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Abstract—The sequence-reconstruction problem, first proposed
by Levenshtein, models a setup in which a sequence from some
set is transmitted over several independent channels, and the
decoder receives the outputs from every channel. The main
problem of interest is to determine the minimum number of
channels required to reconstruct the transmitted sequence. In
the combinatorial context, the problem is equivalent to finding
the maximum intersection between two balls of radius t where
the distance between their centers is at least d. The setup of this
problem was studied before for several error metrics such as the
Hamming metric, the Kendall-tau metric, and the Johnson metric.

In this paper, we extend the study initiated by Levenshtein
for reconstructing sequences over the deletion channel. While he
solved the case where the transmitted word can be arbitrary, we
study the setup where the transmitted word belongs to a single-
deletion-correcting code and there are t deletions in every channel.
Under this paradigm, we study the minimum number of different
channel outputs in order to construct a successful decoder.

I. INTRODUCTION

The sequence reconstruction problem was first introduced by
Levenshtein in [11] and [12]. Under this paradigm he studied
the minimum number of different (noisy) channels that is
required in order to reconstruct a transmitted sequence. In [11],
Levenshtein showed that the number of channels required to
recover such a sequence has to be greater than the maximum
intersection between the error balls of any two transmitted
sequences. This problem was first motivated from the fields
of biology and chemistry, however it is also very relevant for
applications in wireless sensor networks where a collection
of nodes, each with partial information about the operating
environment, are trying to form a common operational picture
(COP). In this case each of the received subsequences repre-
sents the information available to that node.

Mathematically speaking, let C be a code over a space V
with a distance metric ρ : V × V → N. Assume that its
minimum distance is d and there are at most t errors in every
channel, where t > (d−1)/2. Then the problem of calculating
the value of

max
x1,x2∈V ρ(x1,x2)≥d

{|Bt(x1) ∩Bt(x2)|}, (1)

where Bt(x) is the ball of radius r surrounding x, is referred
to as the reconstruction problem.

Solving the reconstruction problem from (1) was studied
in [11] with respect to several channels such as the Hamming
distance, Johnson graphs and other metric distances. In [8],
[9], [10], it was analyzed for permutations, and in [13], [14]
for other general error graphs. Recently, the problem was
studied in [19] for permutations with the Kendall’s τ distance
and the Grassmann graph, and in [16] for insertions. The
connection between the reconstruction problem and associative
memories was proposed in [18]. This problem was also studied
in [6] for the purpose of asymptotically improving the Gilbert-
Varshamov bound.

Solving the reconstruction problem for the deletion channel
has received a significant attention in the literature. In fact, it
was one of the first models Levenshtein studied in [12] for
insertions and deletions along with reconstruction algorithms.
The design of such algorithms for the probabilistic model of
the reconstruction problem was also studied in [1], [7], [17]
and only for deletions in [4], [5].

In this work, we consider the combinatorial reconstruction
problem for the deletion channel. While Levenshtein assumed
in [11], [12] that the transmitted words are arbitrary, we assume
here that their Levenshtein distance is at least two and study
the minimum number of different channel outputs in order to
correct t deletions in every channel. Our main result is showing
that for t ≤ n

2 and n ≥ 10, this value is given by

N(n, t), 2D(n−4, t−2)+2D(n−5, t−2)+2D(n−7, t−2)

+D(n−6, t−3) +D(n−7, t−3),

where D(m, s) is the largest size of a deletion ball for words of
length m with s deletions. For example, we get that N(n, 2) =
6. That is, if the transmitted codeword belongs to a single-
deletion-correcting code and two deletions occurred in every
channel, then 7 channels are sufficient to construct a successful
decoder.

The rest of this paper is organized as follows. In Section II,
we introduce our notation and establish some preliminary
results. In Section III, we show that N(n, t) is a lower bound,
that is we find two sequences of Levenshtein distance two such
that the intersection size of their deletion balls is N(n, t). In
Section IV, we show that N(n, t) is also an upper bound,
thereby establishing equality. Due to the lack of space some
of the proofs will be omitted.

