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Abstract— In this paper, we study the performance of different
decoding schemes for multilevel flash memories where each page
in every block is encoded independently. We focus on multi-
level cell flash memory, which is modeled as a two-user multiple-
access channel suffering from asymmetric noise. The uniform
rate regions and sum rates of treating interference as noise
decoding and successive cancelation decoding are investigated
for a program/erase cycling model and a data retention model.
We examine the effect of different binary labelings of the cell
levels, as well as the impact of further quantization of the memory
output (i.e., additional read thresholds). Finally, we extend our
analysis to the three-level cell flash memory.

Index Terms— Flash memory, multi-user system, rate region,
labelings, asymmetric noise.

I. INTRODUCTION

NAND flash memory is a versatile non-volatile data
storage medium, and has been widely used in consumer

electronics as well as enterprise data centers. It has many
advantages over traditional magnetic recording, e.g., higher
read throughput and less power consumption [3]. The basic
storage unit in a NAND flash memory is a floating-gate
transistor referred to as a cell. The voltage levels of a cell can
be adjusted by a program operation and are used to represent
the stored data. The cells typically have 2, 4, and 8 voltage
levels (1, 2, and 3 bits/cell, respectively) and are referred
to as single-level cell (SLC), multi-level cell (MLC), and
three-level cell (TLC), respectively. Cells are organized into
a rectangular array, interconnected by horizontal wordlines
and vertical bitlines, that constitute a block. A flash memory
chip comprises a collection of such blocks. During program
(i.e., write) operations, the voltage level of a cell can not be
decreased. In order to do so, the entire containing block must
be erased and reprogrammed. Repeated program/erase (P/E)
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Fig. 1. (a) The four voltage levels and Gray labeling for a cell in MLC flash
memories. A total of three reads are employed for decoding two pages. (b) The
eight voltage levels and Gray labeling for a cell in TLC flash memories. A total
of seven reads are employed for decoding three pages.

operations induce wear on the cells in the block, with a
detrimental effect on the lifetime of the memory.

In an MLC flash memory, the two bits in the cells connected
along a wordline are assigned to two separate pages, which
represent the basic unit for program and read operations. The
most significant bit (MSB) is assigned to the lower page while
the least significant bit (LSB) is assigned to the upper page.
We denote the four nominal voltage levels in the MLC cell
as A0, A1, A2, and A3, in order of increasing voltage. The
program operation is not perfect, so the actual cell levels are
distributed around the nominal levels, as depicted in Fig. 1(a).
Also shown in the figure is a particular mapping of 2-bit
patterns, namely ‘11’, ‘10’, ‘00’, and ‘01’, to the voltage
levels. We refer to this mapping as the Gray labeling.

Similarly, the three bits belonging to a TLC are separately
mapped to three pages. We refer to the first bit as the most
significant bit (MSB), the second bit as the center significant
bit (CSB), and the third bit as the least significant bit (LSB).
The corresponding pages are referred to as the lower page,
center page, and upper page, respectively. Fig. 1(b) depicts the
programmed cell level distributions around the eight nominal
TLC voltage levels, denoted B0, B1, B2, B3, B4, B5, B6, and
B7, along with the corresponding Gray labeling, ‘111’, ‘110’,
‘100’, ‘101’, ‘001’, ‘000’, ‘010’, and ‘011’.

The channel characterization of flash memories is important
for understanding fundamental limits on storage density, as
well as for designing effective signal processing algorithms
and error-correcting codes (ECC) [2], [11], [12], [25].
Many experiments have shown that the distribution of the
readback signal (i.e., the voltage level of a cell) in flash
memories is asymmetric [5], [6], [22], [28]. In [23], a mixed
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normal-Laplace distribution model was proposed and shown to
accurately capture this asymmetry. Several papers, e.g., [16],
[21], [27], [28], [34], and [35], have recently studied the
capacity of multilevel flash memory using a variety of channel
models. For example, in [35], the capacity of MLC flash
memory was analyzed by modeling MLC flash memory as a
4-ary input point-to-point channel with additive white
Gaussian noise. The performance improvement provided by
soft information obtained with multiple read thresholds – a
topic to be addressed later in this paper – was also evaluated. In
a similar vein, the capacity of TLC flash memory was recently
studied in [27] by considering TLC flash memory as an 8-ary
input point-to-point channel with asymmetric mixed normal-
Laplace noise. In [28], empirical error measurements at the
cell and bit levels were used to estimate the capacity of an
MLC flash memory as a function of P/E cycle count. Results
obtained using 4-ary discrete memoryless channel (DMC)
model were compared to those based upon a union of two
independent binary symmetric channel (BSC) models corre-
sponding to the lower page and upper page.

A common feature of these prior studies of flash memory
capacity is the use of point-to-point channel models. In this
paper, we take a different approach, and model the flash
memory as a multi-user system, where the pages correspond
to independently encoded users of a shared multiple-access
channel. To the best of our knowledge, this is the first time
that flash memories have been examined from this perspective.

Our goal is to study the fundamental performance limits of
page-oriented multilevel flash memories using various decod-
ing schemes. Specifically, we consider both low-complexity
Treating Interference as Noise (TIN) decoding and relatively
high-complexity Successive Cancelation (SC) decoding for the
MLC case. We first examine a general discrete memoryless
multiple-access channel model with two binary inputs and a
four-level output. We derive elementary conditions such that
the sum rate of TIN decoding equals that of SC decoding.
Then, we determine achievable rate regions and sum rates
of both decoding schemes for several specific flash memory
channel models, represented by channel transition matrices
from cell voltage levels to quantized readback outputs. The
effect of different binary labelings of the cell levels is also
studied, and the optimal labelings for each decoding scheme
and channel model are identified. It is shown that TIN and
SC decodings both outperform Default Setting (DS) decoding,
a model of current flash memory technology, which uses
Gray labeling of cell levels, along with separate quantization
and decoding of each page. We also study the impact of
further quantization of the memory output (i.e., additional
read thresholds), and the resulting effect on performance
is evaluated by means of computer simulation. Finally, we
generalize some of these results to the TLC case, highlighting
some of the complexities that arise when the number of bits
per cell increases. We remark that, although the focus of the
paper is on information-theoretic analysis, some of the results
provide qualitative insight into effective coding solutions.

There are conceptual connections, as well as important
differences, between this work and the vast literature on
multi-user communications and multilevel coded modulation

for data transmission. The basic multiple-access channel
model underlying many studies in the setting of wireless
communications is an additive channel; that is, the received
signal is the sum of all users’ signals plus noise; see, for
example, [4], [13], [14], [19], [31], [36]. This model has very
different characteristics than the flash memory channel models
that we consider, and few results are directly applicable.
Multilevel coded modulation [9], [18], [20], [32] and bit-
interleaved coded modulation (BICM) [8], [29], [30] have
found extensive use in wireline and wireless communications.
Although designed for point-to-point channels, they have been
analyzed within the framework of multi-user information the-
ory; see, for example, [7], [8], [17], [20], [29], [30], [32], [33].
It was shown in [17], [30], [32], and [29] that, on the
additive white Gaussian noise (AWGN) channel, all mappings
give the same sum rate under multistage decoding (i.e., SC
decoding). In [32], the BICM scheme was interpreted as mul-
tilevel encoding together with parallel, independent decoding
of the individual levels (i.e., TIN decoding). For PSK and
QAM schemes, it was observed that the gap between the sum
rates of TIN and SC decodings under Gray labeling was small
over AWGN and fading channels [7], [8], [32]. As indicated
by these examples, the focus of most of these studies is on
channels with AWGN and fading, and the conclusions are
generally not relevant to the DMC models for flash memory
that we consider.

The remainder of the paper is organized as follows.
In Section II, we introduce the discrete memoryless multiple-
access channel model for multilevel flash memories. We then
review information-theoretic characterizations of the uniform
rate regions and sum rates for the three decoding schemes –
TIN, SC, and DS – that we consider. We also derive some
elementary but useful characterizations of those channels for
which TIN and SC decoders yield the same rate regions,
as well as an elementary general bound on the difference
between the respective sum rates of TIN and SC decoders.
In Section III, we analyze properties and relationships among
the rate regions for various MLC flash memory channel mod-
els. We consider the effect of using different binary labelings
of cell voltage levels, as well as the impact of employing
additional read thresholds to obtain refined soft information.
In Section IV, we extend the analysis to TLC flash mem-
ories, highlighting some of the complexities and qualitative
differences encountered when considering more bits per cell.
We conclude the paper in Section V.

Remark on notation: Throughout the paper, we follow the
notation in [13]. Random variables are denoted with upper case
letters (e.g., X) and their realizations with lower case (e.g., x).
Calligraphic letters (e.g., X ) are used for finite sets. R is the set
of real numbers. The discrete interval [i : j ] is defined as the
set {i, i + 1, . . . , j}. For a length-n vector v, v(i) represents
the value of its i th coordinate, i = 1, 2, . . . , n. We use the
notation p(x) to abbreviate the probability P(X = x), and
likewise for conditional and joint probabilities of both scalar
and vector random variables, e.g., p(y|x) = P(Y = y|X = x).
For a probability vector ( p1

ps
, p2

ps
, . . . , pn

ps
) where ps = ∑n

i=1 pi

and pi ≥ 0, i = 1, 2, . . . , n, the entropy function is defined
by H ( p1

ps
, p2

ps
, . . . , pn

ps
) = − ∑n

i=1
pi
ps

log2
pi
ps

. We will also use
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the function f (x) = x log2x . Therefore, we can express the
entropy function by H ( p1

ps
, p2

ps
, . . . , pn

ps
) = − 1

ps

∑n
i=1 f (pi)+

log2 ps .

II. MULTIPLE-ACCESS CHANNEL MODEL

FOR FLASH MEMORIES

In this section, we introduce the multiple-access channel
model for multilevel flash memories, define the decoding
schemes to be considered, and present some of their basic
information-theoretic properties.

A. System Model

We model a multilevel flash memory as a k-user
multiple-access channel with k independent inputs
X1, · · · , Xk , and one output Y (k = 2 for MLC flash,
and k = 3 for TLC flash).

Specifically, the readback signal Ỹ ∈ R in a flash memory
is expressed as

Ỹ = σ(X1, · · · , Xk)+ Z , (1)

where X1, · · · , Xk ∈ {0, 1} represent data from k independent
pages, Z ∈ R stands for the asymmetric noise (see [23]
for more details on the normal-Laplace distribution model),
and σ maps an input (x1, · · · , xk) to a voltage level
v. More specifically, σ is a bijective mapping from the
set T which consists of all length-k binary strings to
the set V which consists of 2k voltage level values.
For k = 2 (MLC flash), TM LC = {11, 10, 01, 00} and
VM LC = {A0, A1, A2, A3}. By a slight abuse of notation,
we write the mapping σ as a vector σ = (w0, w1, w2, w3)
(where wi , i = 0, 1, 2, 3, represent the full set of possible
2-tuples) to represent the mapping σ(wi ) = Ai for
i = 0, 1, 2, 3. For example, the vector σ = (11, 10, 00, 01)
corresponds to σ(11) = A0, σ(10) = A1, σ(00) = A2,
and σ(01) = A3. Similarly, for k = 3 (TLC flash),
TT LC = {111, 110, 101, 100, 011, 010, 001, 000} and
VT LC = {B0, B1, . . . , B7}. We write σ = (w0, w1, . . . , w7)
(where wi , i = 0, 1, . . . , 7, represent the full set of
possible 3-tuples) to represent the mapping σ(wi ) = Bi for
i = 0, 1, . . . , 7. We will refer to a mapping σ as a labeling.

During the readback process, a quantizer Q is used to
quantize Ỹ to obtain an output Y , i.e., Y = Q(Ỹ ), where the
function Q(·) is a mapping from R to a finite alphabet set Y =
{s0, s1, . . . , sq−1} of cardinality q . Usually q = 2k , but this is
not necessary. The cardinality q can correspond to a large
number by applying multiple reads. From an information-
theoretic point of view, this means that more soft information
is obtained for decoding.

B. Decoding Schemes for MLC Flash Memories

In this subsection, we investigate three decoding schemes
for MLC flash memories.

Given a labeling σ and a quantizer Q, the MLC flash
memory channel can be modeled as a 2-user discrete memory-
less multiple-access channel WM LC : (X × X , p(y|x1, x2),Y ),
where X = {0, 1}, Y = {s0, s1, . . . , sq−1}, and p(y|x1, x2)

is the transition probability for any x1, x2 ∈ X and y ∈ Y .
For simplicity, denote the conditional probabilities by
pB D(x1,x2),y

def= P(Y = y|X1 = x1, X2 = x2), where B D(·) is
a function that converts a binary string into its decimal value;
e.g., p2,s0 = P(Y = s0|X1 = 1, X2 = 0).

Users j = 1, 2 independently encode their messages M j

into the corresponding length-n codewords xn
j and send (write)

them over the shared channel (i.e., a set of cells) to the
receiver (reader). Following the notation in [13], we define
a (2nR1 , 2nR2 , n) code by two encoders xn

1 (m1) and xn
2 (m2)

for messages m1 and m2 from message sets [1 : 2nR1 ] and
[1 : 2nR2 ] respectively, and a decoder that assigns an estimate
(m̂1, m̂2) based on the received sequence yn . We assume that
the message pair (M1,M2) is uniform over [1 : 2nR1 ] × [1 :
2nR2 ]. The average probability of error is defined as P(n)e =
P{(M1,M2) �= (M̂1, M̂2)}. A rate pair (R1, R2) is said to be
achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes
such that limn→∞ P(n)e = 0. The capacity region is the closure
of the set of achievable rate pairs (R1, R2).

The capacity region of this multiple-access channel is fully
characterized [10], [13]. However, in this paper, to make the
analysis simple and yet representative, we focus on the uniform
rate region for different decoding schemes. This represents
the achievable region corresponding to the case that the input
distributions are uniform. For other input distributions, the
analysis is similar.

For a channel WM LC , the Treating Interference as
Noise (TIN) decoding scheme decodes X1 and X2 indepen-
dently based on Y [10], [13]. Its uniform rate region RT I N

for lower page X1 and upper page X2 is the set of all pairs
(R1, R2) such that R1 ≤ I (X1; Y ) and R2 ≤ I (X2; Y ).
In RT I N , the sum rate1 is r T I N

s = max{R1 + R2 : (R1, R2) ∈
RT I N } = I (X1; Y )+ I (X2; Y ).

For a channel WM LC , the Successive Cancelation (SC)
decoding scheme decodes X1 and X2 in some order based
on Y [10], [13]. Its uniform rate region RSC for lower page
X1 and upper page X2 is the set of all pairs (R1, R2) such
that R1 ≤ I (X1; Y |X2), R2 ≤ I (X2; Y |X1), and R1 + R2 ≤
I (X1, X2; Y ). In RSC , the sum rate is r SC

s = max{R1 + R2 :
(R1, R2) ∈ RSC} = I (X1, X2; Y ).

Remark 1: For TIN decoding, X1 and X2 are decoded
independently and can be implemented in parallel. However,
for SC decoding, X1 and X2 are decoded in a certain order.
In general, TIN decoding is preferred for its low decoding
complexity, but there may be a cost in performance relative
to SC decoding, as reflected in the uniform rate region
containment RT I N ⊆ RSC and the sum rate relationship
r T I N

s ≤ r SC
s . �

The following theorem identifies the channels for which
the sum rates of TIN decoding and SC decoding are
the same.

Theorem 1: For a channel WM LC, the sum rates
satisfy r T I N

s ≤ r SC
s with equality if and only if p3,s j p0,s j =

p2,s j p1,s j for all j = 0, 1, . . . , q − 1. If r T I N
s = r SC

s , then

RT I N = RSC and the rate region is a rectangle.

1In this paper, for the sake of brevity, we use the term “sum rate" to represent
the maximum sum rate in the corresponding rate region.
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Proof: See Appendix A.
An upper bound on the difference between r SC

s and r T I N
s

is given by the following theorem.
Theorem 2: For a channel WM LC, the rate difference

r SC
s − r T I N

s ≤ 1 with equality if and only if
p3,s j + p2,s j = p1,s j + p0,s j and p3,s j p1,s j = p2,s j p0,s j = 0
for all j = 0, 1, . . . , q − 1.

Proof: See Appendix B.
From the proof of Theorem 2, it is easy to see that

r SC
s − r T I N

s = 1 is satisfied if and only if I (X1; Y ) =
I (X2; Y ) = 0 and I (X1, X2; Y ) = 1. Thus, in this case, if
we use TIN decoding, no information can be reliably stored
in the memory (i.e., I (X1; Y )+ I (X2; Y ) = 0), whereas if we
use SC decoding, one bit of information can be reliably stored
in each cell (i.e., I (X1, X2; Y ) = 1).

The third decoding scheme we consider is modeled upon
current MLC flash memory technology. For this scheme, the
Gray labeling σ = (11, 10, 00, 01) is used to map binary
inputs (X1, X2) to cell levels V . The lower page X1 and upper
page X2 are decoded independently according to different
quantization rules and a total of three reads are employed.
To decode X1, Ỹ is quantized by one read between voltage
levels A1 and A2

(
see Fig. 1(a)

)
, and the corresponding output

is Y1. To decode X2, Ỹ is quantized by two reads between
voltage levels A0 and A1, and between A2 and A3, respectively(
see Fig. 1(a)

)
, and the corresponding output is Y2. We call

this Default Setting (DS) decoding, and it is used as our
baseline decoding scheme. Its uniform rate region RDS for
the lower page X1 and the upper page X2 is the set of all
pairs (R1, R2) such that R1 ≤ I (X1; Y1) and R2 ≤ I (X2; Y2).
In RDS, the sum rate is r DS

s = max{R1 + R2 : (R1, R2) ∈
RDS} = I (X1; Y1)+ I (X2; Y2).

III. PERFORMANCE OF MLC FLASH MEMORY WITH

DIFFERENT DECODING SCHEMES AND LABELINGS

In this section, we study the uniform rate region and
sum rate of several MLC flash memory channel models
with different decoding schemes and labelings. The channel
models, inspired by empirical observation of flash memory
behavior, are defined by channel transition matrices relating
voltage levels to quantized outputs. Specifically, we consider
program/erase (P/E) cycling models (early-stage and late-
stage) and a data retention model. The P/E cycling model is
used to characterize errors caused by inter-cell interference and
the wear induced by repeated program/erase operations. The
data retention model is used to characterize retention errors
resulting from charge leakage over time from programmed
cells. Note that although we concentrate on these particular
models here, similar analysis can be applied to other relevant
models.

Among the 4! = 24 possible binary labelings of the 4 nom-
inal cell voltage levels, we initially consider 3 representative
examples.

Definition 3: For MLC flash memory, the mapping
σG=(11, 10, 00, 01) is called Gray labeling, σN O =(11, 10,
01, 00) is called Natural Order (NO) labeling, and σE O =(11,
00, 01, 10) is called Even Odd (EO) labeling.

TABLE I

CHANNEL TRANSITION MATRIX pE
M LC (y|v) AT EARLY-STAGE

OF P/E CYCLING FOR MLC FLASH MEMORIES

For each of these three labelings, the mapping between
inputs (X1, X2) ∈ TM LC and voltage levels V ∈ VM LC is
shown in Table I.

Remark 2: It is a standard practice in current MLC flash
technology to program the lower page and upper page sequen-
tially in a 2-step procedure [23]. The cell voltage level is
initially set to reflect the value of the lower bit, with a ‘1’
corresponding to the lowest level and a ‘0’ corresponding to
an intermediate level. When programming the upper bit, this
voltage level is increased to reach the desired level correspond-
ing to the binary labeling. Recall that a programming operation
can not decrease the cell level. Clearly this procedure is only
compatible with labelings in which two lower voltage levels
share the same lower bit value, and likewise for the two upper
voltage levels. The Gray labeling, which is used in practice,
and the NO labeling satisfy this property, but the EO labeling
does not.

The 2-step programming process also influences the behav-
ior of the flash memory channel. The early-stage P/E cycling
model and data retention model are largely independent of the
programming method, but the late-stage P/E cycling model
includes the effect of an incorrectly programmed lower bit
on the programming of the upper bit. Hence, when analyzing
the performance of any MLC flash memory labeling, we will
assume that the 2-bit labels of the labeling under consideration
are mapped to the corresponding labels in the Gray labeling,
to which the 2-step programming process is then applied. This
approach can be extended to higher density flash memory, such
as TLC, as well. �

A. Quantization With Three Reads

In this subsection, we assume the quantizer Q uses three
reads, placed between every pair of adjacent voltage levels,
as shown in Fig. 1(a). Hence, the output alphabet YM LC =
{s0, s1, s2, s3}. For DS decoding, we assume that the output
alphabet for the lower page X1 is Y 1

M LC = {s0∪1, s2∪3} of
cardinality two, and the output alphabet for the upper page
X2 is Y 2

M LC = {s0, s1∪2, s3} of cardinality three.2 Thus,
DS decoding also requires a total of three reads.
A.1 Performance of Gray, NO, and EO Labelings

We study the performance of MLC flash memories using the
P/E cycling model, which has different channel characteristics
for early and late stages of the memory lifetime.

2We use the notation su∪v to represent an output obtained by merging
two outputs su and sv in YM LC , i.e., P(Y = su∪v |X1 = x1, X2 = x2)= ∑

i∈{u,v} P(Y = si |X1 = x1, X2 = x2) for any x1, x2 ∈ {0, 1}. Strictly
speaking, for the upper page decoding, current MLC flash memories use
an output alphabet Y 2

M LC = {s1∪2, s0∪3}. The resulting performance cannot
exceed that obtained with the output alphabet {s0, s1∪2, s3} used in this paper.
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Early-Stage P/E Cycling Model: The early-stage P/E cycling
channel transition matrix pE

M LC(y|v), for output y ∈ YM LC

and voltage level v ∈ VM LC , reflects empirical results in [28]
and is shown in Table I, where a1, 1 − a1, b1, 1 − b1, c1, and
1 − c1 represent non-zero probabilities.

As shown in Table I, note that the transition probability
from inputs (X1, X2) to output Y depends upon the labeling
which maps inputs to voltage levels, as well as the channel
transition matrix from voltage levels to output.

Lemma 4: For channel transition matrix pE
M LC(y|v), using

Gray labeling, we have r T I N
s = r SC

s and RT I N =RSC. Using
either NO labeling or EO labeling, we have r T I N

s < r SC
s .

Proof: With Gray labeling, in Table I, for the column
Y = s0, we have p0,s0 = 0, p1,s0 = 0, p2,s0 = 0, and
p3,s0 = a1. Thus, p3,s0 p0,s0 = p2,s0 p1,s0. We can also verify
p3,si p0,si = p2,si p1,si for i = 1, 2, 3. Thus, from Theorem 1,
we conclude r T I N

s = r SC
s and RT I N = RSC . On the other

hand, under NO labeling p3,s2 p0,s2 �= p2,s2 p1,s2, and under
EO labeling p3,s3 p0,s3 �= p2,s3 p1,s3 . Thus, from Theorem 1,

for these two labelings, r T I N
s < r SC

s .
Next, we calculate and compare the uniform rate regions

and sum rates for the three decoding schemes under the Gray,
NO, and EO labelings. The results are shown in Table II, where
λ1, λ2, λ3, λ4, and λ5 are given by

λ1 = f (1 − b1)− f (3 − b1)

4
+ 3

2
,

λ2 = 1 + 1

4

(
f (1 − a1)+ f (1 + c1)+ f (1 − c1)

)

−1

4

(
f (2 − c1)+ f (2 − a1 + c1)

)
,

λ3 = 1 + 1

4

(
f (1 − b1)+ f (c1)− f (1 − b1 + c1)

)
,

λ4 = 1 + 1

4

(
f (1 − a1)+ f (b1)+ f (1 − c1)

)

−1

4

(
f (1 − a1 + b1)+ f (2 − c1)

)
,

λ5 = 1 − 1

4

(
f (1 − a1 + b1)+ f (2 − c1)+ f (1 − b1 + c1)

)

+1

4

(
f (1 − a1)+ f (c1)+ f (1 − c1)

+ f (b1)+ f (1 − b1)
)
.

As an example, we show how to calculate λ1; the quantities
λ2, λ3, λ4, and λ5 can be obtained in a similar manner.
We see that λ1 corresponds to I (X1; Y1) under DS decoding.
Referring to Table I, we see that

P(Y1 = s0∪1|X1 = 1)

= P(Y1 = s0∪1, X1 = 1)

P(X1 = 1)

=
∑1

i=0 P(Y1 = s0∪1, X1 = 1, X2 = i)

P(X1 = 1)

=
∑1

i=0 P(Y1 = s0∪1|X1 = 1, X2 = i)P(X1 = 1, X2 = i)

P(X1 = 1)

= 1 + b1

2
.

TABLE II

UNIFORM RATE REGIONS AND SUM RATES OF DS, TIN, AND
SC DECODINGS AT EARLY-STAGE OF P/E CYCLING

FOR MLC FLASH MEMORIES

Similarly, we calculate P(Y1 = s2∪3|X1 = 1) = 1−b1
2 ,

P(Y1 = s0∪1|X1 = 0) = 0, and P(Y1 = s2∪3|X1 = 0) = 1.
Noting that P(Y1 = s0∪1) = 1+b1

4 and P(Y1 = s2∪3) = 3−b1
4 ,

we get

λ1 = I (X1; Y1) = H (Y1)− H (Y1|X1)

= H (
1 + b1

4
,

3 − b1

4
)− 1

2
H (

1 + b1

2
,

1 − b1

2
)

= −1

4

(
f (1 + b1)+ f (3 − b1)

)
+ 2

−1

2

(
− 1

2

(
f (1 + b1)+ f (1 − b1)

) + 1
)

= f (1 − b1)− f (3 − b1)

4
+ 3

2
.

From Table II, we have the following rate region and
sum rate comparisons for the Gray, NO, and EO labelings.
We denote the uniform rate region under DS decoding and
Gray labeling by the term RDS

G , where the superscript and sub-
script represent decoding scheme and labeling, respectively.
The same holds for other terms in Table II.

Theorem 5: With channel transition matrix pE
M LC(y|v), the

rate regions satisfy RDS
G ⊂ RT I N

G , RT I N
N O ⊂ RT I N

G , and
RSC

G ⊂ RSC
N O . For the sum rates, we have r T I N

s(G) > r DS
s(G),

r T I N
s(G) > r T I N

s(N O), r T I N
s(G) > r T I N

s(E O), and r SC
s(G) = r SC

s(N O) = r SC
s(E O).

Proof: Referring to Table II, we only need to show that
λ3 > λ1, λ4 > λ2, λ4 > λ5, λ3 > λ5, 1 > λ3, and λ3 + λ4 =
1 + λ5. Here we only give proofs of λ3 > λ1 and λ4 > λ5.
Other relationships can be proved in a similar way.

We have λ3 − λ1 = 1
4

(
f (c1) + f (3 − b1) − f (1 − b1 +

c1)
)
− 1

2 . Let h1(b1, c1) = f (c1)+ f (3−b1)− f (1−b1 +c1).

For 0 < b1 < 1 and 0 < c1 < 1, we have ∂h1(b1,c1)
∂b1

=
log2(1 − b1 + c1)− log2(3 − b1) < 0. Thus, for 0 < b1 < 1
and 0 < c1 < 1, we have h1(b1, c1) > h1(b1 = 1, c1) = 2,
so λ3 > λ1.

For 0 < b1 < 1 and 0 < c1 < 1, we have f (1−b1)+ f (c1)−
f (1−b1 +c1) = (1−b1)log2

1−b1
1−b1+c1

+c1log2
c1

1−b1+c1
< 0, so

λ4 − λ5 = −1

4

(
f (1 − b1)+ f (c1)− f (1 − b1 + c1)

)
> 0.

Example 1: For the early-stage P/E cycling model
in Table I, let a1 = 0.98, b1 = 0.97, and c1 = 0.99.3

3Since the channel transition matrix varies from different flash chip vendors,
the channel parameters are chosen to help visualize the relationship among the
rate regions. For other choices of channel parameters, the relative positions
of the rate regions and qualitative conclusions stay the same.
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Fig. 2. (a) Uniform rate regions under Gray and NO labelings with
a1 = 0.98, b1 = 0.97, and c1 = 0.99 for the early-stage P/E cycling model.
(b) Uniform rate regions under Gray and NO labelings with â1 = 0.82,
â2 = 0.1, b̂1 = 0.85, and ĉ1 = 0.85 for the late-stage P/E cycling model.

TABLE III

CHANNEL TRANSITION MATRIX pL
M LC (y|v) AT LATE-STAGE

OF P/E CYCLING FOR MLC FLASH MEMORIES

The uniform rate regions under Gray and NO
labelings are plotted in Fig. 2(a). It can be seen that
RT I N

N O ⊂ RT I N
G = RSC

G ⊂ RSC
N O . The SC decoding with NO

labeling gives the largest rate region.
Late-Stage P/E Cycling Model: The late-stage P/E cycling

channel transition matrix pL
M LC(y|v), for output y ∈ YM LC

and voltage level v ∈ VM LC , reflects measurements in [28]
and its structure is shown in Table III where â1, â2, 1−â1−â2,
b̂1, 1 − b̂1, ĉ1, and 1 − ĉ1 represent non-zero probabilities.

Lemma 6: For channel transition matrix pL
M LC(y|v),

we have r T I N
s < r SC

s with Gray labeling, NO labeling or
EO labeling.

Proof: For any of the three labelings, consider the
column Y = s3 in Table III. Since three of p0,s3 , p1,s3, p2,s3,
and p3,s3 are positive, it is impossible to satisfy

TABLE IV

UNIFORM RATE REGIONS AND SUM RATES OF DS, TIN, AND
SC DECODINGS AT LATE-STAGE OF P/E CYCLING

FOR MLC FLASH MEMORIES

p3,s3 p0,s3 = p2,s3 p1,s3 = 0. Thus, from Theorem 1,
we conclude r T I N

s < r SC
s .

Next, we calculate the uniform rate regions and the sum
rates of the three decoding schemes under different labelings.
The results are shown in Table IV, where τi , i = 1, . . . , 8, are
given by

τ1 = f (2 − â1 − â2 − b̂1)− f (4 − â1 − â2 − b̂1)

4
+ 3

2
,

τ2 = 1 + 1

4

(
f (â2)+ f (2 − â1 − â2)+ f (1 + ĉ1)+ f (1 − ĉ1)

)

−1

4

(
f (3 − â1 − â2 − ĉ1)+ f (â2 + ĉ1 + 1)

)
,

τ3 = 1 + 1

4

(
f (1 − b̂1)+ f (ĉ1)+ f (1 − â1 − â2)+ f (2 − ĉ1)

)

−1

4

(
f (1 − b̂1 + ĉ1)+ f (3 − â1 − â2 − ĉ1)

)
,

τ4 = 1 + 1

4

(
f (â2)+ f (2 − â1 − â2)+ f (b̂1)+ f (1 − ĉ1)

)

−1

4

(
f (â2 + b̂1)+ f (3 − â1 − â2 − ĉ1)

)
,

τ5 = 1 + 1

4

(
f (1 − â1 − â2)+ f (1 − b̂1)+ f (ĉ1)

)

−1

4

(
f (2 − â1 − â2)+ f (1 − b̂1 + ĉ1)

)
,

τ6 = 1 + 1

4

(
f (â2)+ f (b̂1)+ f (1 − ĉ1)

)

−1

4

(
f (â2 + b̂1)+ f (2 − ĉ1)

)
,

τ7 = 1 − 1

4

(
f (â2 + b̂1)+ f (1 − b̂1 + ĉ1)

+ f (3 − â1 − â2 − ĉ1)
)

+1

4

(
f (â2)+ f (ĉ1)+ f (2 − â1 − â2 − ĉ1)

+ f (b̂1)+ f (1 − b̂1)
)
,

τ8 = 1 + 1

4

(
f (1 − ĉ1)+ f (1 − â1 − â2)

− f (2 − â1 − â2 − ĉ1)
)
.

From Table IV, we can infer the following rate region and
sum rate relationships.

Theorem 7: With channel transition matrix pL
M LC(y|v), the

rate regions satisfy RDS
G ⊂ RT I N

G , RT I N
N O ⊂ RT I N

G , and
RSC

G ⊂ RSC
N O . For the sum rates, we have r T I N

s(G) > r DS
s(G),

r T I N
s(G) > r T I N

s(N O), r T I N
s(G) > r T I N

s(E O), and r SC
s(G) = r SC

s(N O) = r SC
s(E O).
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Proof: Using Table IV, we only need to show that τ3 ≥ τ1,
τ4 > τ2, τ4 > τ7, τ8 > τ5, τ3 > τ7, and τ4+τ5 = τ7+τ8. Here,
we give proofs of τ3 ≥ τ1 and τ4 > τ2. The other relationships
can be proved in a similar way. First, we compute

4(τ3−τ1) = f (1 − b̂1)+ f (ĉ1)+ f (1 − â1 − â2)+ f (2 − ĉ1)

+ f (4 − â1 − â2 − b̂1)− f (1 − b̂1 + ĉ1)

− f (3 − â1 − â2 − ĉ1)− f (2 − â1 − â2 − b̂1)

− f (2)

= (1 − b̂1 + ĉ1)log2(1 + 3 − â1 − â2 − ĉ1

1 − b̂1 + ĉ1
)

−(1 − b̂1)log2(1 + 1 − â1 − â2

1 − b̂1
)

−ĉ1log2(1 + 2 − ĉ1

ĉ1
)

+(3 − â1 − â2 − ĉ1)log2(1 + 1 − b̂1 + ĉ1

3 − â1 − â2 − ĉ1
)

−(1 − â1 − â2)log2(1 + 1 − b̂1

1 − â1 − â2
)

−(2 − ĉ1)log2(1 + ĉ1

2 − ĉ1
).

Note that the function tlog2(1 + 1/t) is concave. Define

t1 = 1−b̂1
1−â1−â2

, t2 = ĉ1
2−ĉ1

, r1 = 1−â1−â2
3−â1−â2−ĉ1

, and

r2 = 2−ĉ1
3−â1−â2−ĉ1

. Then we have

(r1t1 + r2t2)log2
(
1 + 1/(r1t1 + r2t2)

) ≥ r1t1log2(1+1/t1)

+ r2t2log2(1 + 1/t2).

That is,

(1 − b̂1 + ĉ1)log2(1 + 3 − â1 − â2 − ĉ1

1 − b̂1 + ĉ1
)

≥ (1 − b̂1)log2(1 + 1 − â1 − â2

1 − b̂1
)+ ĉ1log2(1 + 2 − ĉ1

ĉ1
).

Similarly, we have

(3 − â1 − â2 − ĉ1)log2(1 + 1 − b̂1 + ĉ1

3 − â1 − â2 − ĉ1
)

≥ (1 − â1 − â2)log2(1 + 1 − b̂1

1 − â1 − â2
)

+ (2 − ĉ1)log2(1 + ĉ1

2 − ĉ1
).

Therefore, τ3 − τ1 ≥ 0.
Next, we compute τ4 − τ2 = 1

4

(
f (b̂1)+ f (â2 + ĉ1 + 1)−

f (â2 + b̂1)− f (1+ ĉ1)
)

. Let ĥ1(â2, b̂1, ĉ1) = f (b̂1)+ f (â2 +
ĉ1 +1)− f (â2 + b̂1)− f (1+ ĉ1). For 0 < â2 < 1, 0 < b̂1 < 1,
and 0 < ĉ1 < 1, we have ∂ ĥ1(â2,b̂1,ĉ1)

∂ â2
= log2(â2 + ĉ1 + 1)−

log2(â2 + b̂1) > 0. Thus, for 0 < â2 < 1, 0 < b̂1 < 1,
and 0 < ĉ1 < 1, ĥ1(â2, b̂1, ĉ1) > ĥ1(â2 = 0, b̂1, ĉ1) = 0, so
τ4 > τ2.

Example 2: For the late-stage P/E cycling model in
Table III, let â1 = 0.82, â2 = 0.1, b̂1 = 0.85, and ĉ1 = 0.85.
The uniform rate regions under Gray and NO labelings are

plotted in Fig. 2(b). We see that RT I N
N O ⊂ RT I N

G ⊂ RSC
G ⊂

RSC
N O . Note that unlike the early-stage P/E cycling model in

Example 1, here the region RT I N
G is strictly included in RSC

G .
Remark 3: For both P/E cycling models, Theorems 5 and 7

imply that, for TIN decoding, among the 3 labelings, Gray
labeling gives the largest sum rate, which is also larger than
the sum rate of DS decoding. Moreover, compared to NO
labeling, Gray labeling generates a larger uniform rate region
for TIN decoding, but a smaller one for SC decoding.

For the early-stage P/E cycling model, we can also draw
several conclusions from Lemma 4, Theorem 5, and Table II
that provide insight into efficient coding schemes.

First, the sum rate of TIN decoding under Gray labeling
is the same as that of SC decoding under any of Gray,
NO, and EO labelings. This provides a symmetric capacity-
achieving coding solution based on good codes for the point-
to-point channel. With Gray labeling, we only need to use two
point-to-point symmetric capacity-achieving codes, e.g., polar
codes [1], for the lower and upper pages, to achieve the rates
I (X1; Y ) and I (X2; Y ), respectively. The two pages can be
decoded independently.

Second, for NO labeling or EO labeling, with SC decoding,
the rate pair (R1 = 1, R2 = λ5) can be achieved, which
implies that no coding is required for the lower page X1. This
also suggests us a very simple coding solution. We only need
to apply a symmetric capacity-achieving, point-to-point code
to the upper page X2 to achieve rate I (X2; Y ), and no coding
is needed for the lower page X1. To recover the data, we first
decode the upper page. Then, we can determine the lower
page using the decoded data from the upper page, the binary
labeling, the channel transition matrix, and the output Y . For
example, referring to the NO labeling in Table I, we see that
if the correctly decoded bit of the upper page is X2 = 1 and
the output is Y = s2, then the lower page bit must be X1 = 0.

For the late-stage P/E cycling model, from Lemma 6,
Theorem 7, and Table IV, we see that the sum rate of TIN
decoding under Gray labeling is strictly less than that of SC
decoding. The gap � between the two sum rates is

� = r SC
s(G) − r T I N

s(G) = τ5 − τ3

= 1

4

(
f (3 − â1 − â2 − ĉ1)− f (2 − â1 − â2)− f (2 − ĉ1)

)
.

To bound the gap �, let â = â1 + â2 and ĥ(â, ĉ1) = f (3 −
â− ĉ1)− f (2− â)− f (2− ĉ1). For 0 < â < 1 and 0 < ĉ1 < 1,
we have ∂ ĥ(â,ĉ1)

∂ â = log2(2 − â) − log2(3 − â − ĉ1) < 0, and
∂ ĥ(â,ĉ1)
∂ ĉ1

= log2(2 − ĉ1) − log2(3 − â − ĉ1) < 0. Therefore,
ĥ(â=1,ĉ1=1)

4 < � < ĥ(â=0,ĉ1=0)
4 ; that is, 0 < � <

3log23−4
4 =

0.1887.
If we impose constraints ηâ ≤ â1+â2 < 1 and ηĉ1 ≤ ĉ1 < 1,

we have 0 < � ≤ 1
4

(
f (3−ηâ−ηĉ1)− f (2−ηâ)− f (2−ηĉ1)

)
.

For example, for ηâ = 0.95 and ηĉ1 = 0.85, we get 0 < � ≤
0.00246. In general, the gap � is very small. �

Data Retention Model: For the data retention model, the
structure of the channel transition matrix pD R

M LC(y|v), for
output y ∈ YM LC and voltage level v ∈ VM LC , is shown
in Table V, where ã1, 1 − ã1, b̃1, 1 − b̃1, c̃1, and 1 − c̃1
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TABLE V

CHANNEL TRANSITION MATRIX pD R
M LC (y|v) OF DATA RETENTION

MODEL FOR MLC FLASH MEMORIES

represent non-zero probabilities. In contrast to the early-stage
P/E cycling model, where errors are caused by upward drift
of cell voltages, in the data retention model, errors arise from
downward drift of the cell voltages.

Analysis and results for the data retention model are very
similar to those of the early-stage P/E cycling model. We state
only one representative result here, without a detailed proof.

Lemma 8: For channel transition matrix pD R
M LC(y|v), using

Gray labeling, we have r T I N
s = r SC

s and RT I N =
RSC. Using either NO labeling or EO labeling, we have
r T I N

s < r SC
s .

A.2 Extension to All Labelings
In this subsection, we extend the analysis to the entire set

of labelings. There exist a total of 4! = 24 labelings. In
order to categorize and analyze these 24 labelings, we take
advantage of the algebraic structure of permutation groups,
and consider a labeling σ as a permutation π in the symmetric
group S4. This is the group whose elements are all the
permutation operations that can be performed on the 4 distinct
elements in TM LC , and whose group operation, denoted as ∗,
is the composition of such permutation operations. A labeling
σ = (w0, w1, w2, w3) corresponds to the permutation π =
(w0, w1, w2, w3) in S4, where the permutation vector π =
(w0, w1, w2, w3) is defined to represent π(11) = w0, π(10) =
w1, π(01) = w2, and π(00) = w3, e.g., π = (11, 10, 01, 00)
is the identity permutation in S4. The group operation ∗ of
two permutations π1 and π2 is defined as their composition
and results in another permutation π3 = π1 ∗ π2. In other
words, π1 ∗ π2 is the function that maps any element w ∈
TM LC to π1

(
π2(w)

)
. Note that the rightmost permutation is

applied first. For example, (10, 11, 00, 01)∗(11, 10, 00, 01)=
(10, 11, 01, 00).

Lemma 9: In the symmetric group S4, G0={(11, 10, 01, 00),
(10, 11, 00, 01), (01, 00, 11, 10), (00, 01, 10, 11)} forms a
normal subgroup (the Klein four-group).

Proof: The element (11, 10, 01, 00) in G0 is the identity
element in S4. We can verify that the 4 elements in G0
have the following properties: 1) the composition of the
identity element and any element is that element itself; 2) the
composition of any non-identity element with itself is the
identity element; 3) the composition of two distinct non-
identity elements is the third non-identity element. Thus,
G0 is the Klein four-group.

With the subgroup G0 in Lemma 9, we partition S4 into G0
and its 5 cosets, each of size 4: S4 = G0 ∪ G1 ∪ G2 ∪ Ḡ0 ∪
Ḡ1 ∪ Ḡ2, where G1=G0∗(11, 10, 00, 01); G2=G0∗(11, 00, 01,
10); Ḡ0 = G0 ∗ (11, 01, 10, 00); Ḡ1 = G0 ∗ (11, 01, 00, 10);
Ḡ2 = G0 ∗ (11, 00, 10, 01).

In the following, we will treat each vector in every coset as
a labeling. For example, G0 includes σN O = (11, 10, 01, 00),
G1 includes σG = (11, 10, 00, 01), and G2 includes σE O =
(11, 00, 01, 10). The following two lemmas give properties of
the uniform rate regions for different labelings. We assume
an arbitrary channel transition matrix pM LC(y|v), for output
y ∈ YM LC and voltage level v ∈ VM LC , is given. The first
lemma leverages the symmetries within the Klein four-group
and its cosets to deduce the relationship of the rate regions of
different labelings.

Lemma 10: With an arbitrary channel transition matrix
pM LC(y|v), for TIN decoding, the 4 labelings in each of G0,
G1, G2, Ḡ0, Ḡ1, and Ḡ2 give the same uniform rate region
RT I N and sum rate r T I N

s . For SC decoding, the 4 labelings
in each of G0, G1, G2, Ḡ0, Ḡ1, and Ḡ2 give the same uniform
rate region RSC, and all 24 labelings in S4 give the same sum
rate r SC

s .
Proof: This is based on the fact that the 4 labelings in

each of G0, G1, G2, Ḡ0, Ḡ1, and Ḡ2 are interchangeable
by one of the following three operations: 1) in position X1,
change 0 to 1 and 1 to 0; 2) in position X2, change 0 to 1
and 1 to 0; 3) in both positions X1 and X2, change 0 to 1 and
1 to 0. For example, in G0, (11, 10, 01, 00) is transformed
to (01, 00, 11, 10) by changing 0 to 1 and 1 to 0 in position
X1, is transformed to (10, 11, 00, 01) by changing 0 to 1 and
1 to 0 in position X2, and is transformed to (00, 01, 10, 11)
by changing 0 to 1 and 1 to 0 in both positions X1 and X2.
Since the distributions for X1 and X2 are uniform, the values
of I (X1; Y ), I (X2; Y ), I (X1; Y |X2), and I (X2; Y |X1) under
a labeling σ1 are the same as those under a labeling σ2
which is obtained by one of the above three operations on the
labeling σ1. Thus, for a fixed decoding scheme (TIN or SC),
the uniform rate region and sum rate under the labeling σ1 are
the same as those under the labeling σ2. Therefore, for a fixed
decoding scheme (TIN or SC), the 4 labelings in each coset
give the same uniform rate region and sum rate. For the sum
rate of SC decoding, for all 24 labelings, I (X1, X2; Y ) is the
same due to the uniform distributions for X1 and X2.

Lemma 11: With an arbitrary channel transition matrix
pM LC(y|v), for TIN decoding, if the labelings in Gi ,
i = 0, 1, 2, give a uniform rate region: R1 ≤ ϕ1 and R2 ≤ ϕ2,
then the labelings in Ḡi give a uniform rate region: R1 ≤ ϕ2
and R2 ≤ ϕ1. For SC decoding, if the labelings in Gi give a
uniform rate region: R1 ≤ ψ1, R2 ≤ ψ2, and R1 + R2 ≤ ψ3,
then the labelings in Ḡi give a uniform rate region: R1 ≤ ψ2,
R2 ≤ ψ1, and R1 + R2 ≤ ψ3.

Proof: This is based on the fact that the 4 labelings in Gi ,
i=0, 1, 2, are transformed (one-to-one) to the 4 labelings in
Ḡi by swapping the values in positions X1 and X2. For exam-
ple, (11, 10, 01, 00) in G0 is transformed to (11, 01, 10, 00)
in Ḡ0. With the uniform distributions for X1 and X2, X1
(or X2) with labeling (11, 10, 01, 00) is equivalent to X2
(or X1) with labeling (11, 01, 10, 00). Thus, for a fixed
decoding scheme (TIN or SC), the uniform rate region under
labeling (11, 10, 01, 00) will become the one under labeling
(11, 01, 10, 00) by swapping the constraints on R1 and R2.
From Lemma 10, it follows that the uniform rate region under
labelings in G0 will become the one under labelings in Ḡ0 by
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swapping the constraints on R1 and R2. The same conclusion
holds for the labelings in Gi and Ḡi , i = 1, 2.

Remark 4: Theorems 5 and 7, and Lemmas 10 and 11,
imply that for both P/E cycling models, with TIN decoding, the
8 labelings in G1 (including Gray labeling) and Ḡ1 produce
the largest sum rate among all 24 labelings. With SC decoding,
all of the 24 labelings give the same sum rate. �

Finally, we examine the uniform rate region that can
be achieved by using multiple labelings in S4 within a
codeword in a time-sharing fashion. Define RT I N

S4
=

Conv
( ⋃

σ∈S4
RT I N
σ

)
, the convex hull of uniform rate regions

of all 24 labelings for TIN decoding. Define RSC
S4

=
Conv

( ⋃
σ∈S4

RSC
σ

)
, the convex hull of uniform rate regions

of all 24 labelings for SC decoding. Through time-sharing of
different labelings, we obtain the following lemma.

Lemma 12: For TIN decoding, any point (R1, R2) ∈ RT I N
S4

can be achieved. For SC decoding, any point (R1, R2) ∈ RSC
S4

can be achieved.
Proof: We first show that any point (R1, R2) ∈ RT I N

S4
can be achieved. From Carathéodory’s Theorem [10], any
point (R1, R2) in RT I N

S4
can be represented as a convex

combination of 3 points in
⋃
σ∈S4

RT I N
σ . Without loss of

generality, we assume (R1, R2) = α1(R1
1 , R1

2)+α2(R2
1, R2

2)+
α3(R3

1, R3
2), where α1, α2, α3 ≥ 0 and

∑3
i=1 αi = 1. Points

(R1
1, R1

2), (R
2
1 , R2

2), and (R3
1 , R3

2) in
⋃
σ∈S4

RT I N
σ are achiev-

able under some labelings. Consider three sequences of codes,
achieving (R1

1, R1
2), (R

2
1 , R2

2), and (R3
1, R3

2), respectively.
For each block length n, consider the (2α1nR1

1 , 2α1nR1
2 , α1n),

(2α2nR2
1 , 2α2nR2

2 , α2n), and (2α3nR3
1 , 2α3nR3

2 , α3n) codes from
the given three sequences of codes, respectively. By a standard
time-sharing argument [10], a fourth (2nR1, 2nR2 , n) code can
be constructed from the above three codes (details are omitted
here due to space limitation). Thus, any point (R1, R2) ∈
RT I N

S4
can be achieved. In a similar manner, one can show

that any point (R1, R2) ∈ RSC
S4

is achievable.
Moreover, for the early-stage P/E cycling model in Table I,

the rate region RSC
S4

can be determined explicitly.
Theorem 13: For the early-stage P/E cycling model,

RSC
S4

is the set of all pairs (R1, R2) such that R1 ≤ 1, R2 ≤ 1,
and R1 + R2 ≤ I (X1, X2; Y ) = 1 + λ5.

Proof: Using Table II, Lemma 10, and Lemma 11,
we can calculate the convex hull of the uniform rate regions
of all 24 labelings. We can also see that the convex hull of
the uniform rate regions of two labelings (11, 10, 01, 00) and
(11, 01, 10, 00) are enough to achieve RSC

S4
.

Example 3: For the early-stage of P/E cycling, let a1 =
0.98, b1 = 0.97, and c1 = 0.99. The uniform rate regions
RT I N

S4
, RSC

S4
, and RDS

G are plotted in Fig. 3. It can be seen
that RDS

G ⊂ RT I N
S4

⊂ RSC
S4

, and the line connecting the two
corner points in RT I N

S4
is on the line connecting the two corner

points in RSC
S4

. Moreover, either R1 or R2 can achieve rate 1
with SC decoding. For the late-stage P/E cycling model, let
â1 = 0.82, â2 = 0.1, b̂1 = 0.85, and ĉ1 = 0.85. The uniform
rate regions RT I N

S4
, RSC

S4
, and RDS

G are plotted in Fig. 4. For
this case, there is a gap between the line connecting the two
corner points in RT I N

S4
and the one connecting the two corner

Fig. 3. Uniform rate regions RT I N
S4

, RSC
S4

, and RDS
G with a1 = 0.98,

b1 = 0.97, and c1 = 0.99 for the early-stage P/E cycling model.

Fig. 4. (a) Uniform rate regions RT I N
S4

, RSC
S4

, and RDS
G with â1 = 0.82,

â2 = 0.1, b̂1 = 0.85, and ĉ1 = 0.85 for the late-stage P/E cycling model,
where the two curves (blue and red) in the black rectangle are enlarged and
shown in (b).

points in RSC
S4

. This property implies that SC decoding will
give a larger sum rate than TIN decoding.

Remark 5: Although we focus on the P/E cycling and
data retention models, our analysis can be extended to other
channel models. As a simple example, we consider a channel
model whose channel transition matrix pC

M LC(y|v) reflects
both upward and downward drift of voltage levels due to
the combined effects of P/E cycling and data retention.
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TABLE VI

CHANNEL TRANSITION MATRIX pC
M LC (y|v) FOR COMBINED EFFECTS OF

P/E CYCLING AND DATA RETENTION FOR MLC FLASH MEMORIES

The structure of the transition matrix is shown in Table VI,
where ā1, 1− ā1, b̄1, b̄2, 1− b̄1− b̄2, c̄1, c̄2, 1− c̄1 − c̄2, d̄1, and
1 − d̄1 represent non-zero probabilities. From Theorem 1,
we readily conclude that r T I N

s < r SC
s with any of the

24 possible labelings since, for any labeling, three of the
probabilities p0,s1 , p1,s1, p2,s1, and p3,s1 are positive. �

B. Quantization With Increased Number of Reads

In the previous analysis, we used a quantizer with three
read thresholds. We now investigate the improvement in per-
formance that can be obtained by applying additional reads to
obtain more refined soft information.

For a channel WM LC , assume there is an output set
Y q

M LC = {s0, s1, . . . , sq−1} obtained by a set of q − 1 reads.
Denote the corresponding uniform rate regions for TIN and
SC decodings by RT I N and RSC , and the sum rates for TIN
and SC decodings by r T I N

s and r SC
s .

Now, introduce one more read threshold to split one
of the outputs s0, s1, . . . , sq−1. Without loss of generality,
we split s0 into s1

0 and s2
0 to obtain a new output set

Ŷ q+1
M LC = {s1

0 , s2
0 , s1, s2, . . . , sq−1}. The resulting uniform

rate regions for TIN and SC decodings are denoted by
R̂T I N and R̂SC , respectively, and the corresponding sum
rates by r̂ T I N

s and r̂ SC
s , respectively. The following lemma

shows that for both TIN and SC decoding, one-step progressive
quantization produces rate regions that contain the original rate
regions. Thus the sum rates are not decreased, and in fact they
become strictly larger except when the transition probabilities
satisfy very specific conditions after quantization.

Lemma 14: For uniform rate regions, under TIN and SC
decodings, RT I N ⊆ R̂T I N and RSC ⊆ R̂SC. For sum rates,
under TIN and SC decodings, r T I N

s ≤ r̂ T I N
s and r SC

s ≤ r̂ SC
s .

Proof: See Appendix C.
In the following example, we show by means of computer

simulation that the performance of MLC flash can be improved
through the use of additional reads.

Example 4: Following [23], we assume that the read-
back cell voltage has the normal-Laplace distribution
NL(μ, ν, α, β). The corresponding cumulative distribution
function (cdf) for all real y is

F(y) = �(
y − μ

ν
)−

(

φ(
y − μ

ν
)

·βR(αν − (y − μ)/ν)− αR(βν + (y − μ)/ν)

α + β

)

,

Fig. 5. Channel model for MLC flash memories with cell voltage modeled
as the normal-Laplace distribution.

where � and φ are the cdf and probability density func-
tion (pdf) of a standard normal random variable and R is
Mills’ ratio R(z) = 1−�(z)

φ(z) [26]. The readback cell voltage
distributions for inputs A0, A1, A2, and A3 are defined to
be NL(0, 3, 1/6, 1), NL(30, 3, 1/6, 1), NL(60, 3, 1/6, 1), and
NL(90, 3, 1/6, 1), respectively. Here, the parameters of the
normal-Laplace distributions are chosen to qualitatively reflect
the distributions reported in the literature and to illustrate
the effect of output quantization using multiple reads. The
cell voltage is in arbitrary units (a.u.), chosen merely for
convenience.

In the standard 3-read setting, the read thresholds are placed
at positions �a = 15, �b = 45, and �c = 75. We use a vector
to represent these positions, �L3 = (15, 45, 75). On either side
of each of the positions �a , �b, and �c, we define an additional
t read positions, regularly spaced at intervals of d units. For
example, setting t = 1 and d = 3, we specify a total of 9 reads
centered at �a , �b, and �c, with resulting read position vector
�L9=(12, 15, 18, 42, 45, 48, 72, 75, 78). Similarly, for a total of
15 reads, we set t = 2 and d = 3, and for a total of 21 reads,
we set t = 3 and d = 3.

For the Gray labeling, the uniform rate regions under TIN
and SC decodings are plotted in Fig. 6. As expected, the
rate regions of TIN decoding and SC decoding are similar.
Additional reads can significantly improve the rates of both
lower and upper pages. For the NO labeling, the uniform rate
regions under TIN and SC decodings are plotted in Fig. 7.
With either TIN decoding or SC decoding, additional reads
effectively enhance the rate of the upper page. However, with
SC decoding, the rate improvement of the lower page is very
limited.

IV. EXTENSION TO TLC FLASH MEMORY

In this section, we extend our analysis from MLC to
TLC flash memory. Although similar tools can be applied,
we will see that the characterization of the rate regions
becomes more intricate as the number of bits per cell increases.

Similar to the MLC case, given a labeling σ and a
quantizer Q, the TLC flash memory channel can be modeled
as a 3-user discrete memoryless multiple-access channel
WT LC : (X × X × X , p(y|x1, x2, x3),Y ), where X = {0, 1},
Y = {s0, s1, . . . , sq−1}, and p(y|x1, x2, x3) is the
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Fig. 6. Uniform rate regions under Gray labeling with different number of
reads: (a) using TIN decoding, and (b) using SC decoding.

transition probability for any x1, x2, x3 ∈ X and y ∈ Y .
We again use a simplified notation for the transition
probabilities, pB D(x1,x2,x3),y

def= P(Y = y|X1 = x1,
X2 = x2, X3 = x3); e.g., p5,s0 = P(Y = s0|X1 = 1,
X2 = 0, X3 = 1).

A. Rate Regions for TIN and SC Decoding Schemes

For a channel WT LC , with TIN decoding, the uniform
rate region RT I N is the set of all rate tuples (R1, R2, R3)
such that Ri ≤ I (Xi ; Y ) for all i = 1, 2, 3. The
sum rate is r T I N

s = max{∑3
i=1 Ri : (R1, R2, R3) ∈

RT I N } = ∑3
i=1 I (Xi ,Y ). With SC decoding, the uniform

rate region RSC is the set of all rate tuples (R1, R2, R3) such
that

1) R1 ≤ I (X1; Y |X2, X3), R2 ≤ I (X2; Y |X1, X3), R3 ≤
I (X3; Y |X1, X2);

2) R1 + R2 ≤ I (X1, X2; Y |X3), R1 + R3 ≤
I (X1, X3; Y |X2), R2 + R3 ≤ I (X2, X3; Y |X1);

3) R1 + R2 + R3 ≤ I (X1, X2, X3; Y ).
The sum rate is r SC

s = max{∑3
i=1 Ri : (R1, R2, R3) ∈

RSC} = I (X1, X2, X3; Y ).
The following theorem, analogous to Theorem 1, character-

izes the channels for which the sum rates of TIN decoding
and SC decoding are the same.

Fig. 7. Uniform rate regions under NO labeling with different number of
reads: (a) using TIN decoding, and (b) using SC decoding.

Theorem 15: For a channel WT LC , the sum rates satisfy
r T I N

s ≤ r SC
s , with equality if and only if

(p7,s j + p6,s j )(p1,s j + p0,s j ) = (p5,s j + p4,s j )(p3,s j + p2,s j ),

(2a)

p7,s j (p4,s j + p2,s j + p0,s j ) = p6,s j (p5,s j + p3,s j + p1,s j ),

(2b)

p5,s j (p6,s j + p2,s j + p0,s j ) = p4,s j (p7,s j + p3,s j + p1,s j ),

(2c)

p3,s j (p6,s j + p4,s j + p0,s j ) = p2,s j (p7,s j + p5,s j + p1,s j ),

(2d)

p1,s j (p6,s j + p4,s j + p2,s j ) = p0,s j (p7,s j + p5,s j + p3,s j ),

(2e)

for all j = 0, 1, . . . , q−1. If r T I N
s = r SC

s , then RT I N = RSC

and the rate region is a cube.
Proof: See Appendix D.

Along the lines of Theorem 2, the following theorem
provides an upper bound on the difference between the sum
rates r SC

s and r T I N
s .
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Theorem 16: For a channel WT LC , the rate difference
r SC

s − r T I N
s ≤ 2 with equality if and only if

p7,s j + p6,s j + p5,s j + p4,s j = p3,s j + p2,s j + p1,s j + p0,s j ,

(3a)

p7,s j + p5,s j + p3,s j + p1,s j = p6,s j + p4,s j + p2,s j + p0,s j ,

(3b)

(p7,s j + p6,s j )(p3,s j + p2,s j ) = (p5,s j + p4,s j )(p1,s j + p0,s j )

= 0, (3c)

p7,s j p6,s j = p5,s j p4,s j = p3,s j p2,s j = p1,s j p0,s j = 0,

(3d)

for all j = 0, 1, . . . , q − 1.
Proof: We bound the difference r SC

s − r T I N
s as

r SC
s − r T I N

s = I (X1; X2|Y )+ I (X1, X2; X3|Y )
= H (X1|Y )− H (X1|X2,Y )+ H (X3|Y )

−H (X3|X1, X2,Y )
(a)≤ H (X1)+ H (X3)− H (X1|X2,Y )

−H (X3|X1, X2,Y )
(b)≤ H (X1)+ H (X3) = 2,

where step (a) follows from H (X1|Y ) ≤ H (X1)
and H (X3|Y ) ≤ H (X3), and step (b) follows from
H (X1|X2,Y ) ≥ 0 and H (X3|X1, X2,Y ) ≥ 0. Thus, r SC

s −
r T I N

s = 2 if and only if 1) H (X1|Y ) = H (X1) = H (X3|Y ) =
H (X3) = 1, and 2) H (X1|X2,Y ) = H (X3|X1, X2,Y ) = 0.

The condition H (X1|Y ) = ∑q−1
j=0(

∑7
i=0

pi,s j
8 )

H (X1|Y = s j ) = 1 holds if and only if condition (3a) in
the statement of the theorem holds. Similarly, H (X3|Y ) = 1
corresponds to condition (3b), H (X1|X2,Y ) = 0 corresponds
to condition (3c), and H (X3|X1, X2,Y ) = 0 corresponds to
condition (3d).

B. Performance of TLC Flash Memory With Different
Decoding Schemes and Labelings

We now investigate the uniform rate region and sum rate
of two TLC flash memory channel models, using TIN and SC
decoding and different labelings of cell voltage levels. We first
formally define the generalizations of the Gray labeling and
NO labeling.

Definition 17: For TLC flash memory, labeling σG=(111,
110, 100, 101, 001, 000, 010, 011) is called Gray labeling,
and σN O =(111, 110, 101, 100, 011, 010, 001, 000) is called
Natural Order (NO) labeling.

For each labeling, the mapping between inputs (X1, X2, X3)
∈ TT LC and voltage levels V ∈ VT LC is shown in Table VII.
B.1 Performance of Gray and NO Labelings

We fix our quantizer Q with seven reads, which are
placed between every pair of neighboring voltage levels,
as shown in Fig. 1(b). Hence, the output alphabet is
YT LC = {s0, s1, . . . , s7}.

We consider a simple P/E cycling model, called the
early-stage P/E cycling model, characterized by the channel

TABLE VII

CHANNEL TRANSITION MATRIX pE
T LC (y|v) AT EARLY-STAGE

OF P/E CYCLING FOR TLC FLASH MEMORIES

TABLE VIII

CHANNEL TRANSITION MATRIX pD R
T LC (y|v) OF DATA RETENTION

MODEL FOR TLC FLASH MEMORIES

transition matrix pE
T LC(y|v), for y ∈ YT LC and v ∈ VT LC ,

shown in Table VII, where εi and 1 − εi , i = 0, 1, . . . , 6,
represent non-zero probabilities. This model reflects the phe-
nomenon of upward shift of the cell voltage. A related
model is the data retention model, where the channel tran-
sition matrix pD R

T LC(y|v) reflects the downward shift of cell
voltage. The structure of the transition matrix is shown in
Table VIII, where εi and 1 − εi , i = 1, 2, . . . , 7, represent
non-zero probabilities. We give an analysis of the early-stage
P/E cycling model below. The same techniques can be applied
to the data retention model, yielding analogous conclusions.
More sophisticated TLC channel models can be developed by
means of further experimental studies; once they are obtained,
a similar analysis can be carried out.

For the early-stage P/E cycling model, we have the
following lemma.

Lemma 18: For channel transition matrix pE
T LC(y|v), using

Gray labeling, we have r T I N
s = r SC

s and RT I N = RSC.
Using NO labeling, we have r T I N

s < r SC
s .

Proof: With Gray labeling, we can verify that the con-
ditions, i.e., the set of equations (2a)-(2e), in Theorem 15,
are satisfied for j = 0, 1, . . . , 7. Thus, from Theorem 15,
we conclude that r T I N

s = r SC
s and RT I N =RSC . While under

NO labeling p7,s2(p4,s2 + p2,s2 + p0,s2) �= p6,s2(p5,s2 + p3,s2 +
p1,s2). Thus, in this case, r T I N

s < r SC
s .

Next, for the early-stage P/E cycling model, we make
the following observations about the corner points of uni-
form rate regions for TIN and SC decodings under Gray
and NO labelings. First, with Gray labeling, according
to Theorem 15 and Lemma 18, the rate regions for
TIN and SC decoding have a common unique corner
point: P

0
G = (

I (X1; Y ), I (X2; Y ), I (X3; Y )
)
. Second, with

NO labeling, for TIN decoding, the corner point is: P
0
N O =(

I (X1; Y ), I (X2; Y ), I (X3; Y )
)
. 4 For SC decoding, we have

4Although there is a term I (X1; Y ) in both P
0
G and P

0
N O , they represent

different values due to the use of different labelings for the two points P
0
G

and P
0
N O . The same applies to other common terms.
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six corner points:

P
1
N O = (

I (X1; Y ), I (X2; Y |X1), I (X3; Y |X1, X2)
)
,

P
2
N O = (

I (X1; Y ), I (X2; Y |X1, X3), I (X3; Y |X1)
)
,

P
3
N O = (

I (X1; Y |X2), I (X2; Y ), I (X3; Y |X1, X2)
)
,

P
4
N O = (

I (X1; Y |X2, X3), I (X2; Y ), I (X3; Y |X2)
)
,

P
5
N O = (

I (X1; Y |X3), I (X2; Y |X1, X3), I (X3; Y )
)
,

P
6
N O = (

I (X1; Y |X2, X3), I (X2; Y |X3), I (X3; Y )
)
.

We have the following structure of these corner points.
Theorem 19: With channel transition matrix pE

T LC(y|v),
the corner points satisfy P

0
G = P

1
N O . For SC decoding,

we have point P
2
N O = (

I (X1; Y ), 1, I (X3; Y |X1)
)
, points

P
3
N O = P

4
N O = (

1, I (X2; Y ), I (X3; Y |X1, X2)
)
, and points

P
5
N O = P

6
N O = (

1, 1, I (X3; Y )
)
.

Proof: See Appendix E.
Let the uniform rate regions of TIN decoding and SC

decoding under Gray labeling be RT I N
G and RSC

G , respectively,
and under NO labeling be RT I N

N O and RSC
N O , respectively. We

have the following theorem on the uniform rate regions.
Theorem 20: With channel transition matrix pE

T LC(y|v), the
uniform rate regions satisfy RT I N

N O ⊂ RT I N
G = RSC

G ⊂ RSC
N O .

Proof: From Lemma 18, we have RT I N
G = RSC

G . From
Theorem 19, it is clear that RSC

G ⊂ RSC
N O . Here, we only need

to show that RT I N
N O ⊂ RT I N

G . We prove it by showing that
P

0
G(1) = P

0
N O (1), P

0
G(2) > P

0
N O (2), and P

0
G(3) > P

0
N O (3).

First, from Theorem 19, P
0
G(1) = P

1
N O (1). Since P

0
N O (1) =

P
1
N O (1), we have P

0
G(1) = P

0
N O (1). Next, we show P

0
G(2) >

P
0
N O (2) as follows:

P
0
G(2)− P

0
N O (2)

= 1

2
H (
ε0

4
,

1 − ε0 + ε1

4
,

1 − ε1

4
,
ε4

4
,

1 − ε4 + ε5

4
,

1 − ε5

4
)

+1

2
H (
ε2

4
,

1 − ε2 + ε3

4
,

1 − ε3

4
,
ε6

4
,

1 − ε6 + 1

4
)

−1

2
H (
ε0

4
,

1 − ε0 + ε1

4
,

1 − ε1

4
,
ε6

4
,

1 − ε6 + 1

4
)

−1

2
H (
ε2

4
,

1 − ε2 + ε3

4
,

1 − ε3 + ε4

4
,

1 − ε4 + ε5

4
,

1 − ε5

4
)

= 1

8

(
f (1 − ε3 + ε4)− f (1 − ε3)− f (ε4)

)

= 1

8

(
(1 − ε3)log2(

1 − ε3 + ε4

1 − ε3
)+ ε4log2(

1 − ε3 + ε4

ε4
)
)
> 0.

Similarly, we show P
0
G(3) > P

0
N O (3):

P
0
G(3)− P

0
N O (3)

= 1

2
H (
ε0

4
,

1 − ε0

4
,
ε2

4
,

1 − ε2

4
,
ε4

4
,

1 − ε4

4
,
ε6

4
,

1 − ε6

4
)

+1

2
H (
ε1

4
,

1 − ε1

4
,
ε3

4
,

1 − ε3

4
,
ε5

4
,

1 − ε5

4
,

1

4
)

−1

2
H (
ε0

4
,

1 − ε0

4
,
ε3

4
,

1 − ε3 + ε4

4
,

1 − ε4

4
,

1

4
)

−1

2
H (
ε1

4
,

1 − ε1 + ε2

4
,

1 − ε2

4
,
ε5

4
,

1 − ε5 + ε6

4
,

1 − ε6

4
)

= 1

8

(
f (1 − ε1 + ε2)− f (1 − ε1)− f (ε2)

)

+1

8

(
f (1 − ε3 + ε4)− f (1 − ε3)− f (ε4)

)

+1

8

(
f (1 − ε5 + ε6)− f (1 − ε5)− f (ε6)

)
> 0.

Remark 6: Similar to the MLC flash case (see Remark 3),
for the TLC flash early-stage P/E cycling model, we can
derive from Lemma 18, Theorem 19, and Theorem 20 several
insights into efficient coding schemes. First, the sum rate of
TIN decoding under Gray labeling is the same as that of
SC decoding. This implies that an ECC solution for Gray
labeling can use three point-to-point symmetric capacity-
achieving codes for three pages separately. Second, with
NO labeling, for SC decoding, 6 corner points are reduced to
4 points. Moreover, the rate

(
R1 = 1, R2 = 1, R3 = I (X3; Y )

)

can be achieved, which means that we can apply a point-
to-point symmetric capacity-achieving code to the page X3,
leaving the pages X1 and X2 uncoded.

Thanks to the similarity between the data retention model in
Table VIII and the early-stage P/E cycling model in Table VII,
the conclusions of Lemma 18, Theorem 19, and Theorem 20
also apply to the data retention model. �

Example 5: For the early-stage P/E cycling model with
channel transition matrix pE

T LC(y|v) in Table VII, let εi = 0.9,
i = 0, 1, . . . , 6. The uniform rate regions of TIN and SC
decodings under Gray and NO labelings are plotted in Fig. 8.
It is shown that RT I N

N O ⊂ RT I N
G = RSC

G ⊂ RSC
N O . For

SC decoding under NO labeling, the corner point P
5
N O =

P
6
N O = (R1 = 1, R2 = 1, R3 = 0.5878) is achieved. For this

particular point, coding is only needed for the page X3.
B.2 Extension to All Labelings

Now, we extend the analysis to the entire set
of 8! = 40320 labelings. As in the case of MLC flash memory,
we treat a labeling σ as a permutation π in the symmetric
group S8 with group operation ∗. We write a permutation π
in S8 as a vector π = (w0, w1, w2, w3, w4, w5, w6, w7)
(where wi , i = 0, 1, . . . , 7, represent the full set of possible
3-tuples) to represent that π(111) = w0, π(110) = w1,
π(101) = w2, π(100) = w3, π(011) = w4, π(010) = w5,
π(001) = w6, and π(000) = w7.

In the following, we will use a decimal labeling to represent
a binary labeling for simplicity. For example, the binary
labeling (111, 110, 101, 100, 011, 010, 001, 000) will be
written as (7, 6, 5, 4, 3, 2, 1, 0). By utilizing the algebraic
structure of the symmetric group S8, we have following two
lemmas on the uniform rate region and sum rate, valid for
any channel model characterized by an arbitrary channel
transition matrix pT LC(y|v) for y ∈ YT LC and v ∈ VT LC .
We omit their proofs, since they are similar to the
MLC case.

Lemma 21: In the symmetric group S8, D0={(7, 6, 5, 4, 3,
2, 1, 0), (6, 7, 4, 5, 2, 3, 0, 1), (5, 4, 7, 6, 1, 0, 3, 2), (4,
5, 6, 7, 0, 1, 2, 3), (3, 2, 1, 0, 7, 6, 5, 4), (2, 3, 0, 1, 6, 7,
4, 5), (1, 0, 3, 2, 5, 4, 7, 6), (0, 1, 2, 3, 4, 5, 6, 7)} forms
an abelian subgroup which includes σN O =(7, 6, 5, 4, 3, 2,
1, 0). With an arbitrary channel transition matrix pT LC(y|v),
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Fig. 8. (a) Illustration of uniform rate regions for TIN decoding under Gray
labeling, RT I N

G ; SC decoding under Gray labeling, RSC
G ; and TIN decoding

under NO labeling, RT I N
N O . (b) Illustration of uniform rate regions for TIN

decoding under Gray labeling, RT I N
G ; SC decoding under Gray labeling,

RSC
G ; and SC decoding under NO labeling, RSC

N O .

all labelings in D0 give the same uniform rate region for a
given decoding scheme (TIN or SC decoding).

Lemma 22: In the symmetric group S8, D̂0={D0∪ D0∗(7,
6, 3, 2, 5, 4, 1, 0) ∪ D0∗(7, 3, 5, 1, 6, 2, 4, 0) ∪
D0∗(7, 5, 6, 4, 3, 1, 2, 0) ∪ D0∗(7, 3, 6, 2, 5, 1, 4, 0) ∪
D0∗(7, 5, 3, 1, 6, 4, 2, 0) } forms an abelian subgroup which
includes σN O =(7, 6, 5, 4, 3, 2, 1, 0). With an arbitrary
channel transition matrix pT LC(y|v), all labelings in D̂0 give
the same sum rate for a given decoding scheme (TIN or
SC decoding).

Remark 7: With subgroup D0 in Lemma 21, we can par-
tition S8 into D0 and its 5039 cosets, each of size 8. All
labelings in each coset give the same uniform rate region
for a given decoding scheme (TIN or SC decoding). With
subgroup D̂0 in Lemma 22, the group S8 can be partitioned
into D̂0 and its 839 cosets, each of size 48. All labelings

in each coset give the same sum rate for TIN decoding.
Note that for SC decoding, all labelings in S8 give the
same sum rate, due to the uniform distributions for X1, X2,
and X3.

Thus, for an arbitrary channel transition matrix pT LC(y|v),
for TIN decoding, among all the labelings in S8, the 48 label-
ings in the coset D̂0 ∗ (7, 6, 4, 5, 1, 0, 2, 3), which includes
Gray labeling, give the largest sum rate, which equals that of
SC decoding. However, for some particular channel transition
matrix, for TIN decoding, more than 48 labelings may give
the largest sum rate. For example, for the channel transition
matrix pE

T LC(y|v) in Table VII, for TIN decoding, among all
the labelings in S8, we find that the 144 labelings in the set
D̃ = {D̂0 ∗ (7, 6, 4, 5, 1, 0, 2, 3)∪ D̂0 ∗ (7, 6, 4, 0, 2, 3, 1, 5)∪
D̂0 ∗ (7, 6, 2, 3, 1, 5, 4, 0)} give the largest sum rate. �

Finally, we discuss the uniform rate region if we are allowed
to use multiple labelings together for each codeword, instead
of one labeling in the entire TLC flash memory. Define
RT I N

S8
= Conv

( ⋃
σ∈S8

RT I N
σ

)
, the convex hull of uniform

rate regions of all 40320 labelings for TIN decoding. Define
RSC

S8
= Conv

( ⋃
σ∈S8

RSC
σ

)
, the convex hull of uniform rate

regions of all 40320 labelings for SC decoding. Through time-
sharing of different labelings, for TIN decoding, any point
(R1, R2, R3) ∈ RT I N

S8
can be achieved. For SC decoding, any

point (R1, R2, R3) ∈ RSC
S8

can be achieved. Moreover, for the
early-stage P/E cycling model with channel transition matrix
pE

T LC(y|v) in Table VII, the region RSC
S8

can be determined
explicitly. The following theorem, analogous to Theorem 13,
is stated without proof.

Theorem 23: For the early-stage P/E cycling model, the rate
region RSC

S8
is the set of all rate tuples (R1, R2, R3) such that

1) R1 ≤ 1, R2 ≤ 1, R3 ≤ 1;
2) R1 + R2 + R3 ≤ I (X1, X2, X3; Y ).

V. CONCLUSION

We analyzed the performance of multilevel flash memo-
ries with different decoding schemes and cell voltage label-
ings from a multi-user perspective. In MLC flash memory,
we showed that both TIN and SC decoding outperform the
current default decoding scheme in terms of both uniform rate
region and sum rate. For the P/E cycling model, with TIN
decoding, we found that 8 labelings, including the standard
Gray labeling, offer the largest sum rate among all 24 possible
labelings. The sum rate of TIN decoding under Gray labeling
equals that of SC decoding at the early-stage of P/E cycling,
and is smaller than but close to that of SC decoding at the
late-stage of P/E cycling. It was also shown that additional
read thresholds can effectively enhance the rate region and
sum rate. For TLC flash memory, the structure and properties
of all 40320 labelings were investigated. We studied the early-
stage P/E cycling model, which is similar to the data reten-
tion model. For TIN decoding, 144 labelings including Gray
labeling give the largest sum rate among all 40320 labelings.
Moreover, surprisingly, for SC decoding under NO labeling,
the rate (R1 = 1, R2 = 1, R3) can be achieved, implying a
simple coding solution in which the first two of the three pages
can remain uncoded.
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APPENDIX A
PROOF OF THEOREM 1

Proof: We bound the value r SC
s − r T I N

s as follows

r SC
s − r T I N

s = I (X1, X2; Y )− I (X1; Y )− I (X2; Y )

= I (X2; Y |X1)− I (X2; Y )

= H (X2|X1)− H (X2|X1,Y )

−
(

H (X2)− H (X2|Y )
)

(a)= I (X1; X2|Y )

=
q−1∑

j=0

(

3∑

i=0

pi,s j

4
)I (X1; X2|Y = s j ) ≥ 0,

where in step (a) we use H (X2|X1) = H (X2) which
follows from the fact that X1 and X2 are independent.

Now, I (X1; X2|Y ) ≥ 0 with equality if and only if
X1 and X2 are conditionally independent given Y = s j , i.e.,
P(X1, X2|Y = s j ) = P(X1|Y = s j )P(X2|Y = s j ). Thus,
we need to check four cases:

1) P(X1 = 1, X2 = 1|Y = s j ) = P(X1 = 1|Y =
s j )P(X2 = 1|Y = s j ), i.e.,

p3,s j
∑3

i=0 pi,s j

= p3,s j +p2,s j
∑3

i=0 pi,s j

p3,s j +p1,s j
∑3

i=0 pi,s j

.

2) P(X1 = 1, X2 = 0|Y = s j ) = P(X1 = 1|Y =
s j )P(X2 = 0|Y = s j ), i.e.,

p2,s j
∑3

i=0 pi,s j

= p3,s j +p2,s j
∑3

i=0 pi,s j

p2,s j +p0,s j
∑3

i=0 pi,s j

.

3) P(X1 = 0, X2 = 1|Y = s j ) = P(X1 = 0|Y =
s j )P(X2 = 1|Y = s j ), i.e.,

p1,s j
∑3

i=0 pi,s j

= p1,s j +p0,s j
∑3

i=0 pi,s j

p3,s j +p1,s j
∑3

i=0 pi,s j

.

4) P(X1 = 0, X2 = 0|Y = s j ) = P(X1 = 0|Y =
s j )P(X2 = 0|Y = s j ), i.e.,

p0,s j
∑3

i=0 pi,s j

= p1,s j +p0,s j
∑3

i=0 pi,s j

p2,s j +p0,s j
∑3

i=0 pi,s j

.

To satisfy conditions 1) – 4), we have p3,s j p0,s j =
p2,s j p1,s j for all j = 0, 1, . . . , q − 1.

Finally, assuming r T I N
s = r SC

s , i.e., I (X1; Y )+ I (X2; Y ) =
I (X1, X2; Y ), since I (X1, X2; Y )=I (X1; Y )+ I (X2; Y |X1) =
I (X2; Y ) + I (X1; Y |X2), we have I (X1; Y ) = I (X1; Y |X2)
and I (X2; Y ) = I (X2; Y |X1), which means RT I N =RSC .

APPENDIX B
PROOF OF THEOREM 2

Proof: We bound the value r SC
s − r T I N

s as

r SC
s − r T I N

s = I (X1, X2; Y )− I (X1; Y )− I (X2; Y )

= I (X1; X2|Y ) = H (X1|Y )− H (X1|X2,Y )
(a)≤ H (X1)− H (X1|X2,Y )

(b)≤ H (X1) = 1,

where step (a) follows from H (X1|Y ) ≤ H (X1), and
step (b) is due to H (X1|X2,Y ) ≥ 0. Thus, r SC

s − r T I N
s = 1

if and only if 1) H (X1|Y ) = H (X1) = 1, and
2) H (X1|X2,Y ) = 0.

The condition H (X1|Y ) = ∑q−1
j=0(

∑3
i=0

pi,s j
4 )H (X1|Y =

s j ) = 1 holds if and only if p3,s j + p2,s j = p1,s j + p0,s j

for all j = 0, 1, . . . , q − 1. It means that even if Y is
given, X1 is still completely random to the observer. Similarly,
H (X1|X2,Y ) = 0 requires that p3,s j p1,s j = p2,s j p0,s j = 0
for all j = 0, 1, . . . , q − 1. It indicates that if X2 and Y are
obtained, then X1 can be determined.

APPENDIX C
PROOF OF LEMMA 14

Proof: We first prove that the sum rate r̂ SC
s ≥ r SC

s , i.e.,
I (X1, X2; Ŷ ) ≥ I (X1, X2; Y ), and give the condition when
the equality holds. The value I (X1, X2; Y ) can be expressed
as follows:

I (X1, X2; Y ) = H (Y )− H (Y |X1, X2)

= H
(∑3

i=0 pi,s0

4
,

∑3
i=0 pi,s1

4
,. . . ,

∑3
i=0 pi,sq−1

4

)

−1

4

3∑

i=0

H (pi,s0, pi,s1 , . . . , pi,sq−1).

Similarly, the value I (X1, X2; Ŷ ) is

I (X1, X2; Ŷ ) = H (Ŷ )− H (Ŷ |X1, X2)

= H
(
∑3

i=0 pi,s1
0

4
,

∑3
i=0 pi,s2

0

4
,

∑3
i=0 pi,s1

4
, . . . ,

∑3
i=0 pi,sq−1

4

)

−1

4

3∑

i=0

H (pi,s1
0
, pi,s2

0
, pi,s1 , . . . , pi,sq−1)

(a)= H
(∑3

i=0 pi,s0

4
,

∑3
i=0 pi,s1

4
, . . . ,

∑3
i=0 pi,sq−1

4

)

+
∑3

i=0 pi,s0

4
H (

∑3
i=0 pi,s1

0
∑3

i=0 pi,s0

,

∑3
i=0 pi,s2

0
∑3

i=0 pi,s0

)

−1

4

3∑

i=0

H (pi,s0, pi,s1, . . . , pi,sq−1)

−1

4

3∑

i=0

pi,s0 H (
pi,s1

0

pi,s0

,
pi,s2

0

pi,s0

),

where step (a) is from the grouping property of entropy [24]
and pi,s0 = pi,s1

0
+ pi,s2

0
for i = 0, 1, 2, 3.

The difference between I (X1, X2; Ŷ ) and I (X1, X2; Y ) is

I (X1, X2; Ŷ )− I (X1, X2; Y )

=
∑3

i=0 pi,s0

4
H (

∑3
i=0 pi,s1

0
∑3

i=0 pi,s0

,

∑3
i=0 pi,s2

0
∑3

i=0 pi,s0

)

−1

4

3∑

i=0

pi,s0 H (
pi,s1

0

pi,s0

,
pi,s2

0

pi,s0

)

=
∑3

i=0 pi,s0

4

(
− 1

∑3
i=0 pi,s0

(
f (

3∑

i=0

pi,s1
0
)+ f (

3∑

i=0

pi,s2
0
)
)

+log2(

3∑

i=0

pi,s0)
)

−1

4

3∑

i=0

pi,s0

(
− 1

pi,s0

(
f (pi,s1

0
)+ f (pi,s2

0
)
) + log2(pi,s0)

)

= 1

4

(
f (

3∑

i=0

pi,s0)− f (
3∑

i=0

pi,s1
0
)− f (

3∑

i=0

pi,s2
0
)
)

−1

4

3∑

i=0

(
f (pi,s0)− f (pi,s1

0
)− f (pi,s2

0
)
)
.
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Note that the difference is only related to the probabilities
pi,s0 , pi,s1

0
, and pi,s2

0
for i = 0, 1, 2, 3.

To prove that I (X1, X2; Ŷ ) ≥ I (X1, X2; Y ), we define a
new function g(u1, u2) = f (u1 + u2) − f (u1) − f (u2) and
utilize its properties. We first prove g(u1 + v1, u2 + v2) ≥
g(u1, u2)+ g(v1, v2) as follows:

g(u1 + v1, u2 + v2)−
(

g(u1, u2)+ g(v1, v2)
)

= (u1 + u2)log2(1 + v1 + v2

u1 + u2
)+ (v1 + v2)log2(1 + u1 + u2

v1 + v2
)

−
(

u1log2(1 + v1

u1
)+ v1log2(1 + u1

v1
)
)

−
(

u2log2(1 + v2

u2
)+ v2log2(1 + u2

v2
)
)
.

The function t log2(1 + 1/t) is concave. Let t1 = u1
v1

, t2 =
u2
v2

, r1 = v1
v1+v2

, and r2 = v2
v1+v2

. We have (r1t1 + r2t2)log2(
1+1/(r1t1 +r2t2)

)
≥ r1t1log2(1+1/t1)+r2t2log2(1+1/t2);

that is, (u1 + u2)log2(1 + v1+v2
u1+u2

) ≥ u1log2(1 + v1
u1
)+ u2log2

(1+ v2
u2
). Similarly, (v1+v2)log2(1+ u1+u2

v1+v2
) ≥ v1log2(1+ u1

v1
)+

v2log2(1 + u2
v2
). Therefore, g(u1 + v1, u2 + v2) ≥ g(u1, u2)+

g(v1, v2), where equality holds if and only if u1
u2

= v1
v2

.
Now, we apply g(u1 + v1, u2 + v2) ≥ g(u1, u2)+ g(v1, v2)

twice and have

f (
3∑

i=0

pi,s0)− f (
3∑

i=0

pi,s1
0
)− f (

3∑

i=0

pi,s2
0
)

= g(p0,s1
0
+ p1,s1

0
+ p2,s1

0
+ p3,s1

0
, p0,s2

0
+ p1,s2

0

+p2,s2
0
+ p3,s2

0
)

≥ g(p0,s1
0
+ p1,s1

0
, p0,s2

0
+ p1,s2

0
)

+g(p2,s1
0
+ p3,s1

0
, p2,s2

0
+ p3,s2

0
)

≥ g(p0,s1
0
, p0,s2

0
)+ g(p1,s1

0
, p1,s2

0
)+ g(p2,s1

0
, p2,s2

0
)

+g(p3,s1
0
, p3,s2

0
)

=
3∑

i=0

(
f (pi,s0)− f (pi,s1

0
)− f (pi,s2

0
)
)
,

where equality holds if and only if
p

0,s1
0

p
0,s2

0

=
p

1,s1
0

p
1,s2

0

=
p

2,s1
0

p
2,s2

0

=
p

3,s1
0

p
3,s2

0

. Thus, we have proved I (X1, X2; Ŷ ) ≥ I (X1, X2; Y ).

With the same proof technique, we can prove
I (X1; Ŷ ) ≥ I (X1; Y ), I (X2; Ŷ ) ≥ I (X2; Y ), I (X1; Ŷ |X2) ≥
I (X1; Y |X2), and I (X2; Ŷ |X1) ≥ I (X2; Y |X1). These
inequalities lead to r T I N

s ≤ r̂ T I N
s , RT I N ⊆ R̂T I N , and

RSC ⊆ R̂SC .

APPENDIX D
PROOF OF THEOREM 15

Proof: We calculate r SC
s − r T I N

s as follows:

r SC
s − r T I N

s = I (X1, X2, X3; Y )−
3∑

i=1

I (Xi ; Y )

= I (X1; Y )+ I (X2; Y |X1)+ I (X3; Y |X1, X2)

−
3∑

i=1

I (Xi ; Y )

= H (X2|X1)− H (X2|Y, X1)+ H (X3|X1, X2)

−H (X3|Y, X1, X2)

−
(

H (X2)− H (X2|Y )+ H (X3)− H (X3|Y )
)

(a)= I (X1; X2|Y )+ I (X1, X2; X3|Y ) ≥ 0,

where step (a) is due to the fact that X1, X2, and X3 are
independent. The last step is from that I (X1; X2|Y ) ≥ 0 and
I (X1, X2; X3|Y ) ≥ 0. Therefore, r T I N

s = r SC
s if and only if

I (X1; X2|Y ) = 0 and I (X1, X2; X3|Y ) = 0.
The condition I (X1; X2|Y ) = 0 will be satisfied if and

only if X1 and X2 are conditionally independent given Y .
As in the proof of Theorem 1, the condition I (X1; X2|Y ) =
∑q−1

j=0(
∑7

i=0
pi,s j

8 )I (X1; X2|Y = s j ) = 0 leads to the first
condition (2a) in the statement of the theorem. Similarly,
I (X1, X2; X3|Y ) = ∑q−1

j=0(
∑7

i=0
pi,s j

8 )I (X1, X2; X3|Y =
s j ) = 0 results in the last four conditions (2b)− (2e) in the
statement of the theorem.

Next, we prove RT I N = RSC if r T I N
s = r SC

s . Assum-
ing r T I N

s = r SC
s , from above we have already shown that

I (X1; X2|Y ) = 0 and I (X1, X2; X3|Y ) = 0. Similarly, we
have I (X1; X3|Y )=0, I (X1, X3; X2|Y )=0, I (X2; X3|Y )=0,
and I (X2, X3; X1|Y ) = 0. To prove RT I N = RSC , we need
to show:

1) I (X1; Y |X2, X3) = I (X1; Y ); 2) I (X2, X3; Y |X1) =
I (X2; Y )+ I (X3; Y );

3) I (X2; Y |X1, X3) = I (X2; Y ); 4) I (X1, X3; Y |X2) =
I (X1; Y )+ I (X3; Y );

5) I (X3; Y |X1, X2) = I (X3; Y ); 6) I (X1, X2; Y |X3) =
I (X1; Y )+ I (X2; Y ).

In the following, we will prove equations 5) and 6) of the
above six equations. The other four equations can be proved
in a similar way. For the first, we have

I (X3; Y |X1, X2)− I (X3; Y )

= H (X3|X1, X2)−H (X3|Y, X1, X2)−
(

H (X3)−H (X3|Y )
)

(a)= H (X3|Y )− H (X3|Y, X1, X2) = I (X3; X1, X2|Y ) = 0,

where step (a) is due to the fact that X1, X2, and X3 are
independent. Similarly, for the second,

I (X1, X2; Y |X3)− I (X1; Y )− I (X2; Y )

= H (X1, X2|X3)−H (X1, X2|Y, X3)−
(

H (X1)−H (X1|Y )
)

−
(

H (X2)− H (X2|Y )
)

(a)= H (X1|Y )+ H (X2|Y )− H (X1, X2|Y, X3)
(b)= H (X1|Y )+ H (X2|Y )−H (X1, X2|Y )= I (X1; X2|Y ) = 0,

where step (a) is due to the fact that X1, X2, and X3
are independent, and step (b) is from I (X1, X2; X3|Y ) =
H (X1, X2|Y )− H (X1, X2|Y, X3) = 0.

APPENDIX E
PROOF OF THEOREM 19

Proof: To prove P
0
G = P

1
N O , we first show the first

coordinate P
0
G(1) of point P

0
G is equal to the first coordinate
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P
1
N O (1) of point P

1
N O .

P
0
G(1)

= I (X1; Y ) = H (Y )− H (Y |X1)

= H (
ε0

8
,

1 − ε0 + ε1

8
,

1 − ε1 + ε2

8
,

1 − ε2 + ε3

8
,

1 − ε3 + ε4

8
,

1 − ε4 + ε5

8
,

1 − ε5 + ε6

8
,

1 − ε6 + 1

8
)

−1

2
H (
ε0

4
,

1 − ε0 + ε1

4
,

1−ε1+ε2

4
,

1−ε2+ε3

4
,

1 − ε3

4
)

−1

2
H (
ε4

4
,

1 − ε4 + ε5

4
,

1 − ε5 + ε6

4
,

1 − ε6 + 1

4
)

= P
1
N O (1).

Now, we show that the second coordinate P
0
G(2) of point P

0
G

equals the second coordinate P
1
N O (2) of point P

1
N O .

P
0
G(2) = I (X2; Y ) = H (Y )− H (Y |X2)

= H (
ε0

8
,

1 − ε0 + ε1

8
,

1 − ε1 + ε2

8
,

1 − ε2 + ε3

8
,

1 − ε3 + ε4

8
,

1 − ε4 + ε5

8
,

1 − ε5+ε6

8
,

1−ε6+1

8
)

−1

2
H (
ε0

4
,

1 − ε0 + ε1

4
,

1 − ε1

4
,
ε6

4
,

1 − ε6 + 1

4
)

−1

2
H (
ε2

4
,

1−ε2+ε3

4
,

1−ε3 + ε4

4
,

1 − ε4 + ε5

4
,

1 − ε5

4
)

(a)= H (
ε0

8
,

1 − ε0 + ε1

8
,

1 − ε1 + ε2

8
,

1 − ε2 + ε3

8
,

1 − ε3

8
,
ε4

8
,

1 − ε4 + ε5

8
,

1 − ε5 + ε6

8
,

1 − ε6 + 1

8
)

−1 − ε3 + ε4

8
H (

1 − ε3

1 − ε3 + ε4
,

ε4

1 − ε3 + ε4
)

−1

2
H (
ε0

4
,

1 − ε0 + ε1

4
,

1 − ε1

4
,
ε6

4
,

1 − ε6 + 1

4
)

−1

2

(
H (
ε2

4
,

1−ε2+ε3

4
,

1−ε3

4
,
ε4

4
,

1 − ε4 + ε5

4
,

1 − ε5

4
)

−1 − ε3 + ε4

4
H (

1 − ε3

1 − ε3 + ε4
,

ε4

1 − ε3 + ε4
)
)

(b)= 1

2
H (
ε0

4
,

1 − ε0 + ε1

4
,

1 − ε1 + ε2

4
,

1 − ε2 + ε3

4
,

1 − ε3

4
)

+1

2
H (
ε4

4
,

1 − ε4 + ε5

4
,

1 − ε5 + ε6

4
,

2 − ε6

4
)

−1

4
H (
ε0

2
,

1 − ε0 + ε1

2
,

1 − ε1

2
)− 1

4
H (
ε2

2
,

1 − ε2 + ε3

2
,

1 − ε3

2
)

−1

4
H (
ε4

2
,

1 − ε4 + ε5

2
,

1 − ε5

2
)− 1

4
H (
ε6

2
,

2 − ε6

2
)

= P
1
N O (2)

where steps (a) and (b) follow from the grouping property
of entropy [24].

Since the sum of the three coordinates of point P
0
G is the

same as that of point P
1
N O , the third coordinate of point P

0
G

is also the same as that of point P
1
N O . Thus, we have proved

P
0
G = P

1
N O .

Next, the second coordinate P
2
N O (2) of point P

2
N O is 1,

since P
2
N O (2) = I (X2; Y |X1, X3) = H (X2|X1, X3) −

H (X2|X1, X3,Y ) = H (X2) = 1.

For point P
3
N O , the first coordinate is

P
3
N O (1) = I (X1; Y |X2)= H (X1|X2) − H (X1|X2,Y ) =

H (X1) = 1. For point P
4
N O , the first coordinate is

P
4
N O (1) = I (X1; Y |X2, X3) = H (X1|X2, X3) − H (X1|X2,

X3,Y ) = H (X1) = 1. Thus, the first and second coordinates
of points P

3
N O and P

4
N O are the same. Since the sum of the

three coordinates of point P
3
N O is the same as that of point

P
4
N O , the third coordinate of point P

3
N O is also equal to that

of point P
4
N O .

Similarly, to prove P
5
N O = P

6
N O , we only need to

show that their first two coordinates are the same. For
point P

5
N O , the first coordinate is P

5
N O (1) = I (X1; Y |X3) =

H (X1|X3) − H (X1|X3,Y ) = H (X1) = 1, and the second
coordinate is P

5
N O (2) = P

2
N O (2) = 1. For point P

6
N O ,

the first coordinate is P
6
N O (1) = P

4
N O (1) = 1 and the

second coordinate is P
6
N O (2) = I (X2; Y |X3) = H (X2|X3)−

H (X2|X3,Y ) = H (X2) = 1.
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