
Constructions of Batch Codes
with Near-Optimal Redundancy

Alexander Vardy∗† and Eitan Yaakobi‡
∗Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

†School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
‡Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

avardy@ucsd.edu, yaakobi@cs.technion.ac.il

Abstract—Batch codes, first studied by Ishai et al., are a cod-
ing scheme to encode n information bits into m buckets, in a way
that every batch request of k bits can be decoded while at most
one bit is read from each bucket. In this work we study the class
of multiset primitive batch codes, in which every bucket stores a
single bit and bits can be requested multiple times. We simply
refer to these codes as batch codes. The main problem under this
paradigm is to optimize the number of encoded bits, which is the
number of buckets, for given n and k, and we denote this value by
B(n, k). Since there are several asymptotically optimal construc-
tions of these codes, we are motivated to evaluate their optimality
by their redundancy. Thus we define the optimal redundancy of
batch codes to be rB(n, k) , B(n, k)− n. Our main result in this
paper claims that for any fixed k, rB(n, k) = O(

√
n log(n)).

I. INTRODUCTION

A batch code encodes n information bits into m buckets,
such that every batch of k bits can be decoded by reading at
most one (and more generally t) bits from each bucket. This
class of codes was first introduced by Ishai et al. in the pre-
vious decade [8]. There are several families of batch codes
which are classified according to several properties: whether
the bits can be encoded, the number of bits each bucket stores,
and lastly whether the batch of k bits may contain several re-
quests of the same bit. In combinatorial batch codes, the bits
stored in the buckets are simply copies of the information bits
(i.e., not coded). Since the first work of [8], this class of batch
codes was mostly studied; see e.g. [1]–[3], [17]. On the other
hand, computational batch codes, which is the class of codes
studied in this paper, allow to encode the bits stored in the
buckets. There is only a limited number of constructions of
computational batch codes and the current works which we are
aware of are [8], [10], [16], [19]. Recently, bounds on these
codes were presented in [23]. A batch code in which every
bucket contains a single bit is called a primitive batch code
and if the k bits may contain multiple requests of the same
bit, then it is called a multiset batch code. In this work we re-
fer to batch codes as computational primitive multiset batch
codes. These codes will be denoted by (m, n, k)B batch codes,
where n is the number of information bits, k is the batch size,
and m is the number of buckets (or encoded bits since every
bucket stores a single bit). The main goal of this paper is to
study constructions of batch codes.

Batch codes were originally motivated by different applica-
tions such as load-balancing in storage and cryptographic pro-
tocols [8]. Hence they have received renewed interest recently
due to their applicability to codes for distributed storage. Lo-
cally repairable codes (LRCs) are a class of codes in which
a failure of a single node can be recovered by accessing at

most some r other nodes [6], [13], [18]. In addition to symbol
locality, another important property of codes is their symbol
availability, which is defined to be the number of mutually dis-
joint recovering sets for every symbol [12], [15], [21]. High
availability is a particularly attractive property for so-called
hot data in a distributed storage system.

Another family of these codes imposes only the availabil-
ity but not the locality constraint, and hence it is required that
every symbol has some t recovering sets while their size is
not constrained. It was recently observed in [7] that the this
class of codes was already studied a while ago by Massey [11]
and later by Lin and others [9] for applications of fast decod-
ing, and were called one-step majority-logic decodable codes.
Under this setup every symbol is required to have several mu-
tually disjoint recovering sets, and it is decoded according
to the majority of the values given by all of its recovering
sets. Another application of codes with availability was also
brought in [5] for private information retrieval (PIR) proto-
cols [4], [22], where a similar family of codes was studied,
called k-server PIR codes, in which n bits are encoded to m
bits such that every information bit has k mutually disjoint re-
covering sets. In this work, we refer to this class of codes as
PIR codes. Batch codes can be seen as a generalization of PIR
codes. Instead of requiring that every bit has k mutually dis-
joint recovering sets, this property holds for every multiset of
k bits. Thus, every batch code is in particular a PIR code with
the same parameters. Lastly, we note that a special class of
batch codes, called switch codes, in which k = n was studied
in [19], [20].

The main goal in constructing batch codes is to minimize
the value of m, given n and k. For example, for k = 1, the min-
imum value of m is n, and for k = 2, its value is n + 1, since
the simple parity is a (n + 1, n, 2)B batch code. For given n
and k, we denote by B(n, k) to be the smallest value of m such
that there exists an (m, n, k)B batch code. Hence, B(n, 1) = n
and B(n, 2) = n + 1. In particular, we will be interested in
studying the asymptotic behavior of B(n, k) when k is either
fixed or a function of n. Based on the Subcube code con-
struction from [8], it is possible to derive that for any fixed k,

B(n, k) is at most n + O
(

n1− 1
dlog ke

)
, and thus this construc-

tion is asymptotically optimal, i.e. limn→∞ B(n, k)/n = 1.
This motivates us to investigate the redundancy of batch codes
and thus study the value rB(n, k) , B(n, k) − n it order to
evaluate how fast the code rate approaches 1. Our main result
in the paper claims that for any fixed k,

rB(n, k) = O(
√

n log(n)). (1)

2016 IEEE International Symposium on Information Theory

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 1197

We note that a lower bound on the redundancy of PIR codes,
which is also a lower bound on the redundancy of batch codes,
states that for any fixed k, rB(n, k) = Ω(

√
n) [14].

The rest of the paper is organized as follows. In Section II,
we formally define the codes studied in this paper and present
several useful properties. In Section III, we show that PIR
codes for k = 3, 4 are also batch codes with the same param-
eters, and give a construction which confirms that (1) holds
for k = 5, 6, 7. Lastly, in Section IV, we show how to extend
the last construction so that (1) holds for any fixed k. We dis-
cuss and present more results in case k is not fixed. Due to
the lack of space some proofs in the paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the codes we study in the
paper. A linear code over GF(q) of length n and dimension
k will be denoted by [n, k]q or by [n, k, d]q where d specifies
the minimum distance of the code. In case the code is binary
we will omit the field notation. For a positive integer n the
notation [n] will refer to the set {1, . . . , n}.

Batch codes were first studied by Ishai et al. in [8]. The
basic problem refers to the encoding of a length-n message x
into an m-tuple of strings, called buckets, such that each batch
of k bits from x can be decoded by reading at most some t
symbols from each bucket. Formally, these codes are defined
as follows [8].

Definition 1. An (n, N, k, m, t) batch code over Σ is defined
by an encoding map E : Σn → (Σ∗)m (each output is called a
bucket) and a decoding map D such that:

1) The total length of all m buckets is N.
2) For any x ∈ Σn and {i1, . . . , ik} ⊆ [n],

D(E(x), i1, . . . , ik) = (xi1 , . . . , xik),

and D probes at most t symbols from each bucket in E(x)
(whose positions are determined by i1, . . . , ik).

An (n, N, k, m, t) multiset batch code is an (n, N, k, m, t)
batch code which also satisfies the following property: For any
multiset i1, . . . , ik ∈ [n] there is a partition of the buckets into
k subsets S1, . . . , Sk ⊆ [m] such that each symbol xi j , j ∈ [k],
can be recovered by reading at most t symbols from each bucket
in S j.

An (n, N, k, m) (multiset) batch code is an (n, N, k, m, 1)
(multiset) batch code and a primitive (multiset) batch code
is an (n, N, k, m) (multiset) batch code in which each bucket
contains a single symbol, that is N = m.

In another class of codes, called combinatorial batch codes,
it is required to have the same properties of batch codes, how-
ever the symbols cannot be encoded. Several works have con-
sidered codes under this setup; see e.g. [1]–[3], [17]. All codes
studied in this work are binary, that is Σ = {0, 1}, however
all the results in the paper can be extended to the non-binary
case as well.

Example 1. It is clear to see that for all k 6 n there exists a
primitive (n, n, k, n) batch code and this is an optimal con-
struction. The simple parity code [n + 1, n, 2] is a primitive
multiset batch code with parameters (n, n + 1, 2, n + 1). 2

There are several constructions of batch codes, studied first
in [8] and recently in [10], [16], [19]. Since it is not easy to
compare between the parameters of these code constructions,
we first seek to provide a simple figure of merit which we be-
lieve to provide a fair comparison between all the constructions
and will allow to evaluate the optimality of each construction.
As a result of the multiple parameters in the definition of batch
codes, we will fix some of them and optimize the remaining
one. For simplicity we assume that the number of bits stored
in each bucket is the same, and we denote this value by `, so
N = `m. Next, we fix the values of n, k, t and ` and will then
seek to optimize the value of m (and thus also N). In particu-
lar, we will have that t and ` are fixed, where t 6 `, and then
study the growth of m as a function of n and k. Hence, we de-
note by Dt,`(n, k) the smallest m such that an (n, N, k, m, t)
batch code exists, where every bucket stores exactly ` bits.
Similarly we let Bt,`(n, k) denote the smallest m such that an
(n, N, k, m, t) multiset batch code exists.

In this paper we focus on studying the value of B1,1(n, k),
which for simplicity we denote by B(n, k). In particular, we
are interested in studying the growth of B(n, k) as a function
of n where k is fixed or is a function of n. For the simplicity
of notations and definitions, in the rest of the paper whenever
we refer to a batch code, we refer to a primitive multiset batch
code and it is denoted by an (m, n, k)B batch code.

In [5], a similar family of codes was studied, called k-server
PIR codes, in which n bits where encoded into m bits in a way
that every information bit has k mutually disjoint recovering
sets. Let us formally define these codes.

Definition 2. A binary [m, n] linear code will be called a k-
server PIR code if for every information bit xi , i ∈ [n], there
exist k mutually disjoint sets Ri,1, . . . , Ri,k ⊆ [m] such that for
all j ∈ [k], xi is a linear function of the bits in Ri, j.

PIR codes, as defined in [5], are required to be linear in or-
der to be used in PIR protocols. Even though for the purpose
of this work we do not need the linearity property, all con-
structions we present in the paper will be linear and thus this
requirement does not impose another constraint. To be con-
sistent with the notations of the paper, we denote an [m, n]
k-server PIR code by an (m, n, k)P PIR code.

The main problem studied in [5] with respect to PIR codes
was to minimize the value of m given n and k. Let us denote
this value by P(n, k), where as for batch codes it holds that
P(n, 1) = n and P(n, 2) = n + 1. Note that every (n, m, k)B
batch code is also an (n, m, k)P so for all n, k, B(n, k) >
P(n, k).

In [5], it was observed by the codes from [9] that for
any fixed k > 3 there is a construction of (m, n, k)P PIR
code, where m = n + O(

√
n) and therefore this con-

struction is asymptotically optimal, that is for any fixed
k, limn→∞ P(n, k)/n = 1. Similarly, using the Subcube
code construction from [8], it is also possible to derive
that if k is fixed then limn→∞ B(n, k)/n = 1. There-
fore, in order to better understand the efficiency of each
construction, we evaluate PIR and batch codes by their
redundancy. Thus, we define rB(n, k) to be the value
rB(n, k) , B(n, k)− n and similarly, rP(n, k) , P(n, k)− n.

2016 IEEE International Symposium on Information Theory

1198

Hence, rB(n, 1) = rP(n, 1) = 0, rB(n, 2) = rP(n, 2) = 1,
for any fixed k > 3, rP(n, k) = Θ(

√
n) [14], and thus

rB(n, k) = Ω(
√

n). When possible in the paper we will ex-
plicitly calculate the values of B(n, k) and P(n, k), however
we will be mostly interested in the order of the value of
rB(n, k) for fixed k or the order rB(n, k) and rP(n, k) when
k is a function of n.

According to [16], there are several results which can be
deduced on the behavior of the rB(n, k) when k is a function
of n. In particular, rB(n, n1/3) 6 n, rB(n, n1/t) 6 n7/8 for
4 6 t 6 32/7, and rB(n, n1/t) 6 n4/t for 32/7 < t 6 5.
By the Subcube construction from [8], it also follows that
for any fixed k, rB(n, k) = O(n1−1/dlog ke). The case where
n = k was studied in [19] and it was shown that B(n, n) =
O(n2/ log(n)). For PIR codes, there are different construc-
tions in [5], which use tools from algebraic cyclic codes, dif-
ferent sets, Steiner systems and more. These tools provide
several codes, among them are (22m + 2m + 1, 22m + 2m −
3m, 2m + 1)P and (22m − 1, 22m − 3m, 2m)P PIR codes, and
thus it is possible to deduce that rP(n,

√
n) = O(n

log 3
2).

A batch or PIR code will be called systematic if every in-
formation bit appears systematically in the encoded bits. That
is, the n information bits, given by the vector x ∈ {0, 1}n,
are encoded to be E(x) = (x, p), where the vector p corre-
sponds to the parity bits. Unless stated otherwise we assume
that all codes studied in the paper are systematic where the
information bits appear first, followed by the parity bits,. Fur-
thermore, when it will be clear from the context, the output of
the encoding map will be only the parity part, i.e. E(x) = p.

III. CONSTRUCTIONS OF BATCH CODES FOR k 6 7
The main goal of this section is to give constructions of

(m, n, k)B batch codes for 3 6 k 6 7 and in particular analyze
the value rB(n, k).

We first show a useful property of PIR codes which we will
take advantage of in our constructions. Even though PIR codes
are designed to answer only multiset requests which consist
of a single bit, they can successfully answer other requests as
long as at most a single bit is requested more than once.

Lemma 3. An (m, n, k)P PIR code can successfully answer all
multiset requests of k bits in which at most a single bit is re-
quested more than once.

Proof: Let C be an (m, n, k)P PIR code with encoding
map E and decoding map D. Assume the information vector
x was encoded (systematically) by the encoding map E to the
vector (x, p), and let S be a multiset request of k bits. If every
bit is requested exactly once then this request can be simply
answered by the systematic part of x. Hence, we assume that
only the first bit is requested more than once, so the multiset S
can be represented by S = [i0, i0, . . . , i0, i1, . . . , ih], where i0
is requested k− h times. Then, the decoding map D is invoked
to get k mutually disjoint recovering sets for the i0-th bit,

D((x, p), i0) = (R1, R2, . . . , Rk).

Since these k sets are mutually disjoint the h bits i1, . . . , ih can
appear in at most h of them and assume without loss of gen-
erality that these are the last h sets. Therefore, the k mutually

disjoint sets which recover the k bits in the multiset request S
are given by the k − h sets R1, . . . , Rk−h to recover the i0-th
bit k − h times and the sets {i j} for j ∈ [h] to recover the
other h bits.

According to the property proved in Lemma 3, we can de-
duce that for k = 3, a construction of (m, n, 3)P PIR code is
also a batch code with the same parameters. That it, we have
the following lemma.

Lemma 4. For all positive n, B(n, 3) = P(n, 3).

Proof: Assume C is an (m, n, 3)P PIR code with encod-
ing map E and decoding map D. Note that for every multiset
request of three bits at most a single bit is requested more
than once and therefore according to Lemma 3 this multiset
request can be answered by the decoding map D.

Even though the same argument used in Lemma 4 does not
hold for k = 4, it is possible to use the structure of PIR codes
from [5] for k = 4, in which the union of the four recover-
ing sets for each information bit is [m]. Therefore we get the
following property.

Lemma 5. For all positive n, B(n, 4) = P(n, 4).

Next we continue with the case k = 5. We cannot repeat
the same arguments as for k = 3, 4 since now we may have
two bits with more than one query which cannot be resolved
as for k = 4 case. The idea we carry here, and will adopt
for other values of k, is to generate several partitions of the n
information bits into two sets. For each partition, we encode
each of the two sets of information bits separately and store
the two parity vectors by these encoding operations. Then, in
decoding, if we receive a multiset request where two bits are
requested more than once, we find a partition of the n in-
formation bits where these two bits belong to different sets.
Finally, we can decode each information bit separately using
the information bits in its set according to the corresponding
redundancy vector calculated in the encoding stage.

Before presenting this construction we define the following
notations. For a length-n vector c ∈ {0, 1}n, we denote by
I(c) to be the indicator set of the vector c, that is I(c) =
{i : ci = 1}. The vector c is the bit-wise complement of the
vector c, and for a set S ⊆ [n], the vector cS is a length-|S|
vector whose indices are given by the set S.

Theorem 6. For all positive n large, the following holds,

rB(n, 5) 6 rP(n, 5) + 2dlog(n)erP(n/2, 3).

Proof: For simplicity we assume in the proof that n is
a power of two, while the modification for other cases will
be clear from the construction. Let C1 be an (m1, n, 5)P PIR
code with encoder E1 and decoder D1, and let C2 be an
(m2, n/2, 3)P PIR code with encoder E2 and decoder D2. Let
r1 = m1 − n be the redundancy of C1 and r2 = m2 − n/2
the redundancy of C2. Let G be a log(n)× n matrix formed
by all log(n)-length binary vectors as its columns and let
B = {u1, . . . , ulog(n)} be the log(n) rows of the matrix
G. Note that G can be seen as the generator matrix of the
[n, log(n), n/2] Hadamard code and has the property that for

2016 IEEE International Symposium on Information Theory

1199

every two different column indices i1, i2 ∈ [n] there exists a
row u`, ` ∈ [log(n)] such that ui,i1 6= ui,i2 .

We construct an (m, n, 5)B batch code of length m = n +
r1 + 2(log(n))r2 with encoder E and decoder D as follows.
Let x be a length-n input binary vector, then it is encoded by
the first encoder E1 to receive r1 redundancy bits p0 = E1(x).
For each i ∈ [log(n)], the vectors xI(ui), xI(ui) are encoded
by the encoder E2 to receive two parity vectors of r2 bits each
pi , qi, respectively,

pi = E2(xI(ui)), qi = E2(xI(ui)).

Together, the vector x is encoded to the vector

(x, p0, p1, q1, p2, q2, . . . , plog(n), qlog(n)).

Let us now show that this code construction provides an
(m, n, 5)B batch code. The decoder D receives a multiset re-
quest S of some five bits i1, . . . , i5 (which can be identical).
The case where there are no two bits with more than one
request is solved according to Lemma 3 using (x, p0). Other-
wise, there are two cases: {i1, i1, i1, i2, i2} or {i1, i1, i2, i2, i3}.
In both cases we first find a vector u` ∈ B such that u`,i1 = 1
and u`,i2 = 0. Then, in the first case, we decode twice using
the decoding map D2 as follows

D2
(
(xI(u`), p`), (i1, i1, i1)

)
, D2

(
(xI(u`), q`), (i2, i2)

)
,

to get five mutually disjoint recovering sets for the five
bits in the multiset request S. Similarly, in the second case
we apply the decoders D2

(
(xI(u`), p`), (i1, i1, i3)

)
and

D2
(
(xI(u`), q`), (i2, i2)

)
.

We can repeat the same ideas and arguments as in the last
proof and get the following result.

Theorem 7. For all n, the following holds,
1) rB(n, 6) 6 rP(n, 6) + 2dlog(n)erP(n/2, 4).
2) rB(n, 7) 6 rP(n, 7) + 2dlog(n)erP(n/2, 5).

The next corollary summarizes the results in the section.

Corollary 8.
1) For k ∈ {3, 4}, rB(n, k) = O(

√
n).

2) For k ∈ {5, 6, 7}, rB(n, k) = O(
√

n log n).

IV. CONSTRUCTIONS FOR LARGE FIXED k
Our goal in this section is to extend the results we derived

in Section III for larger values of k. Using this exten-
sion, we will be able to show that for any fixed k > 8,
rB(n, k) = O

(√
n log(n)

)
. Note that the main idea in us-

ing Hadamard codes in Theorem 6 was to have partitions of
the n bits into log(n) partitions such that every two bits can
be split by at least one partition. That is, we found log(n)
sets T1, T2, . . . , Tlog(n) such that for every pair of different
indices i, j ∈ [n] there exists a set Th for some h ∈ [log(n)]
such that either i or j belongs to Th. In order to build upon
this approach we extend this property and construct codes
that satisfy this extension.

A set of sets P is called a q-partition of [n] if P con-
sists of q mutually disjoint subsets of [n] which their union
is [n]. That is, P = {U1, . . . , Uq}, where Ui ∩ U j = ∅ for

every two different indices i, j ∈ [q], and ∪q
i=1Ui = [n]. A

q-partition P = {U1, . . . , Uq} covers a set of q indices X =
{x1, . . . , xq} ⊆ [n] if the q indices are all in different sub-
sets, i.e. for all i ∈ [q], |Ui ∩ X| = 1. A set of q-partitions
P = {P1, . . . , Ps} is called complete if it covers every set
X ⊆ [n] of q indices.
Example 2. The following set of 2-partitions

P4 =
{

P1 = {{1, 2}, {3, 4}}, P2 = {{1, 3}, {2, 4}}
}

of [4] is complete, and the set P8 of 2-partitions of [8] is
complete as well, where

P8 =
{

P1 = {{1, 2, 3, 4}, {5, 6, 7, 8}},

P2 = {{1, 2, 5, 6}, {3, 4, 7, 8}},

P3 = {{1, 3, 5, 7}, {2, 4, 6, 8}}
}

.

2
It is not hard to see that for every n and q 6 n there exists

a complete set of q-partitions of [n]. Hence, the goal is to find
a complete set of minimum cardinality. For example, using
Hadamard codes it is possible to construct for all n a set of
dlog(n)e 2-partitions of [n] and this construction is optimal.
We denote by S(n, q) the minimum cardinality of a set of
q-partitions of [n], which is complete. Therefore, S(n, 2) =
dlog(n)e.

Using the construction of complete sets of q-partitions we
derive the following result.
Theorem 9. For all positive n and fixed k, the following holds

rB(n, k) 6 rP(n, k)+
⌊

k
2

⌋
S(n, bk/2c)rP

(⌈
n

bk/2c

⌉
, k − 2

)
.

Proof: For simplicity let us assume that k is even and n
is a multiple of k/2. The modifications for other cases will be
clear from the proof. Let C1 be an (m1, n, k)P PIR code with
redundancy r1 = m1 − n, encoder E1, and decoder D1, and
let C2 be an (m2, 2n/k, k − 2)P PIR code with redundancy
r2 = m2 − 2n/k, encoder E2 and decoder D2. Let P be a
complete set of (k/2)-partitions of size s = S(n, k/2), P =
{P1, . . . , Ps}. We construct an (m, n, k)B batch code of length
m = n + r1 + (k/2) · s · r2 with the following encoder E and
decoder D.

Let x be a length-n input binary vector, then it is encoded
by the first encoder E1 to receive r1 redundancy bits p0 =
E1(x). For each i ∈ [s], we encode using the i-th (k/2)-
partition Pi as follows. The (k/2)-partition Pi is denoted by
Pi = {Ui,1, . . . , Ui,k/2}, and for j ∈ [k/2], we encode

E2(xUi, j) = pi, j.
Together, the vector x is encoded to the vector

(x, p0, p1,1, . . . , p1,k/2, . . . , ps,1, . . . , ps,k/2).
The decoder D receives a multiset request of k bits S =

[i1, . . . , ik]. Assume the requested bits without repetitions are
i1, . . . , ik′ , and that the first k∗ 6 k′ bits were requested more
than once. Note that in particular, k∗ 6 k/2. We consider the
following two cases:

1) k∗ = 1: In this case there are no two bits with more than
one query and so according to Lemma 3 we can apply
the decoder D1 with the encoded vector (x, p0) and the
multiset request S to find k mutually disjoint recovering
sets for the k bits.

2016 IEEE International Symposium on Information Theory

1200

2) k∗ > 1: Since the set P is a complete set of k/2-
partitions and k∗ 6 k/2, there exists a k/2-partition
P` = {U`,1, . . . , U`,k/2} ∈ P for some ` ∈ [s] which
covers the set of indices {i1, . . . , ik∗}. Therefore, for
j ∈ [k∗] we can decode the bit i j with its repetitions by
the decoder D2 using the information bits xU`, j and the
parity part p`, j. Lastly, all the bits which are requested
once will be decoded with the first bits i1. Note that in
all cases, the size of all input multiset requests to the
decoding map D2 is at most k − 2.

Lastly, in order to fully characterize the value of rB(n, k)
we seek the study the value of S(n, q). We accomplish this
task in the following lemma.

Lemma 10. For all n and q such that q 6 n, the following holds

S(n, q) 6

log (n

q)

− log
(

1 − q!
qq

)
 .

Proof: First, note that it is possible to represent every
q-partition of [n] as a vector in [q]n. We can also think in the
other direction that every vector in [q]n represents a q-partition
of [n] while we allow some of the subsets to be empty (in case
some of the symbols in [q] do not appear in the vector).

For a subset X ⊆ [n] of size q and a vector v ∈ [q]n we
say that v covers X if the projection of v on the q positions
in X forms a permutation of [q]. Hence, the q-partition which
is represented by the vector v also covers the set X.

For a fixed set X, if the vector v is chosen uniformly at
random then the probability that v covers the set X is q!/qq.
Hence if we draw some s vectors independently uniformly at
random from the set [q]n, then the probability that none of
them covers the set X is(

1 − q!
qq

)s
.

For each of the (n
q) subsets X of size q, let YX be the cor-

responding indicator random variable YX as follows:

YX =
{

0 if X is covered by at least one of the s vectors,
1 otherwise.

Define Z = ∑X∈([n]
q) YX to be the random variable which

counts the number of subsets X which are not covered af-
ter s independent draws of vectors in [q]n. By linearity of
expectation we have that

E[Z] = ∑
X∈([n]

q)

E[YX] =
(

n
q

)(
1 − q!

qq

)s
.

Therefore, if E[Z] 6 1 then there exists at least one realization
of the s draws that achieves the value Z = 0, that is all subsets
X ⊆ [n] of size q will be covered by at least one of the vectors
in this realization. Specifically, the value

s =

log (n

q)

− log
(

1 − q!
qq

)

satisfies this requirement which proves the lemma’s statement.

Combining the proof or Theorem 9 and Lemma 10 we get
the following corollary.

Corollary 11. For all n and k,

rB(n, k)6rP(n, k)+
⌊

k
2

⌋
log (n

bk/2c)

− log
(

1− b k
2 c!

b k
2 c

b k
2 c

)
rP

(⌈
n
b k

2 c

⌉
, k − 2

)
.

In particular if k is fixed then,

rB(n, k) = O(
√

n log(n)).

It is possible to apply the ideas of this construction also
when k is not fixed, and we state here the following result.

Theorem 12. For n and k large enough

rB(n, k) = O
(

k2.5 log(n) · ek/2rP(n, k)
)

.
In particular for k = log(log(n)) we get

rB(n, log(log(n)))=O
(
(log(log n))2.5(log(n))

2+log e
2 rP(n, k)

)
.

REFERENCES

[1] S. Bhattacharya, S. Ruj, and B. Roy, “Combinatorial batch codes: A
lower bound and optimal constructions,” Advances in Mathematics of
Comm., vol. 6, pp. 165–174, 2012.

[2] R.A. Brualdi, K.P. Kiernan, S.A. Meyer, and M.W. Schroeder, “Combi-
natorial batch codes and transversal matroids,” Advances in Mathematics
of Comm., vol. 4 pp. 419–431, 2010.

[3] C. Bujtás and Z. Tuza, “Relaxations of Halls condition: Optimal batch
codes with multiple queries,” Appl. Anal. Discrete Math, vol. 6, no. 1,
pp. 72–81, 2012.

[4] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, 45, 1998. Earlier version in FOCS 95.

[5] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead:
coding instead of replication,” arXiv:1505.06241, May 2015.

[6] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the local-
ity of codeword symbols,” IEEE Trans. on Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, 2012.

[7] P. Huang, E. Yaakobi, H. Uchikawa, and P.H. Siegel, “Linear locally
repairable codes with availability,” Proc. IEEE Int. Symp. on Inf. Theory,
pp. 1871–1875, Hong Kong, Jun. 2015.

[8] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” Proc. of the 36-sixth Annual ACM Symposium on
Theory of Computing, pp. 262–271, Chicago, ACM Press, 2004.

[9] S. Lin and D. J. Costello, Error Control Coding, Prentice Hall, 2004.
[10] H. Lipmaa and V. Skachek, “Linear batch codes,” Coding Theory and

Applications, CIM Series, vol. 3. pp. 245–253, 2015.
[11] J.L. Massey, Threshold Decoding, MIT Press, 1963.
[12] L. Pamies-Juarez, H.D.L. Hollmann, and F. Oggier, “Locally repairable

codes with multiple repair alternatives,” Proc. IEEE Int. Symp. on Inf.
Theory, pp. 892–896, Istanbul, Turkey, Jul. 2013.

[13] D.S. Papailiopoulos and A.G. Dimakis, “Locally repairable codes,” Proc.
IEEE Int. Symp. on Inf. Theory, pp. 2771–2775, Cambridge, Jul. 2012.

[14] S. Rao and A. Vardy, “Lower bound on the redundancy of PIR codes,”
arxiv:1605.01869v1, May 2016.

[15] A.S. Rawat, D.S. Papailiopoulos, A.G., Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage” Proc. IEEE Int. Symp.
on Inf. Theory, pp. 681–685, Honolulu, HI, Jul. 2014.

[16] A.S. Rawat, Z. Song, A.G. Dimakis, and A. Gál, “Batch codes through
dense graphs without short cycles” IEEE Int. Symp. on Inf. Theory,
pp. 1477–1481, Hong Kong, June 2015.

[17] N. Silberstein and A. Gál, “Optimal combinatorial batch codes based on
block designs,” Designs, Codes and Cryptography, pp. 1–16, Sep. 2014.

[18] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. on Inf. Theory, vol. 60, no. 8, pp. 4661–4676, 2014.

[19] Z. Wang, H.M. Kiah and Y. Cassuto, “Optimal binary switch codes with
small query size,” Proc. IEEE Int. Symp. on Inf. Theory, pp. 636–640,
Hong Kong, Jun. 2015.

[20] Z. Wang, O. Shaked, Y. Cassuto and J. Bruck, “Codes for network
switches,” Proc. IEEE Int. Symp. on Inf. Theory, pp. 1057–1061, Istan-
bul, Turkey, Jul. 2013.

[21] A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,”
IEEE Trans. on Inf. Theory, vol. 60, no. 11, pp. 6979–6987, 2014.

[22] S. Yekhanin, “Private information retrieval,” Comm. of the ACM, vol. 53,
no. 4, pp. 68–73, 2010.

[23] H. Zhang and V. Skachek, “Bounds for batch codes with restricted query
size,” arXiv:1510.08883v1, October 2015.

2016 IEEE International Symposium on Information Theory

1201

