The redundancy of this construction
is b(log(n/b + 1)) and therefore there is still a significant
gap between the lower bound on the redundancy and the
redundancy of this construction. One of our main results in
this paper is showing how to improve the construction from [3]
and deriving codes whose redundancy is approximately

log(n) + (b - 1) log(1og(n)) + b -log(b), (I)

which is larger than the lower bound on the redundancy by
roughly (b - 1) log(1og(n)).

Our contributions are organized as follows. In Section 11 we
define the common terms used throughout the paper and we
detail the previous results that will be used as a comparison.
In Section III, we construct b-burst-correcting codes with the
redundancy stated in (1). In Sections IV and V, we present
code constructions that correct a deletion burst of size at most
band codes that correct a non-consecutive burst of size at most
three and four, respectively. Due to space restrictions, some
proofs are omitted and can be found in the long version [11].

11. PRELIMTNARIES AND PREVTOUS WORK

A. Notations and Definitions

Let Irq be a finite field of order q, where q is apower of a
prime and let Ir~ denote the set of all vectors (sequences) of
length n over Irq. Throughout this paper, we restrict ourselves
to binary vectors, i.e., q = 2. A subsequenee of a vector x =

(Xl, X2, .•. , x n) is formed by taking a sub set of the symbols
of x and aligning them without changing their order. Hence,
any vector y = (XiI' Xi2 , ... , Xi",) is a subsequence of x if
1 :::; i l < i2 < ... < im :::; n, and in this case we say that
n - m deletions occurred in the vector x and y is the result.

A run of length T of a sequence x is a subvector of x such
that Xi = Xi+l = ... = Xi+r-l, in which Xi-l cF Xi if i > 1,
and if i + T - 1 < n, then Xi+r-l cF Xi+r. We denote by T(X)
the number of runs of a sequence x E Ir~.

We refer to a deletion burst 01 size b when exactly b
consecutive deletions have occurred, i.e., from x, we obtain a
subsequence (Xl,"" Xi, Xi+b+l, ... , X n) E Ir~-b. Similarly,
a deletion burst 01 size at most b results in a subsequence
(XI, ... ,Xi,Xi+a+I,""Xn) E Ir~-a, for some a :::; b.
More generally, a non-eonseeutive deletion burst 01 size
at most b means that within b consecutive symbols of x,
there were a :::; b deletions, i.e., we obtain a subsequence
(Xl,"" Xi, Xi+i" Xi+i2"'" Xi+i,,_o.' Xi+b+l,···, X n) E
Ir~-a, for some a :::; b, where 1 :::; h < i 2 < ... < ib-a :::; b.

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 630

2016 IEEE International Symposium on Information Theory

The b-burst-deletion ball of a vector x E 1F2', is denoted
by Db(X), and is defined to be the set of subsequences of x
of length n - b obtained by the deletion of a burst of size b.
Similarly, D<b(X) is defined to be the set of subsequences of
x obtained trom a deletion burst of size at most b.

A b-burst-deletion-correcting code C is a set of codewords
in 1F2' such that there are no two codewords in C where deletion
bursts of size b result in the same word of length n - b. That
is, for every x, y E C, Db(x) n Db(y) = 0.

Similarly, we will use the following notations for bursts of
insertions, namely: insertions burst of size (at most) b, b-burst
insertion ball, and b-burst-insertion-correcting code. Usually
correcting deletions and insertions is an equivalent task and
indeed this is not an exception in this work, i.e., the following
equivalence holds.

Theorem 1 A code C is a b-burst-deletion-correcting code if
and only if it is a b-burst-insertion-correcting code.

Similar statements hold for consecutive and non-consecutive
deletion bursts of size at most b. Thus, in the remainder of the
paper, whenever we refer to bursts of deletions, all the resuIts
hold equivalently for bursts of insertions as weIl.

Throughout this paper, we let b be a fixed integer which
divides n. For a vector x = (Xl,X2,""Xn), we define the
following b x ~ array:

[~~ ~::~ ~:=::~]
Ab(x) = : .,

Xb X2b ;n
and for 1 ::.; i ::.; b we denote by Ab(x)i the ith row of Ab(x).

