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Abstract—We introduce the new problem of code design in
the Damerau metric. The Damerau metric is a generalization of
the Levenshtein distance which also allows for adjacent trans-
position edits. We first provide constructions for codes that may
correct either a single deletion or a single adjacent transposi-
tion and then proceed to extend these results to codes that can
simultaneously correct a single deletion and multiple adjacent
transpositions. Bounds on the size of the codes and accompany-
ing decoding algorithms are presented as well.

I. INTRODUCTION

The edit distance is a measure of similarity between two
strings evaluated based on the minimum number of operations
required to transform one string into the other. If the opera-
tions are confined to symbol deletions, insertions and substitu-
tions, the distance of interest is the Levenshtein distance [10].
The Levenshtein distance has found numerous applications
in bioinformatics, where a weighted version of this metric
is used to assess the similarity of DNA strings and construct
phylogenetic trees [8], and natural language processing, where
the distance is used to model typing or spelling errors and pro-
vide automated word corrections [2]. In parallel to the work
on developing efficient algorithms for computing the edit dis-
tance and performing alignments of large number of strings,
a long line of results were reported on the topic of design-
ing codes in the Levenshtein distance. Classical derivations of
upper bounds by Levenshtein [10] and single-deletion correct-
ing code constructions by Varshamov and Tenengol’ts [14],
[15] established the framework for studying many challeng-
ing problems in optimal code design for this metric [1], [6],
[13].

The Damerau distance is an extension of the Levenshtein
distance which allows one to account for adjacent transposi-
tion edits as well. Despite this apparent interest in coding for
edit channels, the problem of designing codes in the Damerau
distance was not analyzed before. A possible reason for this
lack of interest in the Damerau distance may be attributed to
the fact that not many models for practical channels involve
adjacent transposition errors, and even if they do so, they tend
not to allow for user-selected messages. Our motivating ap-
plication for studying codes in the Damerau distance is the
emergent paradigm of DNA-based storage [3], [5], [17], [18].
In these systems, media degradation arises due to DNA aging
caused by metabolic and hydrolitic processes, or more pre-
cisely, by exposure to standard or increased level radiation,
humidity, and high temperatures. As an example, human cel-
lular DNA undergoes anywhere between 10-50 breakages in
a cell cycle [16]. These DNA breakages or symbol/block of
symbol deletions result in a changed structures of the string:
if a string breaks in two places, which is the most likely sce-
nario, either the sequence reattaches itself without resulting in
structural damage, reattaches itself in the opposite direction,
resulting in what is call a reversal error, or the broken string
degrades, resulting in a bursty deletion; if a string breaks in
three positions, which is the second most likely breakage sce-
nario, either the adjacent broken blocks exchange positions or

one or both block disintegrate leading to a bursty deletion. It
is the latter scenario that motivates the study of channels in
which adjacent blocks of symbols may be exchanges or indi-
vidual blocks deleted. It is straightforward to see that this edit-
ing scenario corresponds to a “block version” of the Damerau
editing process. The block editing process is hard to analyze
directly, and we hence propose to first study the symbol-level
Damerau editing process. Extensions to the block model will
be described in the journal version of the paper.

The paper is organized as follows. Section II contains the
problem statement and relevant notation. Section III contains
an analysis of the code design procedure for single deletion or
single adjacent transposition correction. Section IV contains
our main contributions: an order optimal code construction
for correcting a single deletion and a single adjacent trans-
position, as well as low-redundancy construction for codes
correcting a single deletion and multiple adjacent transpo-
sitions. Independently on their use for DNA-based storage
systems, our results shed light on the problem of mismatched
Varshamov-Tenengol’ts (VT) decoding and run length limited
VT codes.

II. NOTATION

We start by defining the Damerau-Levenshtein distance and
its block-version, which arose by the works of Damerau [4]
and Levenshtein [10].

Definition 1. The Damerau–Levenshtein distance is a string
metric, which for two strings a and b of length na and nb over
some finite alphabet equals the minimum number of insertions,
deletions, substitutions and adjacent transposition edits needed
to transform one string into the other. The block Damerau–
Levenshtein distance with block length b is a string metric,
which for two strings a and b of length na and nb over some
finite alphabet equals the minimum number of insertions, dele-
tions, substitutions and adjacent transposition edits of blocks of
length at most b needed to transform one string into the other.

For simplicity, we focus on edits involving deletions and
adjacent transpositions only, and with slight abuse of termi-
nology refer to the underlying sequence comparison function
as the Damerau metric, denoted by D(a,b)1. Furthermore,
we restrict our attention to binary alphabets as the general-
izations of our results to larger alphabets are straightforward
to obtain through Tenengol’ts up-down encoding, as described
in [9], [11]. Details of the approach will be provided in the
full version of the paper.

For a vector x ∈ Fn
2 , let B(x) denote the set of vectors that

may be obtained from x by either at most one single deletion
or at most one single adjacent transposition. Note that the size
of B(x) is 2r(x), where r(x) is the number of runs in x, i.e.,
the smallest number of nonoverlapping substrings involving
the same symbol that “covers” the sequence.

1Since we only consider deletions, the function is not a metric.
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Example 1. Suppose that x = (0, 0, 1, 1, 0) ∈ Fn
2 . Then,

B(x) = {(0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 1, 1),

(0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1)}.

The derivative of x, denoted by ∂(x) = x′ is a vector
given by x′ = (x1, x2+x1, x3+x2, . . . , xn+xn−1). Observe
that the mapping between x and x′ is a bijection. Hence the
integral ∂−1(x) , x is well-defined for all x ∈ Fn

2 . For a
set X ⊆ Fn

2 , we use X ′ to denote the set of derivative of
vectors in X , and similarly, we use X to denote the set of
integrals of vectors in X . For two vectors x,y ∈ Fn

2 , we let
dH(x,y) denote their Hamming distance. Furthermore, we
let CH(n, d) stand for any code of length n with minimum
Hamming distance d, and similarly, let CD(n) stand for any
single-deletion-correcting code of length n.

III. SINGLE TRANSPOSITION OR DELETION CORRECTING
CODES

We start by describing a general construction for single
transposition or deletion correcting codes. We then show how
to use this construction in order to devise codes with near-
optimal redundancy.

Construction 1 Let CH(n, 3) be a single-error-correcting
code and as before, let CD(n) be a single-deletion-correcting
code. We define a code CT∨D(n) capable of correcting one
transposition (T) or (∨) one deletion (D) as follows:

CT∨D(n) = {x ∈ Fn
2 : x ∈ CD(n),x ∈ CH(n, 3)}.

Note that the code CT∨D(n) consists of codewords that be-
long to a single-deletion-correcting code and have integrals
that belong to a single-error-correcting code. The correctness
of this construction is proven next.

Lemma 2. The code CT∨D(n) from Construction 1 is a single
transposition or deletion correcting code.

Proof: We prove this claim by showing that for all x ∈
CT∨D(n), one can uniquely recover x from any z ∈ B(x).

Assume first that z ∈ Fn−1
2 , so that z is the result of a

single deletion occurring in x. Since x ∈ CD(n), one may
apply the decoder of the code CD(n) to successfully recover
x ∈ CT∨D(n).

Now assume that z ∈ Fn
2 , so that z is the result of at

most one single transposition occurring in x. We show that
dH(x, z) 6 1. Then since x belongs to a code with min-
imum Hamming distance 3, the vector x can be uniquely
determined based on z. Note that since the mapping ∂ is in-
jective, dH(x, z) = 0 if and only if x = z.

Assume that the transmitted word x was subjected to one
adjacent transposition involving the ith and (i + 1)th bits, so
that xi 6= xi+1 and z = (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn).
First, we compute the integral z as

z = (z1, z2 + z1, z3 + z2 + z1, . . . ,
n∑

j=1

zj) = (z1, . . . , zn).

Let x = (x1, . . . , xn). Then, clearly (x1, . . . , xi−1) =
(z1, . . . , zi−1). Furthermore,

zi =
i−1∑
j=1

xj + xi+1 =
i−1∑
j=1

xj + (1 + xi) = x̄i + 1,

and for any k > i + 1, zk =
∑i−1

j=1 xj + xi+1 + xi +∑n
j=i+2 xj = xk, so that dH(x, z) = 1 as desired.
Note that we did not specify in Construction 1 which

specific codes to use. An obvious choice would be to use
a Hamming code as the single-error-correcting code and
the Varshamov-Tenengol’ts (VT) code as the single-deletion
code [10], or any coset of these codes. Since the cosets of
these codes cover Fn

2 , one can see that there exists a code
with redundancy at most 2 log(n + 1). We show next how
to improve this result by constructing one code that can
serve both as a single deletion-correcting for x and a single
error-correcting code for x. The redundancy of this code is
at most log(n) + 3.

Our choice of codes is as follows. Let a be a non-negative
integer 0 6 a 6 6n − 2. For the single-deletion code, we
make use of the code

YD(n, a) ={y ∈ Fn
2 :

n−1∑
i=1

i yi+

(2n− 1) yn ≡ a mod (6n− 3)}.

For the code CH(n, 3), we choose

YH(n, a) = {y ∈ Fn
2 :

n−2∑
i=1

(2i + 1) yi + (2(n− 1) + 1) yn

+ (3(n− 1) + 1) yn−1 ≡ a mod (6n− 3)

}
.

Claim 1. For any vector x ∈ Fn
2 , if x′ ∈ YD(n, a) then x ∈

YH(n, a) and thus if x ∈ YD(n, a) then x ∈ YH(n, a).

According to Claim 1 and Lemma 2, the code CT∨D(n) =
YD(n, a) is a single transposition or deletion correcting code.
We only have to show that the codes YD(n, a) and YH(n, a)
have the desired properties.

Lemma 3. The code YH(n, a) is a single-error-correcting
code.

Lemma 4. The code YD(n, a) can correct a single deletion.

The following corollary summarizes the main result of this
section.

Corollary 5. There exists a single transposition or deletion cor-
recting code whose redundancy is at most log(6n− 3) bits.

Proof: We let CT∨D(n) = YD(n, a). Since the codes
CT∨D(a, n) for 0 6 a 6 6n − 2 partition the space Fn

2 , we
easily see that its redundancy is at most log(6n− 3).

Note that every single transposition or deletion correcting
code is also a single-deletion code. A lower bound on the re-
dundancy of the latter code is log(n) [7], so that the difference
between the redundancy of our deletion/adjacent transposition
codes and the optimal single deletion redundancy is at most
log 6 bits.

IV. CODES CORRECTING DELETIONS AND ADJACENT
TRANSPOSITIONS

We now turn our attention to the significantly more chal-
lenging task of constructing codes that can correct both dele-
tions and adjacent transpositions simultaneously. Our main
result is a construction of a code capable of correcting a sin-
gle deletion along with multiple adjacent transpositions. At
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the end of this section, we present an improved construction
for the special case of a single deletion and a single transpo-
sition.

We first introduce some useful notation. Let B(T,`)(x)
denote the set of vectors that may be obtained by apply-
ing at most ` adjacent transpositions (T) to x. We define
B(T,`)(x) , B(T,1)(· · · (B(T,1)(︸ ︷︷ ︸

` times

x) · · · )). Let B(T,`),D(x) de-

note the set of vectors that may be obtained from x by at
most ` adjacent transpositions followed by a single dele-
tion. Let BD(x) be the set of words that may be obtained
by applying a single deletion to x. With a slight abuse of
notation, we use the same symbol B independent on the the
argument of the set being a word or a collection of words.
In the latter case, the set B equals the union of the corre-
sponding sets of individual words in the argument. The next
example illustrates the relevant notation.

Example 2. Suppose that x = (0, 0, 1, 1, 0). Then, B(T,1)(x) =
{(0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1)}, BD(x) =
{(0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 1, 1)}, B(T,1),D(x) = {(0, 1, 1, 0),
(0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 0, 0),
(0, 0, 0, 1)}.

Lemma 6. For any x ∈ Fn
2 ,

B(T,`),D(x) = BD(B(T,`)(x)) = B(T,`)(BD(x)).

As a consequence of the previous lemma, we may hence as-
sume that the deletion always occurs after the adjacent trans-
position. We say that a code C can correct ` adjacent trans-
positions and a single deletion, and refer to it as a `-TD code
if for any two different codewords x,y ∈ C, B(T,`),D(x) ∩
B(T,`),D(y) = ∅. Our code construction and the ideas behind
our approach are best explained by describing the decoding
procedure.

Suppose that the code CT∧D(n, `) is an `-TD code, which
is a subcode of a single-deletion-correcting code. Assume also
that x ∈ CT∧D(n, `) was transmitted and the vector y was
received, where y is the result of at most ` transpositions fol-
lowed by a single deletion occurring to x. The simplest idea
to pursue is to try to correct the single deletion by naively ap-
plying the decoder for the chosen constituent single-deletion
code. Clearly, such a decoder will produce an erroneous result
due to the presence of the adjacent transposition errors. It is
therefore important to construct the code CT∧D(n, `) in such
a way that the result of the “mismatched” deletion correction
x̂, obtained from y, is easy to characterize and contains only
a limited number of errors that may be corrected to recover
x ∈ CT∧D(n, `) from x̂. To this end, define the following
code

CV T (n, a, `) = {x ∈ Fn
2 :

n∑
i=1

i · xi ≡ a mod (n + 2` + 1)}.

Since the code is a VT code, the decoder DV T,n,` for
CV T (n, a, `) can correct a single deletion occurring in a
codeword x ∈ CV T (n, a, `) [14].

As before, and for the special case of VT codes, assume
that x̂ is the result of VT decoding the vector y where y ∈
B(T,`),D(x). Our first aim is to characterize the difference be-
tween x̂ and x, and for this purpose we use an intermediary
word y(`) that is generated from at most ` adjacent transposi-
tions in x, that is y ∈ BD(y(`)). More precisely, we demon-
strate that if both x,y(`) ∈ CV T (n, a, `), then DV T,n,`(a,x)

and DV T,n,`(a,y
(`)) differ only in the transpositions which

converted x to y(`). On the other hand, if x,y(`) belong to
two different VT codes (i.e. they have different values of the
parameter a when VT-transformed), then x and x̂ differ by at
most 2` adjacent transpositions. The following simple claim
is a consequence of the fact that an adjacent transposition
changes the VT syndrome by at most one.

Claim 2. Suppose that y(`) = (y
(`)
1 , . . . , y

(`)
n ) ∈ B(T,`)(x)

where x ∈ Fn
2 . Then, one has |

∑n
i=1 i ·xi−

∑n
i=1 i ·y

(`)
i | 6 `.

As a consequence of the previous claim, if x ∈
CV T (n, a, `) and y(`) ∈ B(T,`)(x), then y(`) ∈ CV T (n, â, `)
for some â, where |a− â| 6 `. The next lemma summarizes
the previous discussion.

Lemma 7. Suppose that y(`) ∈ B(T,`)(x), where x ∈
CV T (n, a, `), and let y ∈ BD(y(`)). Then, DV T,n,`(â,y) =
y(`) for some â such that |a− â| 6 `.

Example 3. Suppose that x = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0) ∈
CV T (12, 3, 3) was transmitted and that the vector y =
(0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0) was received after at most
three adjacent transpositions and a single deletion. For
y(3) = (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0) (where y ∈ BD(y(3)),
we have

∑n−1
i=1 yi ≡ 2 mod 19. Thus, since a = 3 and â = 2,

we get that |a− â| 6 1 6 ` = 3 as desired.
Note that if we apply the decoder DV T,12,3 we get

x̂ = DV T,12,3(3,y) = (0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0).
Here, we have x̂ = (0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0), and
x = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0).

We want to characterize next the difference between
DV T,n,`(a,y) and DV T,n,`(â,y) for the case that |a− â| 6 `,
as the value â is unknown beforehand. Our main result may
be intuitively described as follows: suppose that y ∈ BD(x),
where x ∈ CV T (n, a, `) and where y is obtained by deleting
the kth bit, xk, from x and where the value of xk is known
to the decoder. Assume that x̂ = DV T,n,`(a + v,y), for
some offset v, is obtained by inserting the bit xk in y. Then,
if xk = 0, we may obtain x from x̂ by sliding the inserted
bit to the left/right using a series of adjacent transposition
operations past at most v ones. Otherwise, if xk = 1, then
we can obtain x from x̂ by sliding the inserted bit to the
left/right past at most v zeros. The next lemma rigorously
summarizes this observation.

Lemma 8. Suppose that y is the result of a single deletion oc-
curring in x ∈ CV T (n, a, `) at position k. Given k, let vL =
|{j ∈ [n] : j < k, xj = 1}| and vR = |{j ∈ [n] : j > k, xj =
1}|. Then,

1) If xk = 0, then for all v ∈ {−vR,−vR + 1, . . . , vL}, one
may obtain DV T,n,`(a + v,y) by inserting the symbol 0
in y immediately after the (vL − v)-th one.

2) If xk = 1, then for all v ∈ {−(k− 1) + vL,−k + vL + 2,
. . . , (n− k)− vR}, one may obtain DV T,n,`(a+ v,y) by
inserting the symbol 1 in y immediately after the (v+k−
vL − 1)-th zero.

Example 4. Suppose that x = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0) ∈
CV T (12, 3, 3), and that x̂ = DV T,n,`(3,y), was obtained by
VT decoding y = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0). For v = 2, one
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has DV T,n,`(5,y) = (0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0), whereas
for v = −1, one hasDV T,n,`(2,y) = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0).

Next, suppose that y = (0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0) – y is
the result of deleting the third 1 at position k = 6 from
x = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0). In this case, choosing v =
3 gives DV T,n,`(6,y) = (0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0), while
v = −2 gives DV T,n,`(1,y) = (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0).

Proof of Lemma 8: Suppose first that y is the result of
deleting a zero from x ∈ CV T (n, a, `). Let a′ ≡ a−

∑n−1
i=1 i ·

yi mod (n + 2` + 1). The decoder DV T,n,` for CV T (n, a, `)
produces the vector x̂ ∈ CV T (n, a, `) by inserting a zero into
the first position k′ that has a′ ones to the right of it. If
xk = 0, then clearly a′ = vR, k′ = k, and the decoder cor-
rectly outputs x so that x̂ = x. If the decoder DV T,n,` for
CV T (n, a + v, `) were applied to y instead, one would have

a′′ ≡ a+v−
n−1∑
i=1

i·yi mod (n+2`+1) ≡ a′+v mod (n+2`+1).

Hence, the decoder DV T,n,` for CV T (n, a+v, `) would insert
a zero in the vector y at the first position k′′ that has a′ + v
ones to the right of it. The claim follows by observing that
the position that has a′+ v ones after it is in the same run as
the position in y with (vL − v) ones preceding it.

Suppose now that y is the result deleting a one from x ∈
CV T (n, a, `). Let a′ ≡ a−

∑n−1
i=1 i ·yi mod (n+ 2`+ 1). The

decoder DV T,n,` for CV T (n, a, `) produces the vector x̂ ∈
CV T (n, a, `) by inserting a one into the first position k′ that
has a′ − k′ ones to the right of it. If xk = 1, then clearly
k′ = k and the decoder correctly outputs x, and hence x̂ = x.

If the decoder DV T,n,` for CV T (n, a + v, `) were ap-
plied to y instead, then a′′ ≡ a′ + v mod (n + 2` + 1) as
before. The decoder DV T,n,` for CV T (n, a + v, `) would
insert a one in the vector y into the first position k′′

that has a′ + v − k′′ ones to the right of it. This pro-
duces a vector x̂. Since the first position k′′ in y with
a′ + v− k′′ ones to the right is the same as the first position
in y following (v + k − vL − 1) zeros, the claimed re-
sult also follows for xk = 1. �

The previous lemma allows us to propose a modification of
a VT code capable of correcting a deletion and multiple adja-
cent transpositions. Furthermore, it leads to a straightforward
decoding architecture for the proposed code. Formally,

CV T (n, a, b, `) = {x ∈ Fn
2 : (1)

n∑
i=1

i · xi ≡ a mod (n + 2` + 1),

n∑
i=1

xi ≡ b mod 2}.

The decoder for CV T (n, a, b, `), denoted by DV T,n,b,`, op-
erates as follows. Suppose that x ∈ CV T (n, a, b, `) is trans-
mitted and that y ∈ B(T,`),D(x) is received. Suppose that n1

denotes the number of ones in y. Then, for a ∈ Zn+2`+1 and
b ∈ F2, DV T,n,b,`(a,y) executes the next steps:

1) Set x ≡
∑n−1

i=1 xi + b mod 2.
2) Compute a′ ≡ a−

∑n−1
i=1 i yi mod (n + 2` + 1).

3) If x = 0 and a′ ∈ {0, 1, . . . , n1}, insert a zero into the
first position in y that has a′ ones on its right. If a′ ∈
{n1 + 1, n1 + 2, . . . , n1 + `}, insert a zero in the first

position in y. If a′ ∈ {n1+`+1, n1+`+2, . . . , n1+2`},
insert a zero in the last position of y.

4) If x = 1 and a′ ∈ {n1 + 1, n1 + 2, . . . , n}, insert a one
in the first position k of y that has a′ − k ones to its
right. Otherwise, if a′ ∈ {n+ 1, n+ 2, . . . , n+ `}, insert
a one in the last position of y. If
a′ ∈ {n− ` + 1, n1 − ` + 2, . . . , n1}, insert a one in the
first position of y.

Note that the VT decoder discussed so far aims to cor-
rect a single deletion only, but potentially in a mismatched
fashion as additional adjacent transposition errors may exist.
The output of this decoder has to be fed into the input of a
transposition error-correcting code, and we will describe how
this is accomplished after providing an illustration of the VT
decoding process.

Example 5. Suppose that x = (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0) ∈
CV T (12, 3, 0, 3), and that y = (0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0)
is the received word, which is the result of a deletion
and a single transposition. We first apply the decoder
DV T,12,0,3 to y. From the first step of the procedure,
we conclude that the deleted bit has value x = 0. In
the second step of decoding, we compute a′ = 3. Since
0 6 a′ 6 4, we have x̂ = (0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0).
Note that x̂ = (0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0), and x =
(0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), differ in two adjacent transpo-
sitions.

The previous example illustrates that x and x̂ differ in a
limited number of transpositions which depends on the origi-
nal number of transposition errors. In particular, for the given
example, the two vectors differed in two adjacent transpo-
sitions as x̂ is the result of a single deletion and a single
transposition in y. The next lemma gives a more precise char-
acterization of the “distance” between x and x̂.

Lemma 9. Suppose that y(`) = B(T,`)(x), where x ∈
CV T (n, a, b, `) and where y ∈ BD(y(`)). Let x̂ = DV T,n,b,`(a,y).
Then the following statements are true:

1) If x̂ is the result of inserting a zero in y in a position with
vR ones to the right of the inserted bit, then y(`) can be
obtained from y by inserting a zero in y in the first posi-
tion with j ones to the right of it where j ∈ {vR− `, vR−
` + 1, . . . , vR + `}.

2) If x̂ is the result of inserting a one in y in position k with
vR ones to the right of the inserted bit, then y(`) can be
obtained from y by inserting a one in y in the first po-
sition j with j1 ones to the right of it where j + j1 ∈
{k + vR − `, k + vR − ` + 1, . . . , k + vR + `}.

The following corollary summarizes one of the main results
of this section.

Corollary 10. Suppose that y = B(T,`),D(x) where x ∈
CV T (n, a, b, `) and let x̂ = DV T,n,b,`(a,y). Then x ∈
B(T,2`)(x̂).

Consequently, the mismatched VT decoder increases the num-
ber of adjacent transposition errors by at most a factor of two.

Based on the results on mismatched VT decoding and
Corollary 10, we are now ready to define a family of
codes capable of correcting a single deletion and mul-
tiple adjacent transposition errors. Recall that given a
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binary word x, its derivative ∂(x) = x′ is defined as
x′ = (x1, x2 + x1, x3 + x2, . . . , xn + xn−1) and its inverse
∂−1(x) = x = (x1, x1 + x2, . . . ,

∑n
i=1 xi). We claim that

the code C(T,`)∧D ⊆ Fn
2 , defined as

C(T,`)∧D(n, a, b) = {x ∈ Fn
2 : x ∈ CH(n, 4` + 1),

x ∈ CV T (n, a, b, `)}. (2)

is an `-TD code (i.e., a code capable of correcting ` adjacent
transpositions (T, `) and (∧) one deletion (D).

Theorem 11. The code C(T,`)∧D(n, a, b) is an `-TD code.

Proof: Suppose that y ∈ B(T,`),D(x). We show how to
recover x from y. First, we determine x̂ = DV T,n,b,`(a,y).
From Corollary 10, we have that x ∈ B(T,2`)(x̂). Since x ∈
B(T,2`)(x̂), we have dH(∂−1(x̂),x) 6 2`. Because the mini-
mum distance of the code C(T,`)∧D(n, a, b) is 4`+ 1, we can
uniquely recover x from ∂−1(x̂).

Corollary 12. There exists an `-TD code which redundancy at
most (2` + 1) log(n) bits.

Lastly in this section, we improve upon this result for the
case when ` = 1. The case of ` > 1 is reserved for an
extended version of the paper. Let a1, a2 ∈ Zn+2L+1 and
b ∈ F2. Define YT∧D(n, a1, a2, b) ⊆ Fn

2 according to

YT∧D(n, a1, a2, b) ={x : x′ ∈ CV T (n, a1, b, L),
n−1∑
i=1

(2i + 1)2 xi ≡ a2 mod (n + 2L + 1),

xn = 0},

where L > 1 is chosen so that n + 2L + 1 is a prime
number greater than 4n − 1. Let CT∧D(n, a1, a2, b) =
Y′T∧D(n, a1, a2, b). We have the following lemma.

Lemma 13. For all a1, a2 ∈ Zn+2L+1 and b ∈ F2, the code
CT∧D(n, a1, a2, b) is a 1-TD code.

Proof: Since x ∈ CV T (n, a1, b, L) by design, we only
need to show that CT∧D(n, a1, a2, b) = YT∧D(n, a1, a2, b)
has Hamming distance 5. Note that if x′ ∈ CV T (n, a1, 0, L)
and xn = 0, then this implies

∑n−1
i=1 (2i+1)xi ≡ a1 mod n+

2L+1. Thus, the vectors in the code CT∧D(n, a1, a2, b) are a
subset of the codewords in a Berlekamp code over Fn+2L+1

which has minimum Lee distance 5 [12]. Therefore, since the
code CT∧D(n, a1, a2, b) is comprised of only binary vectors,
the minimum Hamming distance of CT∧D(n, a1, a2, b) is 5.

Corollary 14. There exists a 1-TD code which redundancy at
most 2 log(n) + c bits, for some absolute constant c.

Hence, the above construction improves upon the general
construction in (2) in terms of a saving of log(n) redundant
bits.

V. CONCLUSION AND FUTURE WORK

In this work, we considered the problem of coding for the
Damerau distance. We focused on the problem of construct-
ing codes capable of correcting a single deletion and a num-
ber of adjacent transpositions. Our extended work includes
constructions of codes capable of correcting block adjacent
transpositions and deletions.
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