
6268 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Binary Linear Locally Repairable Codes
Pengfei Huang, Student Member, IEEE, Eitan Yaakobi, Member, IEEE,
Hironori Uchikawa, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract— Locally repairable codes (LRCs) are a class of codes
designed for the local correction of erasures. They have received
considerable attention in recent years due to their applications
in distributed storage. Most existing results on LRCs do not
explicitly take into consideration the field size q, i.e., the size of
the code alphabet. In particular, for the binary case, only a few
results are known. In this paper, we present an upper bound
on the minimum distance d of linear LRCs with availability,
based on the work of Cadambe and Mazumdar. The bound
takes into account the code length n, dimension k, locality r ,
availability t , and field size q. Then, we study the binary linear
LRCs in three aspects. First, we focus on analyzing the locality
of some classical codes, i.e., cyclic codes and Reed–Muller codes,
and their modified versions, which are obtained by applying the
operations of extend, shorten, expurgate, augment, and lengthen.
Next, we construct LRCs using phantom parity-check symbols
and multi-level tensor product structure, respectively. Compared
with other previous constructions of binary LRCs with fixed
locality or minimum distance, our construction is much more
flexible in terms of code parameters, and gives various families
of high-rate LRCs, some of which are shown to be optimal
with respect to their minimum distance. Finally, the availability
of LRCs is studied. We investigate the locality and availability
properties of several classes of one-step majority-logic decodable
codes, including cyclic simplex codes, cyclic difference-set codes,
and 4-cycle free regular low-density parity-check codes. We also
show the construction of a long LRC with availability from a
short one-step majority-logic decodable code.

Index Terms— Locally repairable codes, cyclic codes, tensor
product codes, one-step majority-logic decodable codes.

I. INTRODUCTION

D ISTRIBUTED and cloud storage systems today are
required to tolerate the failure or unavailability of some

of the nodes in the system. The simplest and most commonly
used way to accomplish this task is replication, where every

Manuscript received October 5, 2015; accepted July 8, 2016. Date of
publication September 1, 2016; date of current version October 18, 2016.
This work was supported in part by the Lady David Foundation, in part by
a Viterbi Research Fellowship, and in part by the Israel Science Foundation
under Grant 1624/14. E. Yaakobi was supported by the Center for Memory
and Recording Research at UCSD. This paper was presented at the 2015
IEEE Information Theory Workshop [10] and the 2015 IEEE International
Symposium on Information Theory [11].

P. Huang and P. H. Siegel are with the Center for Memory and Record-
ing Research, Department of Electrical and Computer Engineering, Uni-
versity of California at San Diego, La Jolla, CA 92093 USA (e-mail:
pehuang@ucsd.edu; psiegel@ucsd.edu).

E. Yaakobi is with the Department of Computer Science,
Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
yaakobi@cs.technion.ac.il).

H. Uchikawa was with the Center for Memory and Recording Research,
University of California at San Diego, La Jolla, CA 92093, USA. He
is now with Toshiba Corporation, Yokohama 247-8585, Japan (e-mail:
hironori.uchikawa@toshiba.co.jp).

Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2016.2605119

node is replicated several times, usually three. This solution
has clear advantages due to its simplicity and fast recovery
from node failures. However, it entails a large storage overhead
which becomes costly in large storage systems.

In order to achieve better storage efficiency, erasure codes,
e.g., Reed-Solomon codes, are deployed. Reed-Solomon and
more generally maximum distance separable (MDS) codes are
attractive since they tolerate the maximum number of node
failures for a given redundancy. However, they suffer from
a very slow recovery process, in the case of a single node
failure, which is the most common failure scenario. Hence, an
important objective in the design of erasure codes is to ensure
fast recovery while efficiently supporting a large number of
node failures. There are several metrics in the literature to
quantify the efficiency of rebuilding. Three of the most popular
consider the number of communicated bits in the network, the
number of read bits, and the number of accessed nodes. In this
work, we study codes with respect to the last metric.

Locally repairable codes (LRCs) are a class of codes in
which a failure of a single node can be recovered by accessing
at most r other nodes, where r is a predetermined value [6],
[18], [20]. For a length-n code with dimension k, it is said
that the code has all-symbol locality r if every symbol is
recoverable from a set of at most r symbols. If the code
is systematic and only its information symbols have this
property then the code has information locality r . LRCs are
well studied in the literature and many works have considered
code constructions and bounds for such codes. In [6], an
upper bound, which can be seen as a modified version of the
Singleton bound, was given on the minimum distance of LRCs.
More specifically, if an [n, k, d]q linear code has information
locality r , then

d � n − k −
⌈

k

r

⌉
+ 2. (1)

In [20], it was proved that bound (1) also holds for non-linear
codes with all-symbol locality. Code constructions which
achieve bound (1) were given in [5], [8], [9], [26], [28], [32],
and [34]. However, for some cases, bound (1) is not tight, so
several improvements were proposed in [22], [30], and [35].
Recently, a new upper bound on the dimension k of LRCs
was presented in [4]. This bound takes into account the code
length, minimum distance, locality, and field size, and it is
applicable to both non-linear and linear codes. Namely, if an
(n, M, d)q code has all-symbol locality r , then

k � min
x∈Z+

{
xr + k(q)

opt(n − x(r + 1), d)
}
, (2)

where M denotes the codebook size, k = logq M , Z
+ is the set

of all positive integers, and k(q)
opt(n

′, d ′) is the largest possible

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HUANG et al.: BINARY LINEAR LRCs 6269

dimension of a length-n′ code with minimum distance d ′ and
a given field size q . There also exist some constructions of
LRCs over small fields, e.g., binary field, in [7], [10], [11],
[29], [33], and [40].

In addition to symbol locality, another important property
of LRCs is their symbol availability, meaning the number of
disjoint sets of symbols that can be used to recover a given
symbol. High availability is a particularly attractive property
for so-called hot data in a distributed storage network. More
precisely, a code C has all-symbol locality r and availability t
if every code symbol can be recovered from t disjoint repair
sets of other symbols, each set of size at most r symbols.
We refer to such a code as an (r, t)a-LRC. If the code is
systematic and these properties apply only to its information
symbols, then the code has information locality r and avail-
ability t , and it is referred to as an (r, t)i -LRC.

Several recent works have considered codes with both
locality and availability properties. In [36], it was shown that
the minimum distance d of an [n, k, d]q linear (r, t)i -LRC
satisfies the upper bound

d � n − k −
⌈

(k − 1)t + 1

(r − 1)t + 1

⌉
+ 2. (3)

In [23], it was proved that bound (3) is also applicable to
(n, M, d)q non-linear (r, t)i -LRCs. In the same paper, it was
also shown that if each repair set in a linear (r, t)i -LRC
contains only one parity symbol, then the minimum distance
d of the code satisfies the following upper bound

d � n − k −
⌈

kt

r

⌉
+ t + 1, (4)

and codes achieving bound (4) were constructed using MDS
codes and Gabidulin codes. For (r, t)a-LRCs with parameters
(n, M, d)q , it was shown in [31] that d satisfies

d � n −
t∑

i=0

⌊
k − 1

r i

⌋
. (5)

There are several constructions of LRCs with availability.
In [32], two constructions of (r, 2)a-LRCs were proposed. One
relies on the combinatorial concept of orthogonal partitions,
and the other one is based on product codes. In [19], a
class of (r, t)a-LRCs was constructed from partial geometries.
A family of systematic fountain codes having information
locality and strong probabilistic guarantees on availability was
introduced in [2]. More recently, in [7] and [40], constructions
based on the simplex code were proposed. In [37], a family
of LRCs with arbitrary availability was constructed, and it
outperforms the direct product codes with respect to the
information rate.