For two vectors x, y E 1F2', the Levenshtein distance dL(x, y)
is the minimum number of insertions and deletions that is
necessary to change x into y. Unless stated otherwise, all
logarithms in this paper are taken according to base 2.

B. Previous Work

In this subsection, we recall known resuIts on codes that
correct deletions and insertions. These results will be used
later as a comparison reference for our constructions.

1) Single-deletion-correcting codes: The Varshamov
Tenengolts codes [14] are a family of single-deletion
correcting codes (see also Sloane's survey in [12]).

Definition 1 For 0 ::.; a ::.; n, the Varshamov- Tenengolts (VT)
code VTa(n) is dejined to be the following set:

VTa(n)~{X=(Xl, ... ,Xn): ~iXi=a mod (n+1)}.

The redundancy of the VTo (n) code is at most log(n + 1) (see
[12, Eq. (10)]). For all n, the union of all VT-codes forms a
partition of the space 1F2', that is U~=o VTa (n) = 1F2'.

2) b-burst-deletion-correcting codes: Construction
trom [3] is the set of all codewords c such that each row of
Ab (c) is a codeword of the code VTo (~). A deletion burst of
size b deletes exactly one symbol in each row of Ab (c) which
can then be corrected by the VT-code. The redundancy of this
construction is b (log (~ + 1)). The other two constructions
trom [3] have redundancy at least ~.

3) Correcting a deletion burst of size at most b: To the
best of our knowledge, the only known construction to correct
a burst of size at most b is the one from [1] which has
redundancy at least ~ .

4) Correcting b deletions (not a burst): The construction
trom [2] can correct b deletions at arbitrary positions (not
in a burst) in a vector of length n and has redundancy c .
b2 Iog(b) log(n), for some constant c.

C. An Upper Bound on the Code Size

For large n, Levenshtein [10] derived an asymptotic upper
bound on the maximal cardinality of a binary b-burst-deletion
correcting code C of length n. This bound states that for n
large enough, an upper bound on the cardinality of the code C

2n - b+1
is approximately -n-' and hence its redundancy is at least
roughly log(n) + b - l.

Based on the method by Kulkarni and Kiyavash in [8], we
can derive the following explicit non-asymptotic upper bound.

Theorem 2 Any binary b-burst-deletion correcting code C of
length n satisjies

2n-b+l _ 2b

ICI::.; n - 2b + 1

Notice that for b = 1 our upper bound in Theorem 2 equals
to the upper bound in [8, Theorem 3.1] for single-deletion
correcting codes. Furthermore, for n large enough our upper
bound coincides with the asymptotic bound from [10]. We
conclude that the redundancy of a b-burst-deletion-correcting
code is lower bounded by the following value

log(n - 2b + 1) -log(Tb+ 1 - 2b- n) :::::: log(n) + b - l.

III. b-BuRST-DELETION-CORRECTING CODES

The main goal of this section is to provide a construction of
b-burst-deletion-correcting codes, whose redundancy is better
than the state of the art results we reviewed in Section II-B.
We will first explain the main ideas of the construction and
will then provide the specific details of all components in the
construction.

A deletion burst of size b in x deletes exactly one bit from
each row of the array Ab(x). That is, if a codeword x is
transmitted, then the b x (~ - 1) array representation of the
received vector y has the following structure

Yb+l
Yb+2

Y2b

yn- 2b+ 1]
Yn-2b+2

Yn-b

Each row is received by a single deletion of the corresponding
row in Ab(x) [3], i.e., Ab(y)i E D 1 (Ab(x)i), \11 ::.; i ::.; b.