II. DEFINITIONS AND PRELIMINARIES

We denote by Z2 the set {0, 1}. Let x be a length-n binary
vector in Zn2 . A vector y ∈ Zn−t2 is the outcome of t deletions
from x if y is a subsequence of x. The deletion ball of radius
t centered at x ∈ Zn2 is defined to be

Dt(x) = {y ∈ Zn−t2 | y is a subsequence of x}.

For two vectors x1,x2 ∈ Zn2 , we say that their Levenshtein dis-
tance is t, and denote dL(x1,x2) = t if Dt(x1)∩Dt(x2) 6= ∅
and Dt−1(x1) ∩ Dt−1(x2) = ∅. Equivalently, the Levenshtein
distance is one half the minimum number of insertions and
deletions required to convert x to y. The minimum Levenshtein
distance of a code C ⊆ Zn2 is the minimum Levenshtein
distance between any two different codewords in C. The code is
called a t-deletion-correcting code if its minimum Levenshtein
distance is at least t+1. For notational convenience, we denote
Dt(x) = ∅ when t < 0 and thus |Dt(x)| = 0. To illustrate
these concepts, we include the following example.

Example 1. Let x = (0, 1, 1, 0),y = (1, 0, 0, 0) ∈ Z4
2 and

C = {x,y}. Notice that D1(x) = {(0, 1, 1), (0, 1, 0), (1, 1, 0)},
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D1(y) = {(1, 0, 0), (0, 0, 0)} so that D1(x) ∩ D1(y) = ∅.
Furthermore, since D2(x) = {(0, 1), (0, 0), (1, 1), (1, 0)} and
D2(y) = {(1, 0), (0, 0)}, D2(x) ∩ D2(y) = D2(y) and so C
is a single-deletion-correcting code.

Let an ∈ Zn2 be the alternating sequence where its first bit
is 1. For 0 < t < n, we denote by D(n, t) the maximum size
of a deletion ball of radius t, i.e.,

D(n, t) = max
x∈Zn

2

{|Dt(x)|}.

It is known from [2] that

D(n, t) = |Dt(an)| =
t∑
i=0

(
n− t
i

)
, (2)

and from [2] the following recursion holds

D(n, t) = D(n− 1, t) +D(n− 2, t− 1). (3)

We assume here and afterwards that D(n, t) = 0 if t > n,
n < 0, or t < 0. The main goal of this work is to study the
combinatorial value

N(n, t1, t2) = max
x,y∈Zn

2 ,dL(x,y)≥t1
{|Dt2(x) ∩ Dt2(y)|}, (4)

where 0 < t1 < t2 < n. In [12], Levenshtein studied the case
t1 = 1 (i.e. x and y only need to be different from each other)
and showed that for 1 ≤ t2 ≤ n− 1

N(n, 1, t) = 2D(n− 2, t− 1). (5)

This value is achieved for example as the intersection of the
balls centered at the two sequences

x = (0, 1,an−2),y = (1, 0,an−2).

In this paper we will focus on the combinatorial problem
stated in (4) for t1 = 2. Our main result in the paper is showing
that for t1 = 2 and n ≥ 7,

N(n, 2, t) = N(n, t),

where N(n, t) is given by

N(n, t) =2D(n−4, t−2)+2D(n−5, t−2)+2D(n−7, t−2)

+D(n−6, t−3) +D(n−7, t−3), (6)

when t ≤ n/2 and N(n, t) = 2n−t when t > n/2. In fact,
it is not hard to verify that if t > n/2, and n ≥ 8, then
N(n, t) = 2n−t since one can consider the intersection of the
sequences 1001an−4 and 0110an−4, which are of Levenshtein
distance two from each other. Thus, unless stated otherwise, we
assume in this paper that t ≤ n

2 and n is not too small (for
example n ≥ 10). In the rest of this section we present some
tools and observations that will help us in our solutions.