In this paper, we study bounds and constructions for linear
LRCs over a fixed field size; in particular, we focus on binary
linear LRCs. Binary LRCs are of particular interest in practice
because of their relatively lower encoding and decoding com-
plexity compared to non-binary LRCs. We first develop field
size dependent upper bounds that incorporate the availability t ,
based on the work by Cadambe and Mazumdar [4]. For
constructions, we make contributions in the following three
aspects.

We investigate the locality of two classes of classical codes,
i.e., cyclic codes and Reed-Muller codes. We observe that
the locality of a cyclic code is determined by the minimum
distance of its dual code, and show that this result also holds
for Reed-Muller codes. We also discuss the locality of a code
obtained when we extend, shorten, expurgate, augment, and
lengthen an LRC.

Tensor product codes, first proposed by Wolf in [38], are a
family of codes defined by a parity-check matrix that is the
tensor product of the parity-check matrices of two constituent
codes. Later, they were generalized in [12]. As shown in [39],
the encoding steps of tensor product codes involve using phan-
tom syndrome symbols, which only appear in the encoding
procedure and will disappear in the final codewords. Motivated
by these ideas, we give three constructions Constructions A, B,
and C of LRCs that leverage phantom parity-check symbols.
These constructions are effective for LRCs with small mini-
mum distance. To obtain LRCs with higher minimum distance,
we present another construction Construction D based on
multi-level tensor product structure. All our constructions are
flexible and generate a variety of high-rate LRCs with different
localities. Some of these codes are proved to have an optimal
minimum distance.

One-step majority-logic decodable codes were first formally
studied by Massey [15], [17]. Historically, these codes were
introduced for low-complexity error correction. Every symbol
of such codes has several disjoint repair sets, and is decoded
according to the majority of the values given by all of its repair
sets. In this work, we make the connection between one-step
majority-logic decodable codes and LRCs with availability.
We also demonstrate how a long (r, t)a-LRC can be con-
structed from a short one-step majority-logic decodable code
using multi-level tensor product structure.

The rest of the paper is organized as follows. In Section II,
we formally define the problem and present field size q depen-
dent bounds on the minimum distance d and the dimension k
of [n, k, d]q linear (r, t)i -LRCs. In Section III, we investigate
the locality of several classical codes and their modified ver-
sions obtained using standard code operations. In Section IV,
we construct various families of (r, 1)i -LRCs and (r, 1)a-LRCs
using phantom parity-check symbols and multi-level tensor
product structure. In Section V, we review several families
of one-step majority-logic decodable codes, and identify the
locality and availability of these codes. Section VI concludes
the paper.

II. DEFINITIONS AND BOUNDS

We begin with several basic definitions and notational con-
ventions. We use the notation [n] to define the set {1, . . . , n}.
For a length-n vector v and a set I ⊆ [n], the vector vI
denotes the restriction of the vector v to coordinates in the
set I. A linear code C over Fq of length n, dimension k, and
minimum distance d will be denoted by [n, k, d]q , and its gen-
erator matrix is G = (g1, . . . , gn), where gi ∈ F

k
q is a column

vector for i ∈ [n]. We define kI(C) = logq |{cI : c ∈ C}|,
and, for simplicity, we write kI instead of kI(C) when C is
clear from the context. The dual code of a linear code C will
be denoted by C⊥.

6270 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

We follow the conventional definitions of linear LRCs with
availability, as established in [23], [31], and [36].

Definition 1: The i th code symbol of an [n, k, d]q linear
code C is said to have locality r and availability t if there
exist t pairwise disjoint repair sets R1

i , . . . ,Rt
i ⊆ [n]\{i},

such that 1) |R j
i | � r , for 1 � j � t , and 2) for each repair

set R j
i , 1 � j � t , gi is a linear combination of the columns

gu, u ∈ R j
i .

Definition 2: Let C be an [n, k, d]q linear code. A set
I ⊆ [n] is said to be an information set if |I| = kI = k.

1) The code C is said to have all-symbol locality r and avail-
ability t if every code symbol has locality r and availability t.
We refer to C as a linear (r, t)a-LRC.

2) The code C is said to have information locality r and
availability t if there is an information set I such that, for any
i ∈ I, the i th code symbol has locality r and availability t.
We refer to C as a linear (r, t)i -LRC.

Note that when t = 1, Definition 2 reduces to the definition
of linear LRCs. It is straightforward to verify that the minimum
distance d of a linear (r, t)a-LRC satisfies d � t + 1.
We now present upper bounds on the minimum distance and
the dimension of linear (r, t)i -LRCs, based on the framework
established in [4]. The following lemma and theorem are
extensions of [4, Lemma 1 and Th. 1], respectively, and for
the completeness of the results in the paper we provide their
detailed proofs in Appendix A and Appendix B.

Let r and x be two positive integers and y = (y1, . . . , yx) ∈
([t])x be a vector of x positive integers. We define the integers
A(r, x, y) and B(r, x, y) as follows,

A(r, x, y) =
x∑

j=1

(r − 1)y j + x,

B(r, x, y) =
x∑

j=1

ry j + x .

Lemma 3: Let C be an [n, k, d]q linear (r, t)i -LRC. Assume
that x ∈ Z

+ and y = (y1, . . . , yx) ∈ ([t])x satisfy 1 � x �
� k

(r−1)t+1� and A(r, x, y) < k. Then, there exists a set I ⊆ [n]
such that |I| = B(r, x, y) and kI(C) � A(r, x, y).

Now, let d(q)
�−opt [n, k] denote the largest possible minimum

distance of an [n, k, d]q linear code, and let k(q)
�−opt [n, d]

denote the largest possible dimension of such a code. Applying
Lemma 3, we get the following upper bounds on d and k for
[n, k, d]q linear (r, t)i -LRCs.

Theorem 4: For any [n, k, d]q linear (r, t)i -LRC, the min-
imum distance d satisfies

d� min
1�x�� k

(r−1)t+1 �,
x∈Z

+,
y∈([t])x ,

A(r,x,y)<k

{
d(q)
�−opt [n−B(r, x, y), k− A(r, x, y)]

}
, (6)

and the dimension k satisfies

k � min
1�x�� k

(r−1)t+1 �,
x∈Z

+,
y∈([t])x ,

A(r,x,y)<k

{
A(r, x, y) + k(q)

�−opt[n − B(r, x, y), d]
}
.