Since the channel deletes a burst of b bits, the deletions can
span at most two columns of the codeword array. Therefore,
information about the position of a deletion in a single row
provides information about the positions of the deletions in
the remaining rows. However, note that deletion-correcting
codes are not always able to determine the exact position of
the deleted bit. For example, assurne the all-zero codeword
was transmitted and a single deletion of one of the bits has
occurred. Even if the decoder can successfully decode the
received vector, it is not possible to know the position of the
deleted bit since it could be any of the bits.

In order to take advantage of the correlation between the
positions of the deleted bits in different rows and overcome
the difficulty that deletion-correcting codes cannot always
provide the location of the deleted bits, we construct a single
deletion-correcting code with the following special property.

631

2016 IEEE International Symposium on Information Theory

The receiver of this code can correct the single deletion and
determine its location within a certain predetermined range
of consecutive positions. This code will be used to encode
the first row of the codeword array and will provide partial
information on the position of the deletions for the remaining
b - 1 rows. In these rows, we use a different code that will
take advantage of this positional information.

The following is a high-level outline of the proposed code
word array construction:

• The first row in the array is encoded as a VT-code in
which we restriet the longest run of O's or 1 's to be at
most log(2n) .

• Each of the remaining (b - 1) rows is encoded by a
modified version of the VT-code, called a shifted VT
(SVT)-code. This code is able to correct a single deletion
in each row once the position where the deletion occurred
is known to within log (2n) + 1 consecutive positions.

A. Run-length Limited (RLL) VT-Codes

We want to limit the length of the longest run in the first
row of the codeword array. A length-n binary vector is said to
satisfy the (d, k) Run Length Limited (RLL) constraint, denoted
by RLLn(d, k), if between any two consecutive 1 's there are
at least d O's and at most k O's [6]. Since we are concerned
with runs of O's or 1 's, we will state our constraints on the
longest runs of O's and l's. Note that the maximum rate of
codes which satisfy the (d, k) RLL constraint for fixed d and k
is less than 1. To achieve codes with asymptotic rate 1, the
restrietion on the longest run is a function of the length n.

Definition 2 A length-n binary vector x is said to satisfy the
j(n)-RLL(n) constraint, and is called an f(n)-RLL(n) vector,
if the length of each run of O's or J 's in x is at most f(n).

A set of f(n)-RLL(n) vectors is called an f(n)-RLL(n)
code, and the set of all f(n)-RLL(n) vectors is denoted by
Sn(f(n)). The capacity of the f(n)-RLL(n) constraint is

C(f(n)) = lim 10g(ISn(f(n))I),
n---+oo n

and for the case in which the capacity is 1, we define also the
redundancy of the f(n)-RLL(n) constraint to be

r(f(n)) = n -log(ISn(f(n))I)·

Lemma 1 The redundancy of the log(2n)-RLL(n) constraint
is upper bounded by J for all n.

Recall that our goal was to have the vector stored in the
first row be a codeword in a VT-code so it can correct a
single deletion and also limit its longest run. Hence we define
a family of codes which satisfy these two requirements, by
intersecting all VT-codes with the set Sn (f (n)).

Definition 3 Let a, n be two positive integers where 0 .-::: a .-:::
n. The VTa,j(n) (n) code is defined to be the interseetion
between VTa(n) and Sn(f(n)). That is,

VTa,j(n)(n) = {x : xE VTa(n),x E Sn (f(n))} .

Corollary 1 follows from the pigeonhole argument.

Corollary 1 For all n, there exists 0 .-::: a .-::: n such that the
redundancy of VTa,log(2n) (n) is at most log(n + 1) + 1.

B. Shifted VT-Codes

Let us now focus on the remaining (b - 1) rows of our
codeword array. Decoding the first row in the received array
allows the decoder to determine the locations of the deletions
of the remaining rows up to a set of consecutive positions. We
define a new class of codes with this positional knowledge of
deletions in mind.

Definition 4 A P-bounded single-deletion-correcting code is
a code in which the decoder can correct a single deletion
given knowledge of the location of the deleted bit to within P
consecutive positions.

We create a new code, called a shifted VT (SVT)-code,
which is a variant of the VT-code and is able to take advantage
of the positional information as defined in Definition 4.

Construction 1 For 0 .-::: c < P and d E {O, I}, let the shifted
Varshamov-Tenengolts code SVTc,d(n, P) be:

SVTc,d(n, P)~ {x: tiXi == c(mod P), tXi == d(mod 2)}.

Other modifications of the VT-code have previously been
proposed [4]. The next lemma proves the correctness of this
construction and provides a lower bound on the cardinality of
these codes.

Lemma 2 For all 0 .-::: c < P and d E {O, I}, the
SVTc,d(n, P)-code (as defined in Construction 1) is a P
bounded single-deletion-correcting code, and there exist 0 .-:::
c < P and d E {O, I} such that the redundancy of the
SVTc,d(n, P)-code is at most log(P) + 1 bits.

Prao!, In order to prove that the SVTc,d(n, P)-code is a
P-bounded single-deletion-correcting code, it is sufficient to
show that there are no two codewords x, y E SVTc,d(n, P)
that have a common subvector of length n - 1 where the
locations of the deletions are within P positions.

Assume in the contrary that there exist two different code
words x,y E SVTc,d(n,P), where there exist 1 .-::: k,e.-::: n,
where le - kl < P, such that z = X[n]\{k} = Y[nl\{R}' and
assume that k < t Since x, Y E SVTc,d(n, P), we can
summarize these assumptions in the following three properties:

1) L n=1 Xi - L~=1 Yi == O(mod2).
2) L~=1 iXi - L~=1 iYi == O(modP).
3) e - k < P.

According to these assumptions and since x[nl\{k} =

Y [n]\ {R}' it is evident that k is the smallest index for which
Xk ic Yb and e is the largest index for which Xe cF Ye·
Additionally, from the first property x and Y have the same
parity and thus Xk = Ye. Outside of the indices k and e, x and
Y are identical, while inside they are shit'ted by one position:

Xi = Yi for i < k and i > e,
Xi = Yi-l for k <i .-::: e.

We consider two scenarios: Xk = Ye = 0 or Xk = Ye = 1.
First assume that Xk = Ye = 0, and in this case we get that

n n e e e e-l

L iXi - LiYi = L iXi - LiYi = L iXi - LiYi
i=1 i=1 i=k i=k i=k+l i=k

e e-l e-l e-l e-l

= L iYi-l-LiYi=L(i+l)Yi-LiYi=LYi.
i=k+l i=k i=k i=k i=k

632

2016 IEEE International Symposium on Information Theory

t-l 1 '11 The sum Li=k Yi cannot be equal to zero or e se we Wl get
that x = y, and hence

n n t-l

o < L iXi - LiYi = L Yi .-::: ji - k < P,
i=l i=l i=k

in contradiction to the second property.
A similar contraction can be shown for Xk = Yt = 1. Thus,

the three properties cannot all be true, and the SVTc,d(n, P)
code is a P-bounded single-deletion-correcting code. •

There are two major ditlerences between the SVT-codes and
the usual VT-codes. First, the SVT-codes restrict the overall
parity of the codewords. This parity constraint costs an addi
tional redundancy bit, but it allows us to determine whether the
deleted bit was a 0 or a 1. Second, in the VT-code, the weights
assigned to each element in the vector are 1,2, ... ,n; on the
other hand, in the SVT-code, these weights can be interpreted
as repeatedly cycling through 1,2, ... , P - 1,0 (due to the
mod Poperation). Because of these differences, a VT-code
requires roughly log(n + 1) redundancy bits while a SVT-code
requires approximately only 10g(P) + 1 redundancy bits.

e. Code Construction

We are now ready to construct b-burst-deletion-correcting
codes by combining the ideas trom the previous two subsec
tions into a single code.

Construction 2 Let Cl be a VTa ,log(2n/b) (n/b) code for
some 0 .-::: a .-::: n/b and let C2 be a shifted VT-code
SVTc,d(n/b, log(n/b)+2) for 0 .-::: c < n/b+2 and d E {O, I}.
The code C is constructed as follows

C ~ {x: Ab(xh E Cl,Ab(x)i E C2 , for 2'-::: i'-::: b}.

Theorem 3 The code C fram Construction 2 is a b-burst
deletion-correcting code.

Prao!" Assurne x E C is the transmitted vector and y E

D b (x) is the received vector. In the b x (n / b - 1) array Ab (y),
every row is therefore received by a single deletion of the
corresponding row in Ab(x).

Since the first row of Ab(xh belongs to a
VTa ,log(2n/b) (n/b) code, the decoder of this code can
successfully decode and insert the deleted bit in the first
row of Ab(Yh. Furthermore, since every run in Ab(xh
consists of at most log(2n/b) bits, the locations of the deleted
bits in the remaining rows are known within log (n / b) + 2
consecutive positions. Finally, the remaining b - 1 rows
decode their deleted bit since they belong to a shifted
VT-code SVTc,d(n/b, log(n/b) + 2) (Lemma 2). •

To conclude this discussion, the following Corollary sum
marizes the result presented in this section.

Corollary 2 For sufficiently large n, there exists a b-burst
deletion-correcting code whose number of redundancy bits is
at most

log(n) + (b - 1) log(log(n)) + b -log(b).

IV. CORRECTING A BURST OF LENGTH AT MOST b
(CONSECUTIVEL Y)

In this section, we consider the problem of correcting a
burst of consecutive deletions of length at most b. As defined
in Section 11, a code capable of correcting a burst of at most
b consecutive deletions needs to be able to correct any burst

of size a for a .-::: b. The case b = 2 was already solved by
Levenshtein with a construction that corrects a single deletion
or adeletion of two adjacent bits [10]. The redundancy of this
code, denoted by Cdn), is at most 1 +log(n) bits. Hence this
code asymptotically achieves the upper bound for correcting
a burst of exactly 2 deletions. Our strategy for correcting a
burst of length at most b is to construct a code from the
intersection of the code CL (n) with the codes that correct a
burst of length exactly i, for 3 .-::: i .-::: b. We refer to each i
as a level and in each level we will have a set of codes that
form a partition of the space. Thus, our overall code will be
the largest intersection of the codes at each level.

We therefore build upon the codes trom Section III and
leverage them as codes in each level. However, since the codes
trom Section III do not provide a partition of the space we will
have to make one additional modification in their construction
so it will be possible to intersect the codes in each level and
get a code which corrects a burst of size at most b. Recall that
in our code trom Construction 2 we needed the first row in our
codeword array, Ab(xh, to be run-Iength Iimited so that the
remaining rows could effectively use the SVT-code. Similarly,
in order to correct at most b consecutive deletions we want the
first row of each level's codeword array to be an RLL(Nb)

vector, where Nb = 110g(n log(b))l + 1. In other words, Ai(xh
will satisfy the N b-RLL(~) constraint for 3 .-::: i .-::: b. We add
the term universal to signify that an RLL constraint on a vector
refers to the RLL constraint on the first row of each level.

Definition 5 A length-n binary vector x is said to satisfy the
J(n)-URLL(n,b) constraint, and is called an J(n)-URLL(n,b)
vector, if the length of each run of O's or]'s in Ai(xh for
3 .-::: i .-::: b, is not greater than f (n). Additionally, the set of
allf(n)-URLL(n,b) vectors is denoted by Un,b(J(n)).

The redundancy of the f(n)-URLL(n, b) constraint is de
fined as

ru(J(n)) = n -log(IUn,b(J(n))I).

It can be shown that ru(Nb) .-::: log(log(b)). That is, the
following lemma holds.

Lemma 3 The redundancy ofthe Nb-URLL(n,b) con~traint is
upper bounded by log(log(b)) bits:

ru(Nb) = log(log(b)).

In addition to limiting the longest run in the first row of
every level, each vector Ai(xh should be able to correct a
single deletion. We define the following family of codes.

Construction 3 Let n be a positive integer and a
a3, ... ,ab a vector of non-negative integers such that 0 .-:::
ai .-::: n/ifor 3'-::: i .-::: b. The code VTa,j(n)(n) code is defined
as follows:

VTa,j(n)(n) ~ {x : Ai(xh E VTa ; CD ,3'-:::i'-::: b,

xE Un,b(J(n))}.

The next corollary provides an upper bound on the redun
dancy of the codes trom Construction 3.

Corollary 3 For all n, there exists a vector a = (a3,"" ab)
such that the redundancy of the code VTa,Nb (n) is at most
(b - 2) log(n) + log(log(b)) bits.

633

2016 IEEE International Symposium on Information Theory

With the universal RLL-constraint in place, we can use the
SVT-codes defined in Section III for each of the remaining
rows in each level.

Construction 4 Let CL (n) be the code from [J 0], Cl be the
code VTa,N" (n) for so me vector a, and for 3 :::; i :::; biet C2 ,i

be a shifted VT-code SVTc.;,d i (n/i, Nb + 1) for ° :::; Ci :::; n/i
and di E {O, I}. The code C is constructed as follows

C ~ {x: x E Cdn),x E Cl,

Ai(x)j E C2 ,i, 3 :::;i :::; b, 2:::; j :::; i}.

The correctness of the codes from Construction 4 as well
as their redundancy analysis are stated in the next theorem.

Theorem 4 For sufficiently large n, there exists a code which
can correct a consecutive deletion burst of size at most b whose
number of redundancy bits is at most

(b - 1) log(n)+ (C) -1) log(log(n)) + C) + log(log(b)).

V. CORRECTlNG A BURST OF LENGTH AT MOST b
(NON-CONSECUTlVELY)

In this section, we briefly summarize our construction for
correcting a non-consecutive deletion burst of length at most
b for b :::; 4. Note that for b = 1, we can use a VT-code and
for b = 2, we use Levenshtein's construction [10]. We focus
here on the case b = 3.

The construction uses a code which can correct two adjacent
deletions immediately followed by a single insertion. For
shorthand, we refer to this type of error as a (2, l)-burst, such
a code is called a (2,1)-burst-correcting code, and the set
of all (2, l)-bursts of a vector x is denoted by D 2,1(X). For
instance, if the vector x = (0,1,0,0,1,0) is transmitted then
we get

D 2,1(X) = {(O, 0, 0,1,0), (1,0,0,1,0), (0, 1,0,1,0),

(0,1, 1,1,0),(0,1,0, 0,0),(0,1,0,0, 1)}.

Note that D l (x) C;; D 2 ,1 (x) and hence every (2,1)-burst
correcting code is a single-deletion-correcting code as weil.

The following is a construction for (2,1)-burst-correcting
codes.

Construction 5 For three integers n 2 4, a E Z2n-l, and
cE 1"4, the code C2 ,1(n,a,c) is dejined asfollows:

n

C2,1 (n, a, c) ~ {x E IF~ : LXi == c mod 4,
i=l

n

Li. Xi == a mod (2n -1)}.
i=l

We are now ready to present our construction for b = 3.
The idea is it to use an intersection of three codes. The first
one is a single-deletion-correcting code, the second one is a
3-burst-correcting codes, and the third one corrects a burst of
size two. Note that we cannot use the code from Levenshtein
[10] as the third code since the burst of two deletions are
not necessarily adjacent. When correcting these deletions in a
2 x (n/2) array we will get one row with a single deletion and
the other sutlers two adjacent deletions, followed by a single
insertion. These two types of deletions can be corrected by
the (2, 1)-burst-correcting codes.

Construction 6 Let C3 denote the code from Construction 2
for b = 3. For four integers n, al E Zn, a2 E Z2n-l, cE 1"4,
let Cb9(n, al, a2, c) be the following code:

Cb9(n, al, a2, c) ~ {x E IF~ : xE VTal (n),x E C3

n } A2 (xh,A 2 (xh E C2,1(2,a2 ,c) .

Theorem 5 There exists a code by Construction 6 which
can correct a non-conseCLttive burst of size at most 3 with
redundancy at most 410g(n) + 2 log (log(n)) + 6.

Similarly, we provide another construction for the case b =

4 whose redundancy is 710g(n) + 210g(log(n)) + 4. However,
we cannot extend these ideas for b > 4 and it is lett as an
open problem to construct efficient codes for correcting a non
consecutive burst of deletions of size b > 4.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper we studied burst-deletion-correcting codes in
three models. Our main contribution is the construction of b
burst-correcting codes with redundancy at most log(n) + (b-
1) log (log (n)) + b -log(b). We extended this construction also
for codes which correct a consecutive burst of size at most
b, and studied codes which correct a burst of size at most
b (not necessarily consecutive) for the cases b = 3,4. While
the results in the paper provide a significant contribution in the
area of codes for insertions and deletions, there are still several
interesting problems which are lett open. This includes the
construction of better codes, especially for the case of a non
consecutive deletion burst of size at most band the derivation
of tighter upper bounds for (consecutive and non-consecutive)
bursts of size at most b.

REFERENCES

[I] P. A. Bours, "Codes for correcting insertions and deletion errors," PhD
thesis, Eindhoven University of Technology, Jun. 1994.

[2] J. Brakensiek, Y. Guruswami, and S. Zbarsky, "Efficient low-redundancy
codes for correcting multiple deletions," CoRR, vol. abs/1507.06175,
2015. [Onlinel Available: http://arxiv.org/abs/1507.06175

[3] L. Cheng, T. G. Swart, H. C. Ferreira, and K. A. S. Abdel-Ghaffar,
"Codes for correcting three or more adjacent deletions or insertions," in
Proc. IEEE Int. Symp. In[. Theory (ISIT), Jun. 2014, pp. 1246-1250.

[4] D. Cullina, A. A. Kulkarni, and N. Kiyavash, "A coloring approach to
constructing deletion correcting codes from constant weight subgraphs,"
in Prac. IEEE Int. Symp. In! Theory (ISIT), Jul. 2012, pp. 513-517.

[5] F. Dandashi, A. Griggs, J. Higginson, J. Hughes, W. Narvaez, M. Sab-
bouh, S. Semy, and B. Yost, "Tactical edge characterization framewark,"
MIT RE Technical Report MTR070331, 2007.

[6] K. Immink, Coding techniques for digital recorders. Prentice Hall,
College Div., 1991.

[7] J. Jeong and C. T. Ee, "Forward error correction in sensor networks,"
University of Calijornia at Berkeley, 2003.

[8] A. A. Kulkarni and N. Kiyavash, "Nonasymptotic Upper Bounds far
Deletion Correcting Codes," IEEE Trans. In! Theory, vol. 59, no. 8, pp.
5115-5130, Aug. 2013.

[9] Y. Levenshtein, "Binary codes capable of correcting deletions, insertions
and reversals (in russian)," Doklady Akademii Nauk SSR, vol. 163, no. 4,
pp. 845-848, 1965.

[10] --, "Asymptotically optimum binary code with correction for losses
of one or two adjacent bits," Systems Theory Research (translated fram
Prablemy Kibernetiki), vol. 19, pp. 293-298, 1967.

[11] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, "Codes far
correcting a burst of deletions ar insertions," CoRR, vol. abs/1602.06820,
2016. [Onlinel Available: http://arxiv.org/abs/1602.06820

[12] N. J. A. Sloane, "On single-deletion-correcting codes," in Prac. Codes
and Designs, 2001, pp. 273-291.

[13] G. Tenengolts, "Nonbinary codes, correcting single deletion or insertion
(corresp.)," Information Theory, IEEE Transactions on, vol. 30, no. 5,
pp. 766-769, 1984.

[14] R. R. Varshamov and G. M. Tenengolts, "Codes which carrect single
asymmetrie errars (in russian)," Automatika i Telemkhanika, vol. 161,
no. 3, pp. 288-292, 1965.

634

