
Write Sneak-Path Constraints Avoiding

Disturbs in Memristor Crossbar Arrays

Yuval Cassuto

⇤, Shahar Kvatinsky

⇤, and Eitan Yaakobi

†
⇤Electrical Engineering Department, Technion – Israel Institute of Technology

†Computer Science Department, Technion – Israel Institute of Technology
ycassuto@ee.technion.ac.il, shahar@ee.technion.ac.il, yaakobi@cs.technion.ac.il

Abstract—We study the problem of write disturbs due to

write sneak paths in memristor crossbar arrays. A write

sneak path is a bit configuration in the array that causes

a write of one cell to undesirably flip the value of another

cell. We study the configurations that cause such write sneak

paths, and characterize them in terms of tight constraints

to prevent them. We show that thanks to the flexibility to

choose the write order, the resulting constraints are milder

compared to known similar ones for read sneak paths. In

addition, we derive the array constraints when parallel write

is allowed in the rows or column only, and in both the rows

and columns.

I. INTRODUCTION

In recent years, different resistive memory technolo-
gies have emerged. Although these technologies include
numerous different materials and physical mechanisms,
they are all basically a resistor with a varying resistance
and can be collectively considered as memristors [4],
[5], [7]. Memristive technologies have raised high interest
since they are non-volatile, and have superior density and
endurance as compared to Flash memories. To achieve
maximal density, memristors are organized in a crossbar
array structure [8], [12], which is a two-dimensional grid
such that on the intersection of every row and column
there is only a memristor, as shown in Fig. 1. Since mem-
ristors are two-port devices, memristive crossbar memo-
ries suffer from interference between different memory
cells both in read and write operations. Previously, we
considered the read interference, namely the sneak path
phenomenon [1]–[3]. Here we consider the write disturb
phenomenon from an information theory perspective.

In memristive memories, each memristor is a memory
cell and can either be in logical state 0 or 1, which
depends on its resistance. Memristor in state 0 has high
resistance ROFF , and a state 1 memristor has low resis-
tance RON . A cell SET operation is achieved by applying
voltage VSET that sets the memristor to logical state 1.
The application of a SET operation involves a flow of
current through the memristor in order to change its state.
However, this current can build-up an undesired voltage in
some other parts of the array, which may flip the content
of unselected memory cells, thereby introducing a write

disturb due to sneak current paths while programming
the memristor [6], see Fig. 1.

Although it is possible to eliminate sneak paths by
adding a CMOS transistor to each memory cell and
isolate the cell from its neighbors, this approach sig-
nificantly reduces density, and is therefore undesired.
Other approaches to reduce sneak-path currents, such
as half selecting part of the memory cells, are usually
used [9], but not without keeping some sensitivity to write

Fig. 1. Write sneak path.

disturbs across the array. Previously, we studied a similar
phenomenon occurring in read operations due to sneak
paths [3]. In this paper, we explore the relevant conditions
for write sneak paths, which are different than read sneak
paths.

II. PROBLEM DEFINITION: UNDERSTANDING THE
PROGRAMMING CONSTRAINTS

To overcome or minimize the effect of sneak paths
while writing, it is important to first understand the
electrical conditions of the behavior that causes other
memristors to change their state. When three memristors
are connected in series, where two of them are at ON state
(low resistance) and the third memristor is at OFF state
(high resistance), the voltage upon the third memristor
is approximately the applied voltage, and the voltage
upon the other memristors is zero. In this case, the OFF
memristor can change its state if the applied voltage has
the magnitude of VSET with the right polarity. The write
disturb can occur both when VSET and VRESET are
applied, but in this paper we focus on the more severe
SET case. If voltage VSET is applied on three consecu-
tive memristors at states (1, 1, 0) (RON , RON , ROFF) or
(0, 1, 1) (ROFF , RON , RON), then the memristor at log-
ical value 0 changes its state to 1, that is ROFF ! RON ;
see Fig. 2 (a-b). We introduce this error behavior formally.

Definition 1. Given a binary array A of size m⇥n, we say

that a SET write sneak path occurs when programming

the cell at position (i, j), if while applying to cell ai,j a

change 0 ! 1 (by voltage VSET), there exist 2 positive

integers 1 6 r

1

6 m and 1 6 c

1

6 n , such that

ai,c
1

= 0, ar
1

,c
1

= ar
1

,j = 1,

or

ai,c
1

= ar
1

,c
1

= 1, ar
1

,j = 0.

2016 IEEE International Symposium on Information Theory

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 950

Fig. 2. (a-b) SET write sneak paths. (c) RESET write sneak path (not
studied here).

(a) (b)

1

111 0

0 0 → 10 → 1

0! 1

0! 1

Fig. 3. Rectangles forming SET write sneak paths.

In this case the memristor in state 0 (in position (i, c

1

) in

the first case and (r

1

, j) in the second case) changes 0 ! 1

undesirably.

Definition 1 is illustrated in Fig. 3. This definition can
be generalized as well for longer write sneak paths in an
equivalent way to read sneak paths as explained in [3],
however in this work we only consider sneak paths of
length 3, which are the dominant sneak paths.

Since write sneak paths have an asymmetric behavior,
depending on whether the cell is programmed to state 0
or 1, the order in which the memristors are programmed
can affect the occurrence of write sneak paths. Assume
that initially all the memristors are in state 0. Thus, all the
programming transitions are 0 ! 1, and only SET write
sneak paths may take effect. In this case we only need to
avoid the SET write sneak paths. Given a rectangle in the
array that needs to be programmed to the target levels

ai
1

,j
1

= 1, ai
1

,j
2

= 0, ai
2

,j
1

= 1, ai
2

,j
2

= 1, (1)

(as depicted on Fig. 3a), it is clear that avoiding a SET
write sneak path is possible by programming ai

2

,j
1

(the
top left cell on Fig. 3a) 0 ! 1 at the last step. By that
neither of the three 0 ! 1 changes will result in SET
write sneak path. It is also clear that an order where ai

2

,j
1

is not last will result in a SET write sneak path. Trouble
starts when different rectangles enforce conflicting orders
to avoid sneak paths. To deal with such conflicts, we make
the following definition.

Definition 2. A binary array A contains a SET conflict

configuration if there are indices i

1

, i

2

, i

3

and j

1

, j

2

, j

3

that make the following combinations

(ai
1

,j
1

, ai
2

,j
1

) = (1, 1)

(ai
1

,j
2

, ai
2

,j
2

) = (1, 0) or

(ai
1

,j
3

, ai
2

,j
3

) = (0, 1)

(ai
1

,j
1

, ai
1

,j
2

) = (1, 1)

(ai
2

,j
1

, ai
2

,j
2

) = (1, 0)

(ai
3

,j
1

, ai
3

,j
2

) = (0, 1)

An example of a SET conflict configuration is given in
Fig. 4, which corresponds to the first option in Defini-

1

1

1

10

0

Fig. 4. SET conflict configuration.

tion 2. Row-column transposition of the figure gives the
second option in the definition.

To summarize this discussion, under this program-
ming order, the patterns which we seek to avoid are
the ones where there are two rows with the patterns
(1, 0), (1, 1), (0, 1) in some three columns on the two
rows. A similar constraint is enforced to the columns. In
order to analyze the properties of these arrays, we define
the constraint on the memristors in the array.

Definition 3. A binary array A contains two memristors in

conflict on the j

1

-th column, in positions (i

1

, j

1

), (i

2

, j

1

)

if there exist two other columns j

2

, j

3

such that

(ai
1

,j
1

, ai
2

,j
1

) = (1, 1),

(ai
1

,j
2

, ai
2

,j
2

) = (1, 0),

(ai
1

,j
3

, ai
2

,j
3

) = (0, 1).

Memristors in conflict on a row are defined similarly.

Lastly, we say that an array A is conflict-free if it does

not have two memristors in conflict (either in the row or

column).

III. CHARACTERIZATION OF CONFLICT-FREE ARRAYS

In this section we study the combinatorial properties
and characterization of conflict-free arrays.

Let A be a binary m ⇥ n array. For 1 6 i 6 m,
1 6 j 6 n, let Ri ✓ [n], Cj ✓ [m] be the locations
set of the ones in this row, column, respectively, that is
Ri = {k : ai,k = 1}, and Cj = {` : a`,j = 1}. We
say that two rows are in conflict if none of the following
three conditions hold: Ri

1

✓ Ri
2

, Ri
2

✓ Ri
1

, or Ri
2

\
Ri

1

= ;, and otherwise they are not in conflict. Columns
in conflict and not in conflict are defined similarly. From
the characterization of cells in conflict, it is implied that
in order not to have cells in conflict, the 1 cell locations
in any pair of rows (or columns) must be a subset of one
another or must not overlap, that is, any two rows and
columns are not in conflict. This property is proved in
the next lemma.

Lemma 4. An array A is conflict-free if and only if it does

not have rows and columns in conflict.

Proof: Assume in the contrary that the condition
holds but the array A is not conflict-free. Assume without
loss of generality that there are two memristors in conflict
in a column. Then, according to Definition 3, there exist
two different positive integers i

1

, i

2

and three different
positive integers j

1

, j

2

, j

3

such that

(ai
1

,j
1

, ai
2

,j
1

) = (1, 1),

(ai
1

,j
2

, ai
2

,j
2

) = (1, 0),

(ai
1

,j
3

, ai
2

,j
3

) = (0, 1).

2016 IEEE International Symposium on Information Theory

951

Then, we get that for the two rows i

1

and i

2

: j

1

, j

2

2
Ri

1

, j

3

/2 Ri
1

and j

1

, j

3

2 Ri
2

, j

2

/2 Ri
2

. Thus, none of
the three conditions Ri

1

✓ Ri
2

, Ri
2

✓ Ri
1

, or Ri
2

\
Ri

1

= ; hold.
To prove necessity, let us assume that there are two

rows with indices 1 6 i

1

< i

2

6 m, such that none of
the three conditions holds: Ri

1

✓ Ri
2

, Ri
2

✓ Ri
1

, or
Ri

2

\ Ri
1

= ;. Therefore, there exist j
1

, j

2

, j

3

such that
j

1

2 R

1

\ R
2

, j
2

2 R

2

\ R
1

, and j

3

2 R

1

\ R

2

. Hence
we get that (ai

1

,j
1

, ai
2

,j
1

) = (1, 1), (ai
1

,j
2

, ai
2

,j
2

) =

(1, 0), (ai
1

,j
3

, ai
2

,j
3

) = (0, 1), and therefore the memris-
tors in positions (i

1

, j

1

) and (i

2

, j

1

) are in conflict.
Combining the two conditions to have no rows and no
columns in conflict, one can observe that they together
imply the condition that

If Ri
2

✓ Ri
1

and Ri
3

✓ Ri
1

, (2)
then Ri

2

✓ Ri
3

or Ri
3

✓ Ri
2

.

That is, two sets contained by the same set must be in
containment relation themselves (and cannot be disjoint).
Next we show that arrays satisfying these constraints can
be successfully programmed.

Theorem 5. If an array A is conflict-free then it is possible

to successfully program its cells.

Proof: The programming order works as follows.
Initially all cells are at logical state 0. Note that if the
array A is conflict-free, then according to Lemma 4, no
two rows or columns are in conflict.

Individual cells will be programmed row by row. That
is, all cells in a particular row are programmed and only
then proceeding to program the cells in another row.
The programming order of any two rows, i

1

and i

2

, is
determined as follows:

1) If Ri
2

\Ri
1

= ; then either row can be programmed
first.

2) If Ri
2

✓ Ri
1

, then row i

2

is programmed before
row i

1

.
3) If Ri

1

✓ Ri
2

, then row i

1

is programmed before
row i

2

.
According to this order we avoid any write sneak path that
may affect two memristors in the same column. Lastly,
within each row we program the ones starting from the
column index that intersects with the fewest contained
rows, and ending with the column index that intersects
with the most. By that we resolve all the memristors in
conflict in the programmed row.

On the other hand, we show that arrays which are not
conflict-free prevent successful programming in case the
initial logical state of all the cells is 0. These arrays cannot
be successfully programmed under any programming
order.

Theorem 6. If an array A is not conflict-free then it is

not possible to successfully program its cells, under any

programming order.

Proof: Examining the conflict configuration in Fig. 4,
we see that the cells of the left-most column cannot both

be programmed before any of the two other ones. Which
means that one of the cells in the left column must be
last. But clearly each choice of the last programmed cell
will cause a sneak path to one of the two rectangles of
form (1) existing in the configuration.

IV. CHARACTERIZATION OF THE NUMBER OF
CONFLICT-FREE ARRAYS

In this section we study the number of arrays which
are conflict-free. Our main goal is to approximate the
number of conflict-free arrays. We denote by M(m,n)

the number of conflict-free arrays of size m⇥ n.
In [3], [10], the number of arrays satisfying the read

sneak-path rectangle constraint was studied. In the read
sneak-path rectangle constraint it was required that every
two rows and columns are either identical or the location
sets of the ones are disjoint. Thus, the read sneak-path
constraint is a stronger constraint than the conflict-free
constraint, since there cannot be partial inclusion between
any two rows or columns. We denote by N(m,n) the
number of m ⇥ n arrays satisfying the read sneak-path
rectangle constraint. It was shown in [3], [10] that for
m,n large enough the number of information bits which
is possible to represent by these arrays behaves like (m+

n) log(m+n), that is logN(m,n) ⇡ (m+n) log(m+n).
We seek to derive a similar analysis for the conflict-
free constraint. Our main result here is the following
connection between M(m,n) and N(m,n).

Theorem 7. For all m,n,

M(m,n) 6 N(m,n) · (m+ n)

m+n
.

Proof: Given an m ⇥ n array A, recall that for i 2
[m] the set Ri ✓ [n] denotes the locations set of the
ones in this row, and the set Cj ✓ [m] for j 2 [n] is
defined similarly for the columns. We also refer here by
a weight of a row, column, to the number of ones in this
row, column, respectively. Assume for now that there are
neither zero rows nor zero columns.

According to Lemma 4, an array is conflict-free if and
only if it does not have rows and columns in conflict. By
the definition of rows in conflict, we can define for every
row i 2 [n], a row index i

max

of a row with maximum
weight which contains the set Ri as a subset and if
there is more than one such row we choose the one with
the minimum index. Assume there are ` different i

max

indices, then the rows are partitioned into ` non-empty
subsets S

1

, . . . , S` where for every set Si, i 2 [`] there
exists an index i

max

such that for all j 2 Si, Rj ✓ Ri
max

.
Since the columns are also not in conflict we could

repeat the same process for the columns. However, if we
continue with the partitions of the rows into the ` sets
S

1

, . . . , S`, then we only need to require that for every
set i 2 [`] and j

1

, j

2

2 Si it holds that Rj
1

✓ Rj
2

or
Rj

2

✓ Rj
1

.
The partition of the rows into ` non-empty subsets

defines also a partition of the columns into ` non-empty
subsets. Given a set of x rows which is matched with
a set of y columns we study the number of options to
position the ones in these x rows and y columns.

2016 IEEE International Symposium on Information Theory

952

Proposition 8. Assume a set of x rows is matched with a

set of y columns. Then there are at most (x + y)! options

to place the locations of the ones in these x rows and y

columns.

Proof: Assume that the sets of x rows and y columns
form an x⇥y array. According to the partition of the rows
described above, there is at least one row with y ones,
and for every two rows i, j 2 [x] it holds that Ri ✓ Rj

or Rj ✓ Ri. Hence we can form a permutation of the x

rows and y columns such that the ones in each row are
aligned to the left and the following holds:

R

1

✓ R

2

✓ · · · ✓ Rx = [y].

Let r

1

= |R
1

| > 0 and for 2 6 i 6 x, ri = |Ri \
Ri�1

| > 0, then we have that
Px

i=1

ri = y. The number
of solutions for this equation is given by

✓
x+ y � 2

x� 1

◆
,

and since there are x! options to permute the rows and y!

to permute the columns, the number of options to place
the locations of the ones in the x rows and y columns is
at most ✓

x+ y � 2

x� 1

◆
x!y! 6 (x+ y)!.

Next, assume that the rows and columns are partitioned
into ` sets and the sizes of the row sets are x

1

, . . . , x`

and the sizes of the column sets are y

1

, . . . , y`. Then, the
number of arrays with this partition of rows and columns
is at most

(x

1

+ y

1

)! · (x
2

+ y

2

)! · · · (x` + y`)!

6(x

1

+ y

1

)

x
1

+y
1 · (x

2

+ y

2

)

x
2

+y
2 · · · (x` + y`)

x`+y`

6(m+ n)

x
1

+y
1 · (m+ n)

x
2

+y
2 · · · (m+ n)

x`+y`

=(m+ n)

m+n
.

Lastly, we need to calculate the number of options to
partition the rows and columns into some ` subsets.
However, this value was already studied in [3] and is
given by N(m,n). Therefore, we conclude that

M(m,n) 6 N(m,n) · (m+ n)

m+n
.

The asymptotic implications of Theorem 7 are that the
log of M(m,n) behaves at most like 2(m+n) log(m+n),
and as with the read sneak-path constraint [10], here
too capacity vanishes to 0 as m and n tend to infinity
and the ratio m/n approaches some positive number.
Nevertheless, for fixed-dimension arrays the potential
extra factor (m + n)

m+n may lead to higher storage
efficiency.

V. PARALLEL PROGRAMMING

The programming order we discussed so far assumes
the cells are programmed individually, one at a time.
However, in practice, it is more common to program
multiple cells in a row or column simultaneously [6],
[8]. This parallel writing method eliminates sneak paths,
because two memristors are no longer in conflict if

programmed together; see Fig. 5.

1

10

0

0 → 1

0 → 1

OK

OK

Fig. 5. Parallel programming in the columns.

We assume in this section that the cells are pro-
grammed in parallel, where their initial state is the logical
value 0. When a row is chosen to be programmed, all the
memristors in this row which need to store logical value 1
are programmed together by a SET operation. The same
principle holds for parallel programming in the columns.

A. Parallel programming in the rows

The benefit of the parallel programming is that, if a full
row is programmed in parallel, sneak paths can only affect
memristors in other rows and not in the programmed
row. Thus, if two memristors in the same row are in
conflict, they will no longer cause an error since they
are programmed together. However, two memristors in
conflict in the same column will cause an error, since
they cannot be programmed together. From symmetry,
the same applies (reversed) when parallel programming
is done in the columns.

We can thus prove the equivalent of Theorems 5 and 6.

Theorem 9. An array can be successfully programmed in

parallel in the rows if and only if it has no memristors in

conflict in the columns.

Proof: Let us first assume that the array has no
memristors in conflict in the columns and we will show
that it can be successfully programmed. Since the rows
are programmed in parallel, we only need to determine
their programming order. This order is identical to the
one given in Theorem 5 since every two rows satisfy
one of the three conditions we specified in the proof of
Theorem 5.

To see the other direction, note that if two cells are in
conflict in the columns then they will not be programmed
together. Hence depending on the programming order, one
of them will be programmed after the other and introduce
a sneak-path error.

As before, the number of arrays that can be success-
fully programmed in parallel in the rows can be bounded.
Let us denote this number by P (m,n) and we have the
following relation.

Theorem 10. For all m,n,

P (m,n) 6 M(m,n) · n! ·mn
.

Proof: The proof strongly builds on the proof of
Theorem 7, with some modifications. We call an array
with no conflicts in the columns a P-array, and an array
with no conflicts in the rows or columns a M-array. We
first observe that M-arrays are also P-arrays, because
having no conflicts in the rows/columns implies having

2016 IEEE International Symposium on Information Theory

953

no conflicts in the columns. Now we want to bound how
many more P-arrays than M-arrays there are. In M-arrays
we have the condition (2) on the rows that implies that
within a x ⇥ y partition all rows are in containment
relation. But in P-arrays this is no longer the case, and we
may have that rows will satisfy Ri

2

✓ Ri
1

, Ri
3

✓ Ri
1

,
and also Ri

2

\ Ri
3

= ;. In a P-array consider two row
sets R

1

,R
2

where in each Ri all rows are in containment
relations, all rows in R

1

are disjoint from all rows in R
2

,
and there exists a row Rj that contains all rows of both
R

1

and R
2

. We can link this configuration to an M-array
with two partitions corresponding to R

1

and {R
2

, R

0
j},

where R

0
j is the intersection of Rj with the maximal

row in R
2

. The P-array can be obtained from this M-
array by stretching R

0
j to cover the sets of R

1

as well.
Every P-array can be obtained by taking an M-array and
stretching rows in it to cover multiple partitions. Define
the number of partitions in an M-array to be T . In each
x⇥y partition, between 0 and x�1 rows can be stretched
to cover some subset of the other T � 1 partitions. So if
we are not careful we may count

QT
i=1

(xi·2T�1

) possible
stretchings, which looks like a lot. But then we observe
that the stretchings of different partitions are dependent,
and need to induce an order between the partitions. So
the number of stretchings is bounded by T !

QT
i=1

xi,
the number of ways to order the T partitions times the
number of rows to stretch in each partition. Bounding xi

by m and T by n we get the theorem statement.

We get a large potential increase in the number of
arrays thanks to parallel programming, but still zero
asymptotic capacity.

B. Parallel programming in the rows and columns

We saw in the previous subsection that the parallel
programming in the rows manages to overcome all cells
in conflict in the rows, but not in the columns. Thus,
we add more flexibility in the programming order and
now assume that it is possible to program in parallel
the memristors both in the rows and the columns, in any
order we wish. Thus when programming memristors in
the same column, the write sneak paths can only affect
the cells outside the programmed column and the same
principle holds for the rows.

Therefore, if memristors in conflict are in the same
row or in the same column, then it is possible to resolve
this conflict by simply programming them in parallel.
However, the patterns which we still cannot resolve are
the ones in which a memristor is in conflict with another
memristor on its row and another one on its column. This
will be proved in the next theorem.

Theorem 11. Assume an array A has a memristor which

is in conflict with two more memristors, one in the same

row and one in the same column. Then, it is not possible

to successfully program its cells.

Proof: Assume the memristor in position (i, j) is in
conflict with two more memristors, one in position (i, j

0
)

and another one in position (i

0
, j). It is not possible to

program all three cells in parallel. Thus, in any program-

ming order at least one of the three cells will be last and
cause an error.

Lastly, this condition is sufficient (proof omitted).

Theorem 12. Assume an array A has no memristor which

is in conflict with two more memristors, one in the same

row and one in the same column. Then, it is possible to

successfully program its cells.

VI. CONCLUSION

We characterized the constraints memristor arrays need
to satisfy for different programming models. Important
future work is to tighten the counting of arrays satisfying
these constraints, and derive similar counts for the last
model of parallel row and column programming.

VII. ACKNOWLEDGEMENT

This work was supported in part by the Intel ICRI-CI
center, by the Israel Science Foundation (ISF), and the
German-Israeli Foundation (GIF).

REFERENCES

[1] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Information-theoretic
sneak path mitigation in memristor crossbar arrays,” submitted
to IEEE Transactions on Information Theory, 2013.

[2] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “On the channel induced
by sneak-path errors in memristor arrays,” Proc. of the Interna-

tional Conference on Signal Processing and Communication, pp.
1–6, July 2014.

[3] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints
in memristor crossbar arrays,” in Proc. IEEE International Sympo-

sium on Information Theory, pp. 156–160, Istanbul, Turkey, July
2013.

[4] L.O. Chua, “Memristor the missing circuit element,” IEEE Trans-

actions on Circuit Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.
[5] L.O. Chua, “Resistance switching memories are memristors,” Ap-

plied Physics A: Materials Science & Processing, vol. 102, no. 4,
pp. 765–783, March 2011.

[6] X. Cong, D. Xiangyu, N. P. Jouppi, and Y. Xie, “Design impli-
cations of memristor-based RRAM cross-point structures,” Pro-

ceeding of Design, Automation & Test in Europe Conference &
Exhibition, pp. 1–6, March 2011.

[7] S. Kvatinsky, E.G. Friedman, A. Kolodny, and U.C. Weiser,
“The desired memristor for circuit designers,” IEEE Circuits and

Systems Magazine, vol. 13, no. 2, pp. 17–22, 2013.
[8] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny,

and U. C. Weiser, “Memristor-based material implication (IMPLY)
logic: design principles and methodologies,” IEEE Transactions on

Very Large Scale Integration (VLSI), vol. 22, no. 10, pp. 2054–
2066, October 2014.

[9] H. Li et al., “Write disturb analyses on half-selected cells of cross-
point RRAM arrays,” Proc. of the IEEE International Reliability

Physics Symposium, pp. MY.3.1-MY.3.4, June 2014.
[10] P.P. Sotiriadis, “Information capacity of nanowire crossbar switch-

ing networks,” IEEE Transactions on Information Theory, vol. 52,
no. 7, pp. 3019–3032, July 2006.

[11] D. Strukov, G. Snider, D. Stewart, and S. Williams, “The missing
memristor found,” Nature, vol.,453, pp. 80–83, May 2008.

[12] P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart,
J. Straznicky, and S. Williams, “Writing to and reading
from a nano-scale crossbar memory based on memristors,”
Nanotechnology, vol. 20, October 2009.

2016 IEEE International Symposium on Information Theory

954