(7)

Remark 5: Since a linear (r, t)a-LRC is also a linear (r, t)i -
LRC, bounds (6) and (7) hold for linear (r, t)a-LRCs as well.

Remark 6: We note that for linear codes with availability
t = 1, bound (7) in Theorem 4 becomes

k � min
1�x�� k

r �−1

{
xr + k(q)

�−opt [n − x(r + 1), d]
}

= min
x∈Z+

{
xr + k(q)

�−opt [n − x(r + 1), d]
}

which coincides with bound (2). As was proved in [4], this
implies that, for t = 1, Theorem 4 is at least as strong as
bound (3). In fact, the latter statement holds for all values of
r and t . For r = 1, this can be readily verified by evaluating
the expression in bound (6) at x = k −1 and y = (t, t, . . . , t).
For r, t � 2, we can similarly validate the claim by means of
a suitable choice of x and y, as we now show.

We consider two cases.
Case 1: Assume that either k(mod((r − 1)t + 1)) = 0 or

k(mod((r − 1)t + 1)) > r . Here we choose x = � k
(r−1)t+1�,

y1 = · · · = yx−1 = t , and yx = � k−(x−1)
(
(r−1)t+1

)
−1

r−1 � − 1.
Note that 1 � yx � t and A(r, x, y) < k. Bound (6) implies
that

d � d(q)
�−opt [n − B(r, x, y), k − A(r, x, y)]

� n − k + 1 − (x − 1)t − yx

where the latter inequality follows from the Singleton bound.
So we only need to show that

(x − 1)t + yx �
⌈

(k − 1)t + 1

(r − 1)t + 1

⌉
− 1.

If the condition k(mod((r − 1)t + 1)) = 0 holds, we verify
that

(x − 1)t + yx = xt − 1

= kt

(r − 1)t + 1
− 1

�
⌈

(k − 1)t + 1

(r − 1)t + 1

⌉
− 1.

On the other hand, if k(mod ((r − 1)t + 1)) > r , we can write
k = (x − 1)

(
(r − 1)t + 1

) + γ , for some r < γ � (r − 1)t ,
and then we see that

(x − 1)t + yx = (x − 1)t +
⌈

γ − 1

r − 1

⌉
− 1

� (x − 1)t +
⌈

(γ − 1)t + 1

(r − 1)t + 1

⌉
− 1

=
⌈

(k − 1)t + 1

(r − 1)t + 1

⌉
− 1.

Case 2: Assume that 1 � k(mod((r − 1)t + 1)) � r . Here
we choose, x = � k

(r−1)t+1� − 1 and y = (t, · · · , t). Note that
A(r, x, y) < k. Here bound (6) leads to

d � n − k + 1 − xt

so we need to verify that

xt �
⌈

(k − 1)t + 1

(r − 1)t + 1

⌉
− 1.

HUANG et al.: BINARY LINEAR LRCs 6271

Setting k = x((r − 1)t + 1)+γ , where 1 � γ � r , and noting

that (k−1)t+1+(r−γ)t
(r−1)t+1 is an integer, we find that

xt = (k − γ)t

(r − 1)t + 1

= (k − 1)t + 1 + (r − γ)t

(r − 1)t + 1
− 1

�
⌈

(k − 1)t + 1

(r − 1)t + 1

⌉
− 1.

Hence, we conclude that the bound in Theorem 4 is at least
as strong as bound (3) for all r, t � 1.

III. LOCALITY OF BINARY CLASSICAL CODES

AND THEIR MODIFIED VERSIONS

In this section, we study the all-symbol locality of classical
codes and their modified versions. We also investigate their
optimality, in the sense of the following definition.

Definition 7: An [n, k, d]q linear code C with all-symbol
locality r is said to be d-optimal if there does not exist an
[n, k, d + 1]q code with all-symbol locality r . Similarly, it is
called k-optimal if there does not exist an [n, k + 1, d]q code
with all-symbol locality r . Finally, it is called r-optimal if there
does not exist an [n, k, d]q code with all-symbol locality r −1.

Example 8: Consider the binary simplex code C with para-
meters [2m − 1, m, 2m−1]. It was proved in [4] that this code
has all-symbol locality r = 2 and it is r -optimal for these
given parameters. Since this code satisfies the Plotkin bound,
it is d-optimal and k-optimal as well.

In the remainder of this section, we consider only codes
with all-symbol locality, and thus when saying that a code has
locality r we refer to all-symbol locality.

A. Locality of Classical Codes

In this subsection, we study two classes of binary classical
codes, namely, cyclic codes and Reed-Muller codes.

First, we give our main result for cyclic codes, and also
present several examples. We start with a simple observation
about the locality of code symbols. Even though it has been
mentioned before, see e.g., [6], [21], [22], we state it here as
a remark for completeness.

Remark 9: For a binary linear code C, if its i th coordinate,
i ∈ [n], belongs to the support of a codeword in C⊥ with
weight r + 1, then the i th code symbol has locality r .

The next lemma is an immediate consequence of the pre-
ceding remark.

Lemma 10: Let C be an [n, k, d] cyclic binary linear code,
and let d⊥ be the minimum distance of its dual code C⊥. Then,
the code C has locality d⊥ − 1.

Proof: The dual code C⊥ has a codeword of weight d⊥.
Since C is a cyclic linear code, its dual code C⊥ is also a
cyclic linear code. Thus every i ∈ [n] belongs to the support
of some codeword of weight d⊥ in C⊥. From Remark 9, every
coordinate has locality d⊥ − 1. Thus, the code C has locality
r = d⊥ − 1.

Next, we give several examples to illustrate how the locality
of specific codes can be determined from Lemma 10 and then
study their optimality.

TABLE I

PARAMETERS OF DBCH CODES AND THEIR DUAL CODES

Example 11: Let C be the [n = 2m − 1, k = 2m − 1 −
m, d = 3] cyclic binary Hamming code. Its dual code is the
[2m − 1, m, 2m−1] cyclic binary simplex code. Therefore, the
Hamming code has locality r = 2m−1 −1. Since it is a perfect
code, it is both d-optimal and k-optimal. In order to show
r -optimality, let us assume on the contrary that there exists
an [n, k, d] code with locality r̂ = 2m−1 − 2. According to
bound (2) for x = 1, we have that

k � xr̂ + k(2)
opt (n − x(r̂ + 1), d) = 2m−1 − 2 + k(2)

opt(2
m−1, 3)

(a)
< 2m−1 − 2 + 2m−1 − (m − 1) = 2m − m − 1,

where step (a) is from the Hamming bound. Thus, we get a
contradiction to the value of k. We also get from Lemma 10
that the simplex code has locality 2. This gives an alternative
proof to the one given in [4] in case the code is cyclic.