Let X ⊆ Zn2 be a set and v a vector of length at most n.
We denote by X v the set of all vectors in X that start with
the vector v, that is,

X v = {x ∈ X | v is a prefix of x}.

Similarly, Xv is the set of all vectors in X that end with the
vector v. We can apply these notations simultaneously so for
two vectors v1,v2 each of length at most n, X v1

v2
is the set of

all vectors starting with v1 and ending with v2. For a vector
v ∈ Zm2 and a set X ⊆ Zn2 , the set v ◦ X is the result of
prepending the vector v after every vector in X ,

v ◦ X = {(v1, . . . , vm, x1, . . . , xn) | (x1, . . . , xn) ∈ X}.

Similarly, the set X ◦ v consists of the concatenation of the
vector v at the end of every vector in X .

We finish this section with the following two lemmas which
follow from the same ideas as in [3] and [15]. These lemmas
will be used repeatedly in the next two sections. The first one
claims that finding the cardinality of a set can be done by
splitting it into mutually disjoint sets according to the prefixes
and suffixes of its sequences.

Lemma 1. Let n,m1,m2, be positive integers such that m1 +
m2 ≤ n, and X ⊆ Zn2 . Then,

|X | =
∑

x1∈Z
m1
2

∑
x2∈Z

m2
2

∣∣Xx1
x2

∣∣ .
As an immediate result of Lemma 1, we conclude that for

for every x ∈ Zn2 and two positive integers m1,m2 such that
m1 +m2 ≤ n, the following equality holds

|Dt(x)| =
∑

x1∈Z
m1
2

∑
x2∈Z

m2
2

∣∣Dt(x)x1
x2

∣∣ . (7)

The second lemma claims that finding all sequences in a
deletion ball Dt(x) which start with x1 and end x2 can be
done by first finding the smallest prefix, suffix that contains
x1,x2 as a subsequence, respectively, and then calculating the
deletion ball in the remainder of the sequence x.

Lemma 2. Let n,m1,m2, t be positive integers, and x ∈
Zn2 ,x1 ∈ Zm1

2 ,x2 ∈ Zm2
2 . Assume that k1 is the smallest

integer such that x1 is a subsequence of (x1, . . . , xk1) and k2 is
the largest integer where x2 is a subsequence of (xk2 , . . . , xn).
If k1 < k2 then

Dt(x)x1
x2

= x1 ◦ Dt∗(xk1+1, . . . , xk2−1) ◦ x2,

where t∗ = t− (k1 −m1)− (n− k2 + 1−m2). In particular,∣∣Dt(x)x1
x2

∣∣ = |Dt∗(xk1+1, . . . , xk2−1)| .
Lastly, we state the following claim, whose proof is straight-

forward. For a binary vector x = (x1, x2, . . . , xn−1, xn), let
R(x) = (xn, xn−1, . . . , x2, x1), and x̄ = (1−x1, . . . , 1−xn).

Claim 1. Let x,y ∈ Zn2 . Then,
|Dt(x)∩Dt(y)| = |Dt(R(x))∩Dt(R(y))| = |Dt(x̄)∩Dt(ȳ)|.

The following example illustrates our notations.

Example 2. Let X ⊆ Z4
2 be the following set

X = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1),

(0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 1)}.
Then,

X 0
0 = {(0, 1, 0, 0), (0, 1, 1, 0)},
X 0

1 = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1)},
X 1

0 = {(1, 0, 0, 0)},
X 1

1 = {(1, 0, 1, 1), (1, 1, 0, 1)},

and note that |X | = |X 0
0 |+ |X 0

1 |+ |X 1
0 |+ |X 1

1 |. Furthermore

(0, 1) ◦ X = {(0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0),

(0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 1, 0), (0, 1, 1, 0, 0, 0),

(0, 1, 1, 0, 1, 1), (0, 1, 1, 1, 0, 1)}.
If x = (0, 1, 1, 0, 0, 1) then

D3(x)1
0 = 1 ◦ D1((1, 0)) ◦ 0 = 1 ◦ {0, 1} ◦ 0,

and |D3(x)1
0| = 2.

