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Abstract—This paper studies bounds and constructions of
locally repairable codes (LRCs) with multiple localities so-called
multiple-locality LRCs (ML-LRCs). In the simplest case of two
localities some code symbols of an ML-LRC have a certain
locality while the remaining code symbols have another one.

We extend two bounds, the Singleton and the alphabet-
dependent upper bound on the dimension of Cadambe–
Mazumdar for LRCs, to the case of ML-LRCs with more than
two localities. Furthermore, we construct Singleton-optimal ML-
LRCs codes.

I. INTRODUCTION

Locally repairable codes (LRCs) can recover data from
erasure(s) by accessing a small number r of erasure-free
code symbols and therefore increase the efficiency of the
repair-process in large-scale distributed storage systems. For a
classical LRC, all n code symbols depend on at most r other
symbols. Basic properties and bounds of LRCs were identified
by Gopalan et al. [2], Oggier and Datta [9] and Papailiopoulos
and Dimakis [10]. The majority of the constructions of LRCs
requires a large field size (see, e.g., [4, 15, 12]). Tamo and Barg
gave a family of optimal LRCs for which the required field
size is slightly larger than the code length in [14]. Cadambe
and Mazumdar [1] gave an upper bound on the dimension of
an r-local code which takes the field size into account. LRCs
with small alphabet size were constructed in [3, 5, 16, 13].

We generalize the Singleton bound of Gopalan et al. [2]
as well as the alphabet-dependent Cadambe–Mazumdar
bound [1] to so-called multiple-locality LRCs (ML-LRCs),
i.e., LRCs where the locality among the code symbols can
be different. There exist several practical scenarios, where
different localities are relevant, e.g., a distributed storage
system, where a part of the stored data is accessed more
frequently and therefore requires a smaller locality. We show
that shortening a given Singleton-optimal LRC (i.e., an LRC
that achieves the corresponding bound with equality and where
all n symbols have the same locality), a Singleton-optimal
ML-LRC is obtained. For the case of two localities, we give
an explicit algorithm that returns a parity-check matrix of an
optimal linear code.

This paper is structured as follows. In Section II, we intro-
duce notation and recall the existing Singleton and alphabet-
dependent bound of Cadambe–Mazumdar for LRCs (Thm. 2
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and Thm. 3). Section III provides the definition of ML-LRCs
and the Singleton bound for the case of s = 2 different
localities (Thm. 6). Thm. 8 is the Singleton bound for the
general case of linear ML-LRCs with s ≥ 2 different localities.
An explicit construction (Algorithm 1) of a Singleton-optimal
ML-LRC with two different localities is proven in Thm. 13.
Similar to Section III, we start the description of the extended
alphabet-dependent bound (for non-linear) LRCs in Thm. 18
in Section IV for two different localities. Our proof requires
linearity, but it is straightforward to extend the proof-idea to
the non-linear case similar to the graph approach as in Tamo–
Barg [14, Proof of Thm. A.1]. We conclude the paper in
Section V.

II. PRELIMINARIES

For two integers a, b with a < b, let [a, b] denote the set of
integers {a, a+1, . . . , b} and let [b] be the shorthand notation
for [1, b]. Let Fq denote the finite field of order q, where q is
a prime power. A linear [n, k, d]q code of length n, dimension
k and minimum Hamming distance d over Fq is denoted by
a calligraphic letter like C. The parameters of a non-linear
code C of length n, over an alphabet of size q with dimension
k = log |C|/ log q are identified by (n, k, d)q . For a set I ⊆ [n]
and a matrix G ∈ Fk×nq , let GI denote the submatrix of G
that consists of the columns indexed by I. Denote by In the
n× n identity matrix.

Definition 1 (Locally Repairable Code (LRC)). A linear
[n, k, d]q code C is r-local if for every i ∈ [n] there exists
a subset Ri ⊂ [n] \ {i}, |Ri| ≤ r such that for every
codeword (c1 c2 . . . cn) ∈ C, ci =

∑
j∈Ri λi,jcj , where

λi,j ∈ Fq,∀j ∈ Ri.

The following generalization of the Singleton bound for
LRCs was among others proven in [6, Thm. 3.1], [14, Con-
struction 8 and Thm. 5.4] and [11, Thm. 2].

Theorem 2 (Generalized Singleton Bound). The minimum
Hamming distance d of an [n, k, d]q r-local code C is bounded
from above by d ≤ n− k + 2− dk/re.

Throughout this paper we call an r-local code Singleton-
optimal if its minimum Hamming distance achieves the bound
in Thm. 2 with equality. For r ≥ k Thm. 2 coincides with
the classical (locality-unaware) Singleton bound and then a
Singleton-optimal code is called maximum distance separable
(MDS). In addition to the generalization of the bound in
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Thm. 2, we extend the bound on the dimension of an LRC
given by Cadambe and Mazumdar [1, Thm. 1], which takes
the alphabet into account.

Theorem 3 (Cadambe–Mazumdar Bound). The dimension k
of an r-local code C of length n and minimum Hamming
distance d as in Definition 1 is upper bounded by

k ≤ min
t∈[t?]

kt, (1)

where kt
def
= tr + k

(q)
opt (n − t(r + 1), d) and k

(q)
opt(n, d) is the

largest possible dimension of a code of length n, for a given
alphabet size q and a given minimum Hamming distance d
and t? = min (dn/(r + 1)e , dk/re).

An r-local code is called alphabet-optimal if its dimension
meets the bound in Thm. 3 with equality.

III. MULTIPLE-LOCALITY LRCS

In this section we first define ML-LRCs with two localities
and provide a Singleton-like bound. We generalize the defi-
nition to ML-LRCs with more than two localities and extend
the bound. For a linear code of length n, we consider in a
first step the case where all code symbols in T1 ⊂ [n] have
locality r1 and the remaining code symbols in T2 = [n] \ T1
have locality r2.

Definition 4 (ML-LRC with Two Localities). Let T1 ⊂ [n]
and T2 = [n] \ T1 be two distinct sets with |Ti| = ni, for
i = 1, 2. Let two integers r1, r2 with r1 < r2 be given. A linear
[n, k, d]q code is ((n1, r1), (n2, r2))-local if for every ι ∈ Ti
there exists a subset R〈i〉ι ⊂ Ti \ {ι}, |R〈i〉ι | ≤ ri such that
for every codeword (c1 c2 . . . cn) ∈ C, cι =

∑
j∈R〈i〉

ι
λ
〈i〉
ι,jcj ,

where λ〈i〉ι,j ∈ Fq,∀j ∈ R〈i〉ι , i = 1, 2.

Note, that a code symbol belongs to T1 if it is a lin-
ear combination of at most r1 other symbols. Clearly, an
((n1, r1), (n2, r2))-local code is also an r2-local code and an
r1-local code is an ((n1, r1), (n2, r2))-local code as well.

A. Singleton Bound

The following lemma is needed to prove the Singleton-
like bound on the minimum Hamming distance of an
((n1, r1), (n2, r2))-local code.

Lemma 5 (Rank of Generator Matrix). Let I ⊆ [n]. All k×|I|
submatrices GI of a generator matrix G of an [n, k, d]q code
C of rank smaller than k must have at most n− d columns.

Proof. W.l.o.g. we assume I = [|I|] and let t = rankGI .
Clearly, |I| ≥ t. The generator matrix can be transformed to
the following form:

G =

(
It A1 A2

0 A3

)
,

where A1 ∈ Ft×(|I|−t)q , A2 ∈ Ft×(n−|I|)q , and A3 ∈
F(k−t)×(n−|I|)
q . The (t+1)th row of G (first |I| positions are

zero) has Hamming weight at least d (because it is a codeword
of C) and therefore |I| ≤ n− d.

Theorem 6 (Singleton Bound for ML-LRCs with Two Lo-
calities). Let the parameters as in Definition 4 be given and
assume that r1dn1/(r1 + 1)e < k − 1. Then, the minimum
Hamming distance of an [n, k, d]q ((n1, r1), (n2, r2))-local
code C is upper bounded by

d ≤ n− k + 2−
⌈

n1
r1 + 1

⌉
−


k − r1

⌈
n1

r1+1

⌉
r2

 . (2)

Proof. The proof follows the idea of the proof of the Singleton
bound of an r-local code as in [7]. Let G be a k×n generator
matrix of C.
1) Choose κ1

def
= dn1/(r1 + 1)e columns of G indexed by

j
〈1〉
1 , j

〈1〉
2 , . . . , j

〈1〉
κ1 , where j

〈1〉
i ∈ T1. Each column is a

linear combination of at most r1 other columns.
2) Let I〈1〉 be the set of indexes of all repair columns of the

columns indexed by j〈1〉1 , . . . , j
〈1〉
κ1 , but without the indexes

themselves. We have |I〈1〉| ≤ r1 · κ1 < k − 1.
3) Choose

κ2
def
=

k − 1− r1
⌈

n1

r1+1

⌉
r2


columns of G indexed by j〈2〉1 , j

〈2〉
2 , . . . , j

〈2〉
κ2 , where j〈2〉i ∈

T2. Now, each of these columns is a linear combination
of at most r2 other columns. Let I〈2〉 be the set of
indexes of all repair columns of the columns indexed by
j
〈2〉
1 , j

〈2〉
2 , . . . , j

〈2〉
κ2 , but without the indexes themselves.

4) Let I def
= I〈1〉 ∪ I〈2〉. Then |I| < k and we have

rank(GI) < k.
5) Enlarge I to a set I ′, such that rank(GI′) = k − 1, but

without using
{
j
〈i〉
1 , j

〈i〉
2 , . . . , j

〈i〉
κi

}
i=1,2

.

6) Then, define

U def
=
{
I ′ ∪

{
j
〈1〉
1 , j

〈1〉
2 , . . . , j〈1〉κ1

, j
〈2〉
1 , j

〈2〉
2 , . . . , j〈2〉κ2

}}
,

where |U| ≥ k−1+κ1+κ2. We have rank(GU ) ≤ k−1.
Using Lemma 5, we know that |U| can be upper bounded by
k−1+κ1+κ2 ≤ n−d and therefore we obtain the following
bound on the minimum Hamming distance:

d ≤ n− k + 1−
⌈

n1
r1 + 1

⌉
−

k − 1− r1
⌈

n1

r1+1

⌉
r2


= n− k + 2−

⌈
n1

r1 + 1

⌉
−


k − r1

⌈
n1

r1+1

⌉
r2

 .
In case r1dn1/(r1 + 1)e ≥ k − 1, set κ1 = b(k − 1)/r1c

in Step 1) and κ2 = 0 in Step 2). Then, we will obtain the
Singleton bound of an r1-local code. For r1 = r2 = r, we
obtain from (2) the Singleton bound of an r-local LRC as in
Thm. 2.

We extend Definition 4 to ML-LRCs with s ≥ 2 localities
and generalize the Singleton-like bound on the minimum
Hamming distance from Thm. 6.
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Definition 7 (ML-LRC). Let s integers r1, r2, . . . , rs with
r1 < r2 < · · · < rs be given. Denote by Ti ⊂ [n] for all
i ∈ [s] pairwise disjoint sets, where ∪i∈[s]Ti = [n]. A linear
[n, k, d]q code is ((n1, r1), (n2, r2), . . . , (ns, rs))-local if for
every ι ∈ Ti there exist a subset R〈i〉ι ⊂ Ti \ {ι} such that
for every codeword (c1 c2 . . . cn) ∈ C, cι =

∑
j∈R〈i〉

ι
λ
〈i〉
ι,jcj ,

where λ〈i〉ι,j ∈ Fq,∀j ∈ R〈i〉ι , i ∈ [s].

Now, we give a Singleton-like bound for an
((n1, r1), (n2, r2), . . . , (ns, rs))-local code as in Definition 7.

Theorem 8 (Singleton Bound for ML-LRCs). Let C be
an [n, k, d]q ((n1, r1), (n2, r2), . . . , (ns, rs))-local code as in
Definition 7 and assume that

∑
i∈[s−1] ridni/(ri+1)e < k−1.

Then, the minimum Hamming distance of C is upper bounded
by

d ≤ n−k + 2−
∑
i∈[s−1]

⌈
ni

ri + 1

⌉
−


k−

∑
i∈[s−1]

ri

⌈
ni
ri+1

⌉
rs

 . (3)

In case
∑
i∈[j] ridni/(ri + 1)e ≥ k−1,

the bound becomes the bound for an
((n1, r1), (n2, r2), . . . , (

∑
i∈[j,s] ni, rj))-local code.

Clearly, an ((n1, r1), (n2, r2), . . . , (
∑
i∈[j,s] ni, rj))-local

code is also an ((n1, r1), (n2, r2), . . . , (ns, rs))-local
code, because r1 < · · · < rj < · · · < rs. We call
an ((n1, r1), (n2, r2), . . . , (ns, rs))-local ML-LRC with
minimum Hamming distance that fulfills (3) with equality
Singleton-optimal.

B. Shortening and Constructions

In this subsection, we first show that an ((n1, r1), (n2, r2))-
local Singleton-optimal ML-LRC can be obtained through
shortening an r2-local Singleton-optimal LRC. Then, we an-
alyze the shortening of an ((n1, r1), (n2, r2), . . . , (ns, rs))-
local Singleton-optimal ML-LRC. We give an explicit con-
struction of an ((n1, r1), (n2, r2))-local Singleton-optimal
code for the ease of notation. The construction can be easily
extended to s ≥ 2 localities.

We consider the case of shortening the ith information
symbol (see, e.g., [8, Ch. 18 §9]).

Definition 9 (Shortening). Let C be an [n, k, d]q code with
generator matrix in systematic form, i.e., G = (Ik A). A
parity-check matrix is then H = (−AT In−k). The shortened
code is defined as

C〈i〉 def
= {(c1 . . . ci−1ci+1 . . . cn) : (c1 . . . ci−10ci+1 . . . cn) ∈ C}.

For i ∈ [k], the generator matrix of C〈i〉 is obtained through
deleting the ith column of Ik (and the corresponding ith row)
of G. A parity-check of C〈i〉 is obtained by deleting the ith
column in AT of H. The shortened code is an [n−1, k−1,≥
d]q code.

Throughout this paper we refer to shortening to the case
where i ∈ [k]. Clearly, if C is MDS, then the shortened code

C〈i〉 is also MDS. The following lemma shows that this holds
similarly for an r-local Singleton-optimal LRC.

Lemma 10 (Shortening an r-local LRC). Let an [n, k, d]q
r-local Singleton-optimal LRC be given. Then, the shortened
[n − 1, k − 1, d]q code is an ((r, r − 1), (n − 1 − r,r))-local
code is Singleton-optimal.

Example 11 (Shortened Singleton-optimal LRC). We shorten
the [12, 6, 6]13 3-local Singleton-optimal code of Exam-
ple 2 in [14] by one position. We obtain an [11, 5, 6]13
((3, 2), (8, 3))-local code and Thm. 6 gives d ≤ 11 − 5 +
2− d3/(2 + 1)e − d(5− 2)/3e = 6.

Lemma 12 (Shortening an ML-LRC). Let C be an [n, k, d]q
((n1, r1), (n2, r2), . . . , (ns, rs))-local Singleton-optimal code.
Let T1, T2, . . . , Ts denote the locality sets and let α ∈ [s].
Shortening C by a coordinate that is contained in Tα gives
if rα−1 = rα − 1 an [n′ = n − 1, k′ = k − 1, d]q
((n′1, r

′
1), (n

′
2, r
′
2), . . . , (n

′
s, r
′
s))-local code C′ with

(n′i, r
′
i) = (ni, ri), ∀i ∈ [s] \ {α− 1, α},

(n′α−1, r
′
α−1) = (nα−1 + rα, rα−1),

(n′α, r
′
α) = (nα − rα − 1, rα),

(4)

else (i.e., rα−1 6= rα−1) shortening gives an [n′ = n−1, k′ =
k − 1, d]q ((n′1, r

′
1), (n

′
2, r
′
2), . . . , (n

′
ι, r
′
ι), . . . , (n

′
s, r
′
s))-local

code C′ with

(n′i, r
′
i) = (ni, ri), ∀i ∈ [s] \ {α},

(n′ι, r
′
ι) = (rα, rα − 1),

(n′α, r
′
α) = (nα − rα − 1, rα).

(5)

Then, the shortened [n′ = n − 1, k′ = k −
1, d]q ((n′1, r

′
1), (n

′
2, r
′
2), . . . , (n

′
s, r
′
s))-local respectively the

((n′1, r
′
1), (n

′
2, r
′
2), . . . , (n

′
ι, r
′
ι), . . . , (n

′
s, r
′
s))-local ML-LRC is

Singleton-optimal.

Algo 1: Singleton-optimal ML-LRC with r2 > r1.

Input:
Parity-check matrix H of an
[n2 + (r2 + 1) n1

r1+1 , k + (r2 − r1) n1

r1+1 , d]q r2-local
Singleton-optimal code with ρ = n2

r2+1 + n1

r1+1 repair sets
R1,R2, . . . ,Rρ.

1 for i ∈ [ n1

r1+1 ] do
2 Delete r2 − r1 columns of H that are contained in

Ri.

Output: Parity-check matrix H of an [n1 + n2, k, d]q
((n1, r1), (n2, r2))-local code.

Algorithm 1 provides a parity-check matrix of a Singleton-
optimal [n1 + n2, k, d]q ((n1, r1), (n2, r2))-local code. We
assume that (r1 + 1) | n1, (r2 + 1) | n2, and that an r2-local
Singleton-optimal code is given.
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Theorem 13 (Singleton-optimal ML-LRC). Algorithm 1 re-
turns a parity-check matrix of a Singleton-optimal [n1 +
n2, k, d]q ((n1, r1), (n2, r2))-local code that covers the pos-
sible rate-regime.

Proof. The minimum Hamming distance of the given
[n′, k′, d′]q r2-local Singleton-optimal LRC, where

n′ = n2 + (r2 + 1)
n1

r1 + 1
, (6)

k′ = k + (r2 − r1)
n1

r1 + 1
, (7)

equals

d′ = n′ − k′ + 2−
⌈
k′

r2

⌉
. (8)

Inserting the expression of the length and the dimension as
in (6) respectively (7) into (8) leads to:

d′ ≤ n2 + (r2 + 1)
n1

r1 + 1
− k − (r2 − r1)

n1
r1 + 1

+ 2

−

⌈
k + (r2 − r1) n1

r1+1

r2

⌉

= n1 + n2 − k + 2− n1
r1 + 1

−
⌈
k − r1 n1

r1+1

r2

⌉
, (9)

which is the minimum Hamming distance of an [n1+n2, k, d]q
((n1, r1), (n2, r2))-local code that is optimal with respect to
the bound given in Thm. 6.

To prove the achievable rate-regime, we recall that the
original r2-local LRC has to satisfy:

k′ ≤ r2
r2 + 1

n′, (10)

and inserting the expressions of (6) and (7) in (10) gives

k + (r2 − r1)
n1

r1 + 1
≤ r2
r2 + 1

n2 + (r2 + 1)
n1

r1 + 1

⇔ k ≤ r1
r1 + 1

n1 +
r2

r2 + 1
n2,

which is clearly the rate-restriction for an ((n1, r1), (n2, r2))-
local code.

IV. ALPHABET-DEPENDENT BOUND FOR ML-LRCS

A. Bound and Shortening

For a given (n, k, d)q code C and a subset I ⊆ [n] define
as in [1]

H(I) def
=

log |{xI : x ∈ C}|
log q

. (11)

The bound given in Thm. 3 follows from the following two
lemmas.

Lemma 14 ([1, Lemma 1]). For a given (n, k, d)q r-local code
C, an integer t ∈ [dk/re], a set I ⊆ [n] with |I| = t(r + 1)
and H(I) ≤ tr as defined in (11) exists (and is constructed
explicitly).

Lemma 15 ([1, Lemma 2]). For an (n, k, d)q code C with
I ⊆ [n] and H(I) ≤ m an (n− |I|, k −m, d)q code exists.

In the following lemma, we refine Lemma 14 slightly and
generalize it to an ((n1, r1), (n2, r2), . . . , (ns, rs))-local ML-
LRC.

Lemma 16. Let Ti with |Ti| = ni for all i ∈ [s] be the locality
sets of a given (n, k, d)q ((n1, r1), (n2, r2), . . . , (ns, rs))-local
code C as in Definition 7. Then, there exist s sets Ii ⊆ Ti for
all i ∈ [s] with

|Ii| =

{
ti(ri + 1) for ti ≤ ni/(ri + 1), if (ri + 1) | ni
ni for ti ≤ dni/(ri + 1)e, if (ri + 1) - ni,

and H(Ii) ≤ tiri (for both cases) and for all i ∈ [s].

Proof. Similar to [1, Proof of Lemma 1], we construct
the set Ii explicitly. Let R〈j〉i denote the repair set of the
j-th coordinate that belongs to Ti. Clearly |R〈j〉i | ≤ ri.
Algorithm 2 constructs the set Ii.

Algo 2: Construction of Ii ⊆ Ti.

Input: Set Ti with |Ti| = ni and locality ri.
Input: Integer ti ∈ [dni/(ri + 1)e].

1 Select a0 arbitrarily from Ti.
2 S〈0〉 ← ∅.
3 for m ∈ [ti − 1] do
4 Select am in Ti \

(⋃m−1
l=0 {am ∪R

〈al〉
i ∪ S〈l〉

)
.

5 I〈m〉i ←
⋃m−1
l=0 {al} ∪ R

〈al〉
i ∪ S〈l〉.

6 Select S〈m〉 ⊆ Ti \
(
{am} ∪ R〈am〉i ∪ I〈m〉i

)
with

7 |S〈m〉| = min((m+1)(ri+1), ni)−|{am}∪R〈am〉i ∪I〈m〉i |

8 Ii ←
⋃ti−1
m=0{am} ∪ R

〈am〉
i ∪ S〈m〉.

Output: Return the set Ii.

Algorithm 2 differs from the algorithm used in [1, Proof
of Lemma 1] only in Line 7, which ensures that the con-
structed set cannot have a cardinality greater than ni. In the
proof of [1, Lemma 1], it is shown that H(Ii) = H(Ii \
{a0, a1, . . . , ati−1}). Clearly, for:
Case a): If ti ≤ bni/(ri + 1)c, then |Ii| = ti(ri + 1) and
H(Ii) ≤ tiri.
Case b): If ti = dni/(ri+1)e and (ri+1) - ni, then |Ii| = ni
and

H(Ii) ≤ ni − dni/(ri + 1)e =
⌈
rini
ri + 1

⌉
. (12)

The distinction between Cases a) and b) in Lemma 16
is not relevant for the bound of an r-local code, but be-
comes necessary if we want to bound the dimension of an
((n1, r1), (n2, r2), . . . , (ns, rs))-local ML-LRC.

Lemma 17. For an (n, k, d)q code C with s pairwise disjoint
sets Ii ⊆ [n] with H(Ii) ≤ mi for all i ∈ [s], there exists an
(n−

∑
i∈[s] |Ii|, k −

∑
i∈[s]mi, d) code.
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Proof. Apply Lemma 15 consecutively s times and the state-
ment follows.

From Lemma 16 and Lemma 17 the following theorem
follows.

Theorem 18 (Alphabet-Dependent Bound for ML-LRCs
with Two Different Localities). Let C be an (n, k, d)q
((n1, r1), (n2, r2))-local code. Define

kt1,t2
def
= t1r1+t2r2+

k
(q)
opt (n−min(n1, t1(r1+1))−min(n2, t2(r2+1)), d) .

(13)

The dimension of C is bounded from above by

k ≤ min
t1∈[t?1 ],
t2∈[t?2 ]

kt1,t2 , (14)

where

t?1
def
=

⌈
n1

r1 + 1

⌉
, (15)

t?2
def
=

⌊
k − 1− t1r1

r2

⌋
, ∀t1 ∈ [t?1]. (16)

Proof. The expressions as in (13) and (14) follow from
Lemma 16 and Lemma 17 for s = 2.

The value of t1 can be bounded by min(dn1/(r1+1)e, b(k−
1)/r1c) similar as in the case of an r-local LRC. We assume
that r1dn1/(r1+1)e < k−1 The maximal value for t2 follows
from the fact that for t2 > t∗2 the expression in (14) is at least
k. Clearly, t2 ≤ dn2/(r2 + 1)e. It is well-known that the rate
of an r-local code is at most r/(r+1) and due to the fact that
an ((n1, r1), (n2, r2))-local code is also an r2-local code, we
have

⌊
k−1−r1t1

r2

⌋
≤
⌈

n2

r2+1

⌉
and therefore the maximal t?2 as

in (16) follows.

The following theorem generalizes Thm. 18 to the case of
s > 2 different localities.

Theorem 19 (Alphabet-Dependent Bound for ML-LRCs). Let
C be an (n, k, d)q ((n1, r1), (n2, r2), . . . , (ns, rs))-local code
as in Definition 7. Furthermore, assume

∑
i∈[s] ridni/(ri +

1)e < k − 1. Define

t?i
def
=

⌈
ni

ri + 1

⌉
, ∀i ∈ [s− 1], (17)

t?s
def
=

k − 1−
∑

i∈[s−1]
tiri

rs

 , ∀ti ∈ [t?i ], (18)

and let

kt1,...,ts
def
=
∑
i∈[s]

tiri+k
(q)
opt

n−∑
i∈[s]

min(ni, ti(ri + 1)), d

 .

(19)

Then the dimension of C is upper bounded by

k ≤ min
ti∈[t?i ]
∀i∈[s]

kt1,...,ts . (20)

If there exist s parameters ti ∈ [t?i ],∀i ∈ [s] such that the
dimension k of an [n, k, d]q ((n1, r1), (n2, r2), . . . , (ns, rs))-
local ML-LRC equals kt1,t2,...,ts as in (19), then we call the
ML-LRC alphabet-optimal.

V. CONCLUSION

We introduced the class of multiple-locality LRCs. The
Singleton-like upper bound on the minimum Hamming
distance and the alphabet-dependent bound of Cadambe–
Mazumdar on the dimension of an LRC were generalized to
the case of ML-LRCs. Future work are (direct) constructions
of ML-LRC without shortening and the adaption of existing
bounds and constructions for LRC where the parameter for
every code symbol is also variable (e.g., availability). Proofs
can be found in an extended version of the paper on arxiv
http://arxiv.org/abs/1601.02763.

The authors thank I. Tamo for fruitful discussions (espe-
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