Example 12: Here we consider the [23, 12, 7] cyclic binary
Golay code C. Its dual code C⊥ is the [23, 11, 8] cyclic binary
code. Hence, we conclude that C has locality r = 7 and
the dual code C⊥ has locality r⊥ = 6. The code C is both
d-optimal and k-optimal since it is a perfect code. C⊥ is
d-optimal due to the Hamming bound, and k-optimal accord-
ing to the online table [27] for k(2)

�−opt [23, 8]. The r -optimality
of these two codes is proved in a similar way to the optimality
proof in Example 11.

Example 13: Let C be the cyclic double-error-correcting
binary primitive BCH (DBCH) code with parameters
[2m − 1, 2m − 1 − 2m, 5] where m � 4. Its dual code C⊥
has parameters [2m − 1, 2m, 2m−1 − 2�m/2] [15]. Therefore,
we conclude that C has locality r = 2m−1 − 2�m/2	 − 1, and
C⊥ has locality r⊥ = 4. We utilize bound (2) and the online
table from [27] to check the d-optimality, k-optimality, and
r -optimality of the DBCH codes and their dual codes. The
results are summarized in Table I (where � indicates that we
could prove optimality while ? means that we could not).

Reed-Muller (RM) codes form another important class of
codes. They are simple to construct and rich in structural
properties. This motivates us to study their locality. Recall
that a μth-order binary RM code RM(μ, m) has code length
n = 2m , dimension k = ∑μ

i=0

(m
i

)
, and minimum distance

d = 2m−μ.
In [24], two classes of codes with locality 2 and 3 were

constructed based on the non-binary RM codes of first and
second orders. Here, we focus on the binary RM codes of any
order, and determine their locality as follows.

6272 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Lemma 14: The μth-order binary RM code RM(μ, m) has
locality r = d⊥ − 1 = 2μ+1 − 1.

Proof: It is known that the dual code of RM(μ, m) is
RM(m − μ − 1, m), and the minimum weight codewords of
an RM code generate all of its codewords [15]. Therefore,
every coordinate i , i ∈ [n], belongs to the support of a certain
minimum weight codeword of RM(m − μ − 1, m). To see
that, assume on the contrary that there exists a coordinate
j , j ∈ [n], in which all the minimum weight codewords of
RM(m − μ − 1, m) have value 0. Thus, any linear combina-
tions of the minimum weight codewords cannot produce the
all-ones codeword 1, which is a valid codeword. Thus, we get
a contradiction, which implies that RM(μ, m) has locality
r = d⊥ − 1 = 2μ+1 − 1.

Finally, we mention that a μth-order cyclic binary
RM code C is a [2m −1,

∑μ
i=0

(m
i

)
, 2m−μ−1] punctured binary

RM code, represented in a cyclic form [15]. Its dual code C⊥
is also cyclic and is a [2m − 1,

∑m
i=μ+1

(m
i

) − 1, 2μ+1] binary
code. From Lemma 10, C has locality r = 2μ+1 − 1, and C⊥
has locality r⊥ = 2m−μ − 2.

B. Locality of Modified Classical Codes

In this subsection, we show how to find the locality of
codes which are obtained by applying the standard code
operations of extending, shortening, expurgating, augmenting,
and lengthening to existing LRCs. For a binary vector c, let
c represent the complement vector of c. For a binary code C,
define C = {c : c ∈ C}.

1) Extend Operation: The extended code of an [n, k, d]
binary code C is an [n + 1, k, dext] code Cext with an overall
parity bit added to each codeword,

Cext =
{
(c1, . . . , cn, cn+1) : (c1, . . . , cn) ∈ C, cn+1 =

n∑
i=1

ci

}
,

where dext = d + 1 for odd d and dext = d for even d .
We use the notation C⊥

ext to denote the dual code of Cext .
Lemma 15: Let C be an [n, k, d] binary code with local-

ity r . If the maximum Hamming weight of codewords in C⊥ is
n − r , then the extended code Cext has locality rext = r .

Proof: For every i ∈ [n], there exists a set Ri of size at
most r such that the i th symbol is recoverable from the set Ri .
Thus, we only need to prove this property for the (n + 1)st
symbol. Since the maximum weight of codewords in C⊥ is
n−r , there exists a codeword c ∈ C⊥ such that wH (c) = n−r .
Note also that the vectors (c, 0) and 1 are codewords in C⊥

ext .
Therefore the vector c′ = (c, 0)+ 1 is a codeword in C⊥

ext and
its Hamming weight is r + 1. Hence, from Remark 9, we get
that the (n + 1)st symbol can also be recovered by a set of r
other symbols.

We have the following corollary for cyclic binary linear
codes, for which we have already seen that r = d⊥ − 1.

Corollary 16: Let C be an [n, k, d] cyclic binary code and
let d⊥ be the minimum distance of its dual code. If the
maximum Hamming weight of codewords in C⊥ is n +1−d⊥,
then the extended code Cext has locality rext = d⊥ − 1.

Example 17: Let C be the [2m − 1, 2m − 1 − m, 3] cyclic
binary Hamming code. Its extended code Cext has parameters

[2m, 2m − 1 − m, 4]. The dual code C⊥ is the simplex
code, whose nonzero codewords have constant Hamming
weight 2m−1. Hence, the condition from Corollary 16 holds
and we conclude that the extended Hamming code Cext has
locality rext = d⊥ − 1 = 2m−1 − 1. Cext is both d-optimal and
k-optimal according to the Hamming bound. To show that it is
also r -optimal, let us assume on the contrary that there exists
a [2m, 2m − 1 − m, 4] binary code with locality r̂ = 2m−1 − 2.
According to bound (2) for x = 1, we have

kext � 2m−1 − 2 + k(2)
opt(2

m−1 + 1, 4)

(a)= 2m−1 − 2 + k(2)
opt(2

m−1, 3)

(b)
< 2m−1 − 2 + 2m−1 − (m − 1) = 2m − m − 1.

Thus, we get a contradiction to the value of kext . In the above
proof, step (a) follows from the property that A(n, 2s − 1) =
A(n + 1, 2s), where A(n, d) denotes the largest number of
codewords M in any binary code (n, M, d) [16]. Step (b)
follows from the Hamming bound.

Next, we determine the locality of the dual of the extension
of a cyclic code.

Lemma 18: Let C be an [n, k, d] cyclic binary code with
odd minimum distance d. Then, the code C⊥

ext has locality
r⊥

ext = d.
Proof: Since d is odd, each codeword with weight d in

C generates a parity-check bit 1. Since C is cyclic, for any
i ∈ [n], i belongs to the support of some codeword (c, 1) ∈
Cext , where c has weight d . Moreover, the support of (c, 1)
also contains coordinate n + 1. Thus, from Remark 9, every
symbol of C⊥

ext has locality d .
Example 19: Let C be the [n = 2m − 1, k = 2m − 1 − m,

d = 3] cyclic binary Hamming code. Correspondingly, C⊥
ext

is the biorthogonal code [n⊥
ext = 2m, k⊥

ext = m + 1, d⊥
ext =

2m−1] [13]. From Lemma 18, C⊥
ext has locality r⊥

ext = d = 3.
C⊥

ext is both d-optimal and k-optimal according to the Plotkin
bound. To show that C⊥

ext is r -optimal, we utilize bound (2)
with x = 1, and have the following constraint on the dimen-
sion of the code,

k⊥
ext = m + 1 � r⊥

ext + k(2)
opt(2

m − (r⊥
ext + 1), 2m−1)

(a)
� r⊥

ext + log2
2 · 2m−1

2 · 2m−1 − 2m + (r⊥
ext + 1)

= r⊥
ext + m − log2(r

⊥
ext + 1),

where step (a) is from the Plotkin bound. Therefore, we obtain

r⊥
ext � log2(r

⊥
ext + 1) + 1.