For x = (0, 1, 1, 0),y = (0, 1, 0, 1), we have that

R(x) = (0, 1, 1, 0), R(y) = (1, 0, 1, 0),

x̄ = (1, 0, 0, 1), ȳ = (1, 0, 1, 0).
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and

D1(x) ∩ D1(y) ={(0, 1, 0), (0, 1, 1)}
D1(R(x)) ∩ D1(R(y)) ={(0, 1, 0), (1, 1, 0)}

D1(x̄) ∩ D1(ȳ) ={(1, 0, 1), (1, 0, 0)}.

In particular,

|D1(x)∩D1(y)| = |D1(R(x))∩D1(R(y))| = |D1(x̄)∩D1(ȳ)|.

III. THE LOWER BOUND

The main goal of this section is to establish the value
of N(n, t) as a lower bound on N(n, 2, t). We accomplish
this task by showing in Theorem 1 that the sequences x =
(1, 0,an−4, 0, 1), y = (0, 1,an−4, 1, 0) of Levenshtein dis-
tance two satisfy

|Dt(x) ∩ Dt(y)| = N(n, t).

We first begin with the following simple, yet useful, claim
which is a restatement of a result from [15].

Claim 2. (c.f. [15], Lemma II.5) Let ` < n, x ∈ Zn2 ,y ∈ Zn−`2 ,
where y ∈ D`(x) and ` < t. Then, Dt−`(y) ⊆ Dt(x).

The following three claims are the results we need in order
to prove Theorem 1.

Claim 3. For n and t two positive integers such that t < n,

|Dt(an) ∩ Dt(ān)| = 2D(n− 2, t− 1). (8)

Proof. Let us denote X = Dt(an) ∩ Dt(ān). The string
(1, ān−2) is a subsequence of both an and ān that can be
obtained by deleting a single bit from either an or ān. Hence,
from Claim 2, we have

Dt−1((1, ān−2)) ⊆ Dt(an) ∩ Dt(ān) = X ,

and in particular Dt−1((1, ān−2))1 ⊆ X 1. Hence, we can write

|X 1| ≥
∣∣Dt−1((1, ān−2))1

∣∣ (a)
= |1 ◦ Dt−1(ān−2)|

(b)
= D(n− 2, t− 1),

where (a) results from Lemma 2 and (b) follows from (2).
Similarly, (0,an−2) is a subsequence of both an and ān

and thus we have that

|X 0| ≥
∣∣Dt−1((0,an−2))0

∣∣ = |0 ◦ Dt−1(an−2)|
= D(n− 2, t− 1).

Therefore, according to Lemma 1, we get that
|X | = |X 0|+ |X 1| ≥ 2D(n− 2, t− 1).

However, from (5), for any x,y ∈ Zn2 ,
|Dt(x) ∩ Dt(y)| ≤ 2D(n− 2, t− 1),

and hence the result in the claim holds.

Claim 4. For n > 0, t < n,

|Dt((an−1, 0))∩Dt((ān−1, 0))|=2D(n−3, t−1)+D(n−3, t−2).

Claim 5. Let n > 0, t < n, where n ≥ 10 is even, then
|Dt(an, 0) ∩ Dt(1,an)| = 2D(n− 3, t− 1)

+D(n− 3, t− 2) +D(n− 2, t− 2).

Proof. Let X = Dt(an, 0) ∩ Dt(1,an), Then,

|X 1| (a)
= |1 ◦ (Dt(ān−1, 0) ∩ Dt(an−1, 0)) |
(b)
= 2D(n− 3, t− 1) +D(n− 3, t− 2).

where (a) follows from Lemma 2 and (b) follows from Claim 4.
Similarly according to Lemma 2 we get

|X 0| = |0 ◦ (Dt−1((an−2, 0)) ∩ Dt−2(an−2)) |
= |Dt−1((an−2, 0)) ∩ Dt−2(an−2)|.

Since an−2 ∈ D1(an−2, 0), we can apply Claim 2 to conclude
that |X 0| = |Dt−2(an−2)| = D(n − 2, t − 2). Lastly, from
Lemma 1 it follows that

|X |=|X 0|+|X 1|≤2D(n−3, t−1)+D(n−3, t−2)+D(n−2, t−2).

The next theorem constitutes the lower bound.

Theorem 1. For all n ≥ 10 and t, let x = (1, 0,an−4, 0, 1),
y = (0, 1,an−4, 1, 0). Then, |Dt(x) ∩ Dt(y)| = N(n, t).

Proof. We show the proof only for n even. Let us denote X =
Dt(x) ∩ Dt(y). We first consider the set X 0

0 .

|X 0
0 |

(a)
= |0 ◦ (Dt−2(an−4) ∩ Dt((1,an−4, 1))) ◦ 0|
= |Dt−2(an−4) ∩ Dt((1,an−4, 1))|
(b)
= |Dt−2(an−4)| = D(n− 4, t− 2), (9)

where (a) follows from Lemma 2 and (b) follows by applying
Claim 2 since an−4 ∈ D2((1,an−4, 1)). By repeating the same
steps of X 0

0 , we get that

|X 1
1 | = D(n− 4, t− 2). (10)

For the set X 1
0 , we have from Lemma 2

|X 1
0 | =|1 ◦ (Dt−1(ān−3) ∩ Dt−1(an−3)) ◦ 0|

=|Dt−1(ān−3) ∩ Dt−1(an−3)| (a)
= 2D(n− 5, t− 2), (11)

where (a) follows from Claim 3. Similarly, for the set X 0
1 , we

have

|X 0
1 | = |0 ◦ (Dt−1(an−4, 0) ∩ Dt−1(1,an−4)) ◦ 1|

= |Dt−1(an−4, 0) ∩ Dt−1(1,an−4)|
(a)
= 2D(n− 7, t− 2) +D(n− 6, t− 3) +D(n− 7, t− 3),

(12)

where (a) is a result of Claim 5. Finally, by applying Lemma 1
and summing (9), (10), (11), and (12) we get the result in the
statement of the theorem.

The following corollary summarizes this result.

Corollary 1. For n and t where n ≥ 10, we have

N(n, 2, t) ≥ N(n, t).

IV. THE UPPER BOUND

We now prove that the lower bound from the previous
section is also an upper bound. That is, we show that for any
pair of sequences, x,y where dL(x,y) ≥ 2, the intersection
of their deletion balls is at most N(n, t). We proceed by
considering different possibilities for x,y and showing that
this result holds in all cases. To improve the flow of the section
and due to the lack of space these proofs are omitted and will
appear in the long version of the paper.

At a high level, the logical flow of the section is the
following. We first assume dL(x,y) ≥ 2 and that x,y
differ on the first and last bits. Lemma 3 shows that if
x,y have more than N(n, t) common subsequences, then x
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cannot have the same value in positions one and two. As a
consequence of Lemma 3, if x,y have more than N(n, t)
common subsequences then the sequences can be written as
x = (1, 0,x′, ā, a) ∈ Zn2 ,y = (0, 1,y′, a, ā) ∈ Zn2 for some
a ∈ Z2. Lemma 5 then shows that the intersection of the
deletion balls for x,y (as described in the previous sentence)
is at most N(n, t). Finally, in Theorem 2, we remove the
restriction that x and y differ in the first bit, and show that
when dL(x,y) ≥ 2 for any x,y the intersection of their
deletion balls is at most N(n, t).

We introduce a few identities that will be used throughout
the section. From [12], we have

D(n, t) ≤ D(n+ 1, t+ 1), (13)

and
D(n, t) ≤ D(n+ 1, t). (14)

The following corollary follows from (3) and (6).

Corollary 2. For n and t where n ≥ 10, we have

N(n, t) = N(n− 1, t) +N(n− 2, t− 1). (15)

We begin by restricting our attention to sequences x,y that
differ on the first bit and the last bit.

Lemma 3. Let n, t be integers where n ≥ 7. Let x,y ∈ Zn2
be such that x1 = 1, y1 = 0 and

1) dL(x,y) ≥ 2,
2) xn 6= yn, and
3) x1 = x2.

Then, |Dt(x) ∩ Dt(y)| ≤ N(n, t).

Proof. Assume first that xn = 0, so yn = 1 and we can write

x = (1, 1,x′, 0), y = (0,y′, 1),

where x′ = (x′1, . . . , x
′
n−3) ∈ Zn−3

2 ,y′ = (y′1, . . . , y
′
n−2) ∈

Zn−2
2 . Let X = Dt(x)∩Dt(y). We first consider the set |X 0|,

where we have

|X 0| ≤ |Dt(x)0| ≤ |Dt−2(x′, 0)0| ≤ D(n− 3, t− 2).

Similarly,

|X 1
0 | ≤ |Dt(y)1

0| ≤ |Dt−2(y′)1
0| ≤ D(n− 4, t− 2).

As for the set |X 1
1 |, assume first that x′n−3 = 1 and y′1 = 1.

Then we get

|X 1
1 |=

∣∣1◦(Dt−1((1, x
′
1, . . . , x

′
n−4))∩Dt−1((y

′
2, . . . , y

′
n−2))

)
◦1
∣∣

=
∣∣(Dt−1((1, x′1, . . . , x

′
n−4)) ∩ Dt−1((y′2, . . . , y

′
n−2))

)∣∣
≤ 2D(n− 5, t− 2),

where the last inequality holds since (1, x′1, . . . , x
′
n−4) 6=

(y′2, . . . , y
′
n−2) as otherwise we won’t have dL(x,y) ≥ 2. To

complete this part assume that x′n−3 = 0, then we get

|X 1
1 | ≤ |Dt−1((1,x′))1| ≤

∣∣Dt−2((1, x′1, . . . , x
′
n−4))1

∣∣
≤ D(n− 4, t− 2) ≤ 2D(n− 5, t− 1).

The same proof holds for the case y′1 = 0.
We now consider the case xn = 1, so yn = 0 and

x =(1, 1,x′, 1),

y =(0,y′, 0),

and let X = Dt(x) ∩ Dt(y). As before, we get

|X 0| ≤ D(n− 3, t− 2), |X 1
1 | ≤ D(n− 4, t− 2).

and X 1
0 | ≤ 2D(n− 5, t− 2).

Finally, we conclude that in both cases

|X |≤D(n−3, t−2)+D(n−4, t−2)+2D(n−5, t−2)≤N(n, t),

where the last inequality holds since

N(n, t)− (D(n− 3, t− 2) +D(n− 4, t− 2) + 2D(n− 5, t− 2))

=N(n, t)− (2D(n− 4, t− 2) +D(n− 5, t− 3) + 2D(n− 5, t− 2))

=2D(n− 7, t− 2) +D(n− 6, t− 3) +D(n− 7, t− 3)

−(D(n− 6, t− 3) +D(n− 7, t− 4))

=2D(n− 7, t− 2) +D(n− 7, t− 3)−D(n− 7, t− 4) ≥ 0.

As a result of Lemma 3, if x,y ∈ Zn2 , x1 6= y1, and |Dt(x)∩
Dt(y)| > N(n, t), then x = (1, 0,x′, 1, 0),y = (0, 1,x′, 0, 1)
or x = (1, 0,x′, 0, 1),y = (0, 1,x′, 1, 0) where x′,y′ ∈ Zn−4

2 .
The purpose of the next lemma is to show that in either case
x′,y′ ∈ {an−4, ān−4}. In order to establish this result we first
state the following three useful claims.

Claim 6. Suppose the number of runs in x ∈ Zn2 is at most
n− 1. Then for t ≤ n/2,

|Dt(x)| ≤ D(n− 2, t) +D(n− 4, t− 2) +D(n− 2, t− 1).

Claim 7. Suppose n, t are integers where n ≥ 10 and t ≤ n/2.
Suppose x ∈ Zn2 ,y ∈ Zn2 are such that x 6= y, the number of
runs in x = (x1, . . . , xn) is n− 1, y has at least n− 1 runs,
and x2 6= x3, xn−1 6= xn−2. Then,

|Dt(x)∩Dt(y)| ≤ D(n− 2, t− 1) +D(n− 4, t− 1)

+D(n− 4, t− 2) +D(n− 6, t− 3).

Claim 8. Suppose n, t are integers where n ≥ 10 and t ≤ n/2.
Suppose x ∈ Zn2 ,y ∈ Zn2 are such that x 6= y and the number
of runs in x is at most n− 2. Then,

|Dt(x)∩Dt(y)| ≤ D(n− 2, t− 1) +D(n− 4, t− 1)

+D(n− 4, t− 2) +D(n− 6, t− 3).

Using Claims 7 and 8, we prove the following lemma.

Lemma 4. Let n, t be integers where n ≥ 10 and let a ∈ Z2.
Let x = (1, 0,x′, ā, a) ∈ Zn2 ,y = (0, 1,y′, a, ā) ∈ Zn2 be such
that dL(x,y) ≥ 2. If

|Dt(x) ∩ Dt(y)| ≥ N(n, t),

then x′,y′ ∈ {an−4, ān−4}.
Proof. Similar to before, let X = Dt(x)∩Dt(y). Then, since
x′ 6∈ {an−4, ān−4}, we can apply Claim 6 so that

|X 0
ā | =|0 ◦ (Dt−2(x′) ∩ Dt(1,y′, a)) ◦ ā|
≤|Dt−2(x′)| ≤ D(n− 6, t− 2)

+D(n− 6, t− 3) +D(n− 8, t− 4).

We also have

|X 1
a | ≤ |1 ◦ Dt−2(y′) ◦ a| ≤ D(n− 4, t− 2).

Furthermore, notice

|X 1
ā | = |1 ◦ (Dt−1(0,x′) ∩ Dt−1(y′, a)) ◦ ā|,

where (y′, a) 6= (0,x′) so that we can apply (5) to get that

|X 1
ā | ≤ 2D(n− 5, t− 2).

Next we consider |X 0
a | where

|X 0
a | = |0 ◦ (Dt−1(x′, ā) ∩ Dt−1(1,y′)) ◦ a|
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If (x′, ā), (1,y′) satisfy the conditions of Claim 7 or
Claim 8, then we can write

|X 0
a | ≤D(n− 5, t− 2) +D(n− 7, t− 2)

+D(n− 7, t− 3) +D(n− 9, t− 4).

We now consider the case where (x′, ā), (1,y′) do not
satisfy the conditions in Claim 7 or Claim 8, and show that
in this case the (different) vectors (0,x′), (y′, a) satisfy the
conditions in Claim 7. If (x′, ā), (1,y′) do not satisfy the
conditions in Claim 8, then (x′, ā), (1,y′) each have at least
(n−3)−1 = n−4 runs and, in particular, x′ has (n−4)−1 =
n − 5 runs by assumption since x′ 6∈ {an−4, ān−4}. If
(x′, ā), (1,y′) do not satisfy the conditions in Claim 7 then
x′2 = x′3 or x′n−4 = x′n−5. Since x′ has n − 5 runs, then in
either case x′1 6= x′2 and x′n−6 6= x′n−5. Thus, (0,x′), (y′, a)
satisfy the conditions in Claim 7. Therefore, using the same
logic as before

|X 0
a | ≤ 2D(n− 5, t− 2),

and

|X 1
ā | ≤D(n− 5, t− 2) +D(n− 7, t− 2)

+D(n− 7, t− 3) +D(n− 9, t− 4).

Thus, applying Lemma 1, it is possible to show that if x,y
satisfy the conditions in this lemma, then

|X | ≤D(n− 4, t− 2) + 3D(n− 5, t− 2) +D(n− 6, t− 2)+

D(n− 7, t− 2) +D(n− 6, t− 3) +D(n− 7, t− 3)+

D(n− 8, t− 4) +D(n− 9, t− 4) = N(n, t).

The next lemma will be directly used in the derivation of
the upper bound. The proof relies on simply enumerating the
possible choices for x,y and applying previous results such as
Lemma 4.

Lemma 5. Let n, t be integers where n ≥ 7. Let x =
(1, 0,x′, ā, a) ∈ Zn2 ,y = (0, 1,y′, a, ā) ∈ Zn2 be such that
dL(x,y) ≥ 2. Then,

|Dt(x) ∩ Dt(y)| ≤ N(n, t).

We now have the main result of this paper.

Theorem 2. Let n, t be integers where n ≥ 7. Let x =
(x1, x2, . . . , xn) ∈ Zn2 ,y = (y1, y2, . . . , yn) ∈ Zn2 be such
that dL(x,y) ≥ 2. Then,

|Dt(x) ∩ Dt(y)| ≤ N(n, t).

Proof. The proof will be by induction on the lengths of the
sequences x,y. The base cases for n = 10, 11 were verified
using a computerized search.

Suppose the result holds for all m < n where n is the length
of x,y. Let us write x = (a,x′),y = (b,y′) (for a, b ∈ Z2)
and denote X = Dt(x) ∩ Dt(y). There are two cases:

1) x1 = y1, or
2) x1 6= y1.

We first consider case 1). Then, dL(x′,y′) ≥ 2 and from the
inductive hypothesis we get
|X a| = |a ◦ (Dt(x′) ∩ Dt(y′))| = |Dt(x′) ∩ Dt(y′)|

≤ max
x∗,y∗∈Zn−1

2 ,dL(x∗,y∗)≥2
{|Dt(x∗) ∩ Dt(y∗)|}

≤ N(n− 1, t).

Suppose xk is the first occurrence of the symbol ā in x
and the symbol ā appears in x not after it appears in y.
Notice that under this setup, we have (x1, x2, . . . , xk−1) =

(y1, y2, . . . , yk−1) and so dL(x′′,y′′) ≥ 2, where x′′ =
(xk, . . . , xn) and y′′ = (yk, . . . , yn). Since k ≥ 2, applying
the inductive hypothesis along with Lemma 2 gives∣∣X ā∣∣ ≤ |ā ◦ (Dt−(k−1)(x

′′) ∩ Dt−(k−1)(y
′′))|

= |Dt−(k−1)(x
′′) ∩ Dt−(k−1)(y

′′)|
≤ max

x∗,y∗∈Zn−k
2 ,dL(x∗,y∗)≥2

{|Dt−(k−1)(x
∗) ∩ Dt−(k−1)(y

∗)|}

≤ N(n− k, t− k + 1)

≤ N(n− 2, t− 1).

Since N(n, t) = N(n−1, t)+N(n−2, t−1) from Corollary 2
for the case where x1 = y1.

In order to prove case 2), suppose that x1 6= y1. Then,
we also assume xn 6= yn since otherwise if xn = yn we
can reverse the sequences and apply the same logic as above.
However, if x1 6= y1 and xn 6= yn then from Lemmas 3 and 5,
we have |Dt(x) ∩ Dt(y)| ≤ N(n, t) in this case as well and
so the result holds.
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