Thus, we have r⊥
ext � 3. Therefore, the code is r -optimal.

2) Shorten Operation: For an [n, k, d] binary code C, its
shortened code Cs of C is the set of all codewords in C that
are 0 in a fixed position with that position deleted. Let the last
one of the coordinates of C be the position deleted, then the
shortened code Cs is

Cs = {(c1, . . . , cn−1) : (c1, . . . , cn−1, 0) ∈ C}.
We assume here that there is a codeword c ∈ C such that
cn = 1. Otherwise, we will remove another coordinate

HUANG et al.: BINARY LINEAR LRCs 6273

satisfying this condition. The code Cs has parameters
[n − 1, k − 1, ds � d] and its dual code is denoted by C⊥

s .
Lemma 20: Let C be an [n, k, d] binary code with locality

r � 2. The shortened code Cs has locality r or r − 1.
Proof: Since C has locality r , for all i ∈ [n − 1], the i th

code symbol has a repair set Ri with respect to C of size at
most r . If n /∈ Ri then this symbol has the same repair set also
with respect to the shortened code Cs . Otherwise, note that if
c ∈ Cs then (c, 0) ∈ C, so we conclude that the i th symbol is
recoverable also from the set Ri \ {n}.

The following is an immediate consequence of Lemma 20
for cyclic binary codes.

Corollary 21: Let C be an [n, k, d] cyclic binary code
whose dual code has minimum distance d⊥ � 3. Then, the
code Cs has locality either d⊥ − 2 or d⊥ − 1.

The next example shows that the shortened code can in fact
have locality r − 1.

Example 22: Let C be the [2m − 1, 2m − 1 − m, 3] cyclic
binary Hamming code. Its shortened code Cs is a [2m − 2,
2m − 2 − m, 3] code and from Corollary 21 it has locality
d⊥ − 2 or d⊥ − 1, where d⊥ = 2m−1. We show that it has
locality d⊥ − 2. According to the proof of Lemma 20, it is
enough to show that for every i ∈ [n−1], the i th code symbol
has a repair set Ri of size 2m−1 − 1 which contains the nth
coordinate. Or, according to Remark 9, it is enough to show
that there exists a codeword c ∈ C⊥ such that ci = cn = 1
and wH (c) = 2m−1. We can omit the last requirement on
the weight since all nonzero codewords in C⊥ have the same
weight 2m−1. Let c1, c2 ∈ C⊥ be two codewords such that
c1,i = c2,n = 1. If c1,n = 1 or c2,i = 1 then we are done.
Otherwise, the codeword c1 + c2 satisfies this property. The
d-optimality, k-optimality, and r -optimality of Cs are proved
in a similar way to the previous examples.

3) Expurgate, Augment, and Lengthen Operations: For an
[n, k, d] binary code C having at least one odd weight code-
word, the expurgated code Cexp is a subcode of C which
contains only the codewords of even weight. That is,

Cexp = {c : c ∈ C, wH (c) is even}.
Cexp is an [n, k −1, we] code, where we denotes the minimum
even weight of nonzero codewords in C. We denote by C⊥

exp

the dual code of Cexp and note that C⊥
exp = C⊥ ∪ C⊥.

For an [n, k, d] binary code C which does not contain the
all-ones codeword 1, the augmented code Ca is the code C ∪
C with parameters [n, k + 1, min{d, n − wmax}], where wmax
denotes the maximum weight of codewords in C. We use the
notation C⊥

a to denote the dual code of Ca .
According to these definitions, if the code C is cyclic then

the expurgated and augmented codes of C are cyclic as well.
Hence, for an [n, k, d] cyclic binary code C, we have the
following two observations:

a) If C has an odd weight codeword, then Cexp has locality
rexp = min{d⊥, n − w⊥

max} − 1, where w⊥
max is the maximum

weight of codewords in C⊥. (Here, we assume w⊥
max < n − 1,

since w⊥
max = n − 1 is not an interesting case.)

b) If C does not contain the all-ones codeword 1, then Ca

has locality ra = w⊥
e − 1, where w⊥

e is the minimum even
weight of nonzero codewords in C⊥.

Fig. 1. An (r, 1)i -LRC using Construction A. Information symbols are in
block I, local parity-check symbols are in block II, phantom symbols are in
block III, and global parity-check symbols are in block IV.

For an [n, k, d] binary code C which does not contain the
all-ones codeword 1, the lengthened code C� is obtained as
follows. First, the code C is augmented to the code Ca =
C ∪ C. Then, Ca is extended. Thus, C� = {(c1, . . . , cn, cn+1) :
cn+1 = ∑n

i=1 ci and (c1, . . . , cn) ∈ C ∪ C}. After the lengthen
operation, the length and dimension of the code are increased
by 1. By leveraging the results from the augment and extend
operations, we conclude that if the minimum even weight of
nonzero codewords in C⊥ is w⊥

e , and the maximum weight of
codewords in C⊥

a is n + 1 − w⊥
e , then the lengthened code C�

has locality r� = w⊥
e − 1.

Our results on locality of binary classical codes and their
modified versions are summarized in Table II, where � means
we can prove the optimality of the given codes, whereas ?
means we have not verified their optimality.

IV. CONSTRUCTION OF BINARY LRCs

In this section, we focus on constructing binary LRCs.
We first present constructions of LRCs with small minimum
distance (i.e., d = 3, 4, and 5) by using phantom parity-check
symbols. Then, in order to obtain LRCs with higher minimum
distance, we propose another construction which is based on
multi-level tensor product structure.

A. Construction Using Phantom Parity-Check Symbols

We first consider constructing binary linear (r, 1)i -LRCs
with minimum distance 3 and 4. The general framework
is depicted in Fig. 1. We specify an [n′, k ′, d ′] systematic
binary code as a base code, Cbase. The following construction
produces an (r, 1)i -LRC of length n = (k ′ + 1)� + n′ − k ′,
dimension k = k ′�, and information locality r = k ′.

Construction A:

Step 1: Place an � × k ′ array of information symbols in
block I.

Step 2: For each row of information symbols,
(μi1, . . . , μik′), 1 � i � �, compute local
parity-check symbols pLi = ∑k′

j=1 μi j , 1 � i � �,
and place them in the corresponding row of
block II.

Step 3: Encode each row of information symbols in
block I using Cbase, producing parity-check symbols
(pi1, . . . , pi,n′−k′), 1 � i � �. Place these parity-
check symbols in block III. (These symbols are

6274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

TABLE II

LOCALITY OF BINARY CLASSICAL CODES AND THEIR MODIFIED VERSIONS

referred to as phantom symbols because they will
not appear in the final codeword.)

Step 4: Compute a row of global parity-check symbols,
pG j = ∑�

i=1 pi j , 1 � j � n′ − k ′, by summing
the rows of phantom symbols in block III. Place
these symbols in block IV.

Step 5: The constructed codeword consists of the symbols
in blocks I, II, and IV. �

Note that for r |k, Pyramid codes are optimal (r, 1)i -LRCs
over sufficiently large field size [8]. A Pyramid code is
constructed by splitting a parity-check symbol of a systematic
MDS code into k/r local parity-check symbols. However, for
the binary case, it is hard to find a good binary code first
and then conduct the splitting operation. In contrast, we take
a different approach. We first design the local parity-check
symbols, and then construct the global parity-check symbols.

If Cbase has an information-sum parity-check symbol, a
parity-check symbol which is the sum of all its information
symbols, we can simply modify Step 3 of Construction A
to reduce the code redundancy as follows. After encoding
each row of information symbols in block I, define the
corresponding row of phantom symbols to be the computed
parity-check symbols with the information-sum parity-check
symbol excluded, and store them in block III. Then proceed
with the remaining steps in Construction A. We refer to
this modified construction as Construction A′. It is easy to
verify that the resulting code is an (r, 1)i -LRC with length
n = (k ′+1)�+n′−k ′−1, dimension k = k ′�, and information
locality r = k ′.

Now, if we use a Cbase with minimum distance 3, we have
a lower bound on the minimum distance of the constructed
LRC, as stated in the following lemma.

Lemma 23: If Cbase is an [n′, k ′, d ′ = 3] code, the (r, 1)i -
LRC produced by Construction A (or Construction A′, if
appropriate) has minimum distance d � 3.

Proof: See Appendix C.

Based on Lemma 23, we have the following theorem on the
construction of (r, 1)i -LRCs with optimal minimum distance
d = 3.

Theorem 24: Let Cbase be an [n′, k ′, d ′ = 3] binary code
with an information-sum parity-check symbol and assume that
d(2)
�−opt [n′, k ′] = 3. The (r, 1)i -LRC obtained from Construc-

tion A′ has parameters [n = (k ′ + 1)� + n′ − k ′ − 1, k = k ′�,
d = 3] and r = k ′. Its minimum distance d = 3 is optimal.

Proof: From Construction A′, the length, dimension and
locality of the (r, 1)i -LRC are determined. From Lemma 23,
the minimum distance satisfies d � 3. On the other hand, from
bound (6),1 with x = � − 1 and t = 1, d � d(2)

�−opt [n − (k ′ +
1)(�−1), k −k ′(�−1)] = d(2)

�−opt [n′, k ′] = 3. Therefore, d = 3
and it is optimal.

We give some examples of (r, 1)i -LRCs with d = 3. First,
let Cbase be the [7, 4, 3] systematic binary Hamming code
whose parity-check matrix is

H[7,4,3] =
⎡
⎣ 0 1 1 1 1 0 0

1 1 1 0 0 1 0
1 1 0 1 0 0 1

⎤
⎦.

Using Construction A, we obtain an (r, 1)i -LRC with para-
meters [5� + 3, 4�, 3] with r = 4. However, the upper bound
on the minimum distance from bound (6) is 4. To construct
an (r, 1)i -LRC whose minimum distance is optimal with
respect to bound (6), we use a [6, 3, 3] shortened binary
Hamming code as the Cbase whose parity-check matrix H[6,3,3]
is obtained by deleting the first column of H[7,4,3],

H[6,3,3] =
⎡
⎣ 1 1 1 1 0 0

1 1 0 0 1 0
1 0 1 0 0 1

⎤
⎦.

1Note that we use here and henceforth bound (6) instead of bound (2)
simply because bound (6) is stated explicitly for the minimum distance and
bound (2) is given for the code dimension.

HUANG et al.: BINARY LINEAR LRCs 6275

Now, the Cbase has an information-sum parity-check symbol
and d(2)

�−opt [6, 3] = 3. From Theorem 24, the (r, 1)i -LRC
generated by Construction A′ has parameters [4� + 2, 3�, 3]
and r = 3. Moreover, its minimum distance d = 3 is optimal.

The above [6, 3, 3] base code Cbase can be generalized as
follows. Let C be a [2m − 1, 2m − 1 − m, 3] systematic binary
Hamming code with parity-check matrix

H =

⎡
⎢⎢⎢⎣

h1,1 h1,2 . . . h1,2m−1−m 1 0 . . . 0
h2,1 h2,2 . . . h2,2m−1−m 0 1 . . . 0

...
...

. . .
...

...
...

. . .
...

hm,1 hm,2 . . . hm,2m−1−m 0 0 . . . 1

⎤
⎥⎥⎥⎦,

whose columns range over all the nonzero vectors in F
m
2 .

The first 2m − 1 − m coordinates of C form the systematic
information symbols. The parity-check matrix Hs of the
shortened binary Hamming code Cs is obtained by deleting
any i th column of H , if 1 � i � 2m − 1 − m and h1,i = 0.
As a result, Cs is systematic and has an information-sum
parity-check symbol.

Lemma 25: The code Cs has parameters [2m−1 + m −
1, 2m−1 − 1, 3], and its minimum distance is optimal.

Proof: The first row of H has 2m−1 ones and 2m−1 − 1
zeros, since it is a nonzero codeword of the [2m −1, m, 2m−1]
binary simplex code. According to the shortening operation,
we delete in total 2m−1 − m columns from H , so the length
of Cs becomes 2m−1 + m − 1 and the dimension becomes
2m−1 − 1. Since the shortening operation does not decrease
the minimum distance, and there always exist three dependent
columns in Hs (e.g., [1, 1, 0, . . . , 0]T , [1, 0, 0, . . . , 0]T , and
[0, 1, 0, . . . , 0]T), the minimum distance remains 3. Lastly,
we have that d(2)

�−opt [2m−1 + m − 1, 2m−1 − 1] = 3 from the

anticode bound [1]. The anticode bound states that the size
of any binary code of length n with minimum distance D is
bounded above by 2n/A(D − 1), where A(D − 1) is the size
of the largest anticode of diameter D − 1. In particular, for
D = 4 this implies that the largest size of a length n code
with minimum distance 4 is 2n/(2n) and hence there does not
exist a code of length 2m−1 +m −1, minimum distance 4, and
dimension 2m−1 − 1.

The following example is a direct result of Theorem 24 and
Lemma 25.

Example 26: Let Cbase be the shortened binary Hamming
code Cs in Lemma 25. The (r, 1)i -LRC obtained from Con-
struction A′ has parameters [2m−1� + m − 1, (2m−1 − 1)�, 3]
and r = 2m−1 − 1. Its minimum distance is optimal.

Next, we use a code Cbase with minimum distance 4, and
have the following lemma.

Lemma 27: If Cbase is an [n′, k ′, d ′ = 4] code, the (r, 1)i -
LRC produced by Construction A (or Construction A′, if
appropriate) has minimum distance d � 4.

Proof: The proof is similar to the one of Lemma 23.
Based on Lemma 27, we have the following two theorems

on the construction of (r, 1)i -LRCs with optimal minimum
distance d = 4.

Theorem 28: Let Cbase be an [n′, k ′, d ′ = 4] binary code
with d(2)

�−opt[n′ + 1, k ′] = 4. The (r, 1)i -LRC obtained from

Construction A has parameters [n = (k ′ + 1)� + n′ − k ′, k =
k ′�, d = 4] and r = k ′. Its minimum distance d = 4 is optimal.

Proof: The proof is similar to the one of Theorem 24.
Theorem 29: Let Cbase be an [n′, k ′, d ′ = 4] binary

code with an information-sum parity-check symbol and
d(2)
�−opt [n′, k ′] = 4. The (r, 1)i -LRC obtained from Construc-

tion A′ has parameters [n = (k ′ + 1)� + n′ − k ′ − 1, k = k ′�,
d = 4] and r = k ′. Its minimum distance d = 4 is optimal.

Proof: The proof is similar to the one of Theorem 24.
We give examples of (r, 1)i -LRCs with d = 4 using

expurgated or extended binary Hamming code as Cbase. The
following lemma gives properties of expurgated and extended
binary Hamming codes.

Lemma 30: For m � 4, the [2m − 1, 2m − 2 − m, 4] sys-
tematic expurgated binary Hamming code has no information-
sum parity-check symbol, and d(2)

�−opt [2m, 2m − 2 − m] = 4.
For m � 3, the [2m, 2m −1−m, 4] systematic extended binary
Hamming code has no information-sum parity-check symbol,
and d(2)

�−opt [2m + 1, 2m − 1 − m] = 4.
Proof: For the expurgated binary Hamming code, in its

dual code, except the all-ones codeword with weight 2m − 1,
there is no codeword with weight larger than 2m−1. If the
expurgated binary Hamming code has an information-sum
parity-check symbol, then in its dual code there is a codeword
with weight 2m −1−m, which is larger than 2m−1 for m � 4.
We have d(2)

�−opt[2m, 2m−2−m] = 4 from the Hamming bound.
Similarly, for the extended binary Hamming code, in its dual
code, except the all-ones codeword with weight 2m , there is
no codeword with weight larger than 2m−1. If the extended
binary Hamming code has an information-sum parity-check
symbol, then in its dual code there is a codeword with weight
2m − m, which is larger than 2m−1 for m � 3. We have
d(2)
�−opt [2m + 1, 2m − 1 − m] = 4 from the Hamming bound.
The following example presents (r, 1)i -LRCs with d = 4

from Theorem 28 and Lemma 30.
Example 31: Let Cbase be the [2m − 1, 2m − 2 − m, 4]

expurgated binary Hamming code, where m � 4. The (r, 1)i -
LRC obtained from Construction A has parameters [(2m −
1 − m)� + m + 1, (2m − 2 − m)�, 4] and r = 2m − 2 − m.
Its minimum distance 4 is optimal. Similarly, let Cbase be
the [2m, 2m − 1 − m, 4] extended binary Hamming code,
where m � 3. The (r, 1)i -LRC obtained from Construction
A has parameters [(2m − m)� + m + 1, (2m − 1 − m)�, 4] and
r = 2m − 1 − m. Its minimum distance 4 is optimal.

Next, we give a construction of (r, 1)i -LRCs for d = 5. Let
Cbase be an [n′, k ′, 5] systematic binary code, and let C ′

base =
{c[k′+w] : c ∈ Cbase}, i.e., restrict Cbase to k ′ information
coordinates and w parity-check coordinates, where w is chosen
properly such that C ′

base has minimum distance at least 3. The
following new construction is based on two rows of global
parity-check symbols as shown in Fig. 2.

Construction B:
Step 1: Follow Steps 1, 2, and 3 of Construction A

to get local parity-check symbols and phantom
symbols.

Step 2: Divide phantom symbols into two parts: w columns
in block III(a) and the rest of the columns in
block III(b).

6276 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Fig. 2. An (r, 1)i -LRC using Construction B .

Step 3: Compute global parity-check symbols in block IV:
1) Follow Step 4 of Construction A to get the
first row (pG11, · · · , pG1,n′−k′). 2) Use an [� +
2, �, 3] systematic MDS code over F2w to encode
the phantom symbols in block III(a) to get the
second row (pG21, · · · , pG2,w), by taking each row
in block III(a) as a symbol in F2w . This systematic
MDS code should have the property that its first
parity-check symbol is the sum of all its information
symbols.

Step 4: The constructed codeword consists of the symbols
in blocks I, II, and IV. �

For example, the [� + 2, �, 3] MDS code can be chosen
as a doubly-extended Reed-Solomon code. Let α be a prim-
itive element in F2w , and � � 2w − 1. Then, the parity-
check matrix for the doubly-extended Reed-Solomon code in
Construction B is

H =
[

1 1 1 · · · 1 1 0
1 α α2 · · · α�−1 0 1

]
.

Note that an alternative to the doubly-extended Reed-Solomon
code is an EVENODD code [3].

Theorem 32: The (r, 1)i -LRC obtained from Construction
B has parameters [n = (k ′+1)�+n′−k ′+w, k = k ′�, d � 5],
where � � 2w − 1. It has information locality r = k ′.

Proof: See Appendix D.
Example 33: Let Cbase be the [2m − 1, 2m − 1 − 2m, 5]

binary BCH code where m � 4. For the case of m = 4,
exhaustive search shows that we can choose w to be 4. For
� � 15, the (r, 1)i -LRC from Construction B has parameters
[n = 8�+12, k = 7�, d = 5] and r = 7. An upper bound on d
from bound (6) is 8. For the case of m = 5, exhaustive search
shows that we can choose w to be 6. For � � 63, the (r, 1)i -
LRC from Construction B has parameters [n = 22� + 16,
k = 21�, d = 5] and r = 21. An upper bound on d from
bound (6) is 8.

We finish this subsection with a construction of (r, 1)a-
LRCs with minimum distance 4 by using phantom parity-
check symbols. We start with an [n′, k ′, d ′] systematic binary
code as a base code, Cbase. For simplicity, we assume that
k ′ � n′ − k ′. We use Fig. 1 to illustrate our construction of
(r, 1)a-LRCs as follows.

Construction C:

Step 1: Place an � × k ′ array of symbols in block I.
The first � − 1 rows are all information symbols.

The last row has 2k ′ − n′ information symbols
(i.e., μ�1, . . . , μ�,2k′−n′) and n′ − k ′ zero symbols
(i.e., μ�,2k′−n′+1 = 0, . . . , μ�,k′ = 0).

Step 2: Encode each row of symbols in block I using Cbase,
producing parity-check symbols (pi1, . . . , pi,n′−k′),
1 � i � �. Place these parity-check symbols in
block III as phantom symbols.

Step 3: Compute a row of global parity-check symbols,
pG j = ∑�

i=1 pi j , 1 � j � n′ − k ′, by summing
the rows of phantom symbols in block III. Place
these symbols in block IV.

Step 4: Let μ�,2k′−n′+ j = pG j , 1 � j � n′ − k ′. For each
row of symbols, (μi1, . . . , μik′), 1 � i � �, com-
pute local parity-check symbols pLi = ∑k′

j=1 μi j ,
1 � i � �, and place them in the corresponding row
of block II.

Step 5: The constructed codeword consists of the symbols
in blocks I and II. �

The resulting code is an (r, 1)a-LRC of code length n =
(k ′+1)�, dimension k = k ′�−(n′−k ′), and all-symbol locality
r = k ′.

We give the following theorem on the construction of
(r, 1)a-LRCs with optimal minimum distance 4.

Theorem 34: Let Cbase be an [n′, k ′, d ′ = 4] systematic
binary code with k ′ � n′ − k ′ and d(2)

�−opt [k ′ +1, 2k ′ −n′] � 4.
The (r, 1)a-LRC obtained from Construction C has parameters
[n = (k ′ + 1)�, k = k ′� − (n′ − k ′), d = 4] and all-symbol
locality r = k ′. Its minimum distance d = 4 is optimal.

Proof: From Construction C, the length, dimension and
locality of the (r, 1)a-LRC are determined. On one hand, the
minimum distance d � 4 since the (r, 1)a-LRC can correct
any 3 erasures (The proof is similar to the one of Lemma 23,
so we omit it here). On the other hand, from bound (6), with
x = � − 1 and t = 1, d � d(2)

�−opt [k ′ + 1, 2k ′ − n′] � 4.
We give the following example of (r, 1)a-LRCs with d = 4.
Example 35: Let Cbase be the [n′ = 2m − 1, k ′ = 2m − 2 −

m, d ′ = 4] expurgated binary Hamming code, where m � 4.
Since d(2)

�−opt [k ′ + 1, 2k ′ − n′] = d(2)
�−opt [2m − m − 1, 2m −

2m − 3] � 4 due to the Hamming bound, from Theorem 34,
the (r, 1)a-LRC obtained from Construction C has parameters
[(2m − 1 − m)�, (2m − 2 − m)� − 1 − m, 4] and all-symbol
locality r = 2m − 2 − m. Its minimum distance 4 is optimal.
Similarly, let Cbase be the [2m, 2m −1−m, 4] extended binary
Hamming code, where m � 3. The (r, 1)a-LRC obtained from
Construction C has parameters [(2m − m)�, (2m − 1 − m)
� − 1 − m, 4] and all-symbol locality r = 2m − 1 − m. Its
minimum distance 4 is optimal.

The binary LRCs constructed in this subsection are summa-
rized in Table III.

B. Construction Using Multi-Level Tensor Product Structure

In the previous subsection, we presented constructions of
binary LRCs with small minimum distance (i.e., d = 3, 4,
and 5) based on phantom parity-check symbols. Here, we
propose a new construction by using the multi-level tensor
product structure [12], leading to (r, 1)a-LRCs with higher
minimum distance.

HUANG et al.: BINARY LINEAR LRCs 6277

TABLE III

CONSTRUCTED BINARY LRCs IN SECTION IV-A

We start by presenting the tensor product operation of two
matrices H ′ and H ′′. Let H ′ be the parity-check matrix of a
binary code with length n′ and dimension n′ − v. H ′ can be
considered as a v (row) by n′ (column) matrix over F2 or as
a 1 (row) by n′ (column) matrix of elements from F2v . Let
H ′ = [h′

1 h′
2 · · · h′

n′], where h′
j , 1 � j � n′, are elements

of F2v . Let H ′′ be the parity-check matrix of a code of length
� and dimension � − λ over F2v . We denote H ′′ by

H ′′ =
⎡
⎢⎣

h′′
11 · · · h′′

1�
...

. . .
...

h′′
λ1 · · · h′′

λ�

⎤
⎥⎦,

where h′′
i j , 1 � i � λ and 1 � j � �, are elements of F2v .

The tensor product of the two matrices H ′ and H ′′ is defined
as

H ′′ ⊗ H ′ =
⎡
⎢⎣

h′′
11 H ′ · · · h′′

1�H ′
...

. . .
...

h′′
λ1 H ′ · · · h′′

λ� H ′

⎤
⎥⎦,

where h′′
i j H ′ = [h′′

i j h′
1 h′′

i j h′
2 · · · h′′

i j h′
n′], 1 � i � λ and 1 �

j � �, and the products of elements are calculated according
to the rules of multiplication for elements over F2v .

Our construction of (r, 1)a-LRCs is based on the multi-level
tensor product structure proposed in [12]. Define the matrices
H ′

i and H ′′
i (i = 1, 2, . . . , μ) as follows. H ′

i is a vi ×n′ matrix
over F2 such that the (v1 + v2 + · · · + vi) × n′ matrix

Bi =

⎡
⎢⎢⎢⎣

H ′
1

H ′
2
...

H ′
i

⎤
⎥⎥⎥⎦

is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · − vi , d ′
i]

binary code. H ′′
i is a λi ×� matrix over F2vi , which is a parity-

check matrix of an [�, � − λi , δi]2vi code.
We define a μ-level tensor product code as a binary linear

code having a parity-check matrix in the form of the following
μ-level tensor product structure

H =

⎡
⎢⎢⎢⎣

H ′′
1

⊗
H ′

1
H ′′

2

⊗
H ′

2
...

H ′′
μ

⊗
H ′

μ

⎤
⎥⎥⎥⎦. (8)

We denote this code by Cμ
T P . Its length is n = n′� and the

number of parity-check symbols is n − k = ∑μ
i=1 viλi .

Let us give an example of a 2-level tensor product
code C2

T P .

Example 36: Let H ′
1 = [1 1 1 1 1 1 1] over F2, and

H ′
2 =

⎡
⎣ 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦

over F2. Let H ′′
1 = [1 1 1] over F2 and

H ′′
2 =

[
1 1 0
1 0 1

]

over F8. Hence, in this construction, we use the following
parameters: n′ = 7, � = 3, v1 = 1, v2 = 3, λ1 = 1, λ2 = 2,
δ1 = 2, δ2 = 3, d ′

1 = 2 and d ′
2 = 4. The binary parity-check

matrix H of the 2-level tensor product code C2
T P is

H =
[

H ′′
1

⊗
H ′

1
H ′′

2

⊗
H ′

2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The code length is n = n′� = 21 and the dimension is
k = n − ∑2

i=1 viλi = 14. It is possible to verify that every 3
columns of H are linearly independent, but columns 1, 2, 5
and 6 of H are linearly dependent. Therefore, the minimum
distance of the code is d = 4.

Next, we give the following lemma on the minimum dis-
tance of a μ-level tensor product code Cμ

T P .
Lemma 37: Assume the following inequalities hold: 1)

d ′
μ � δ1, and 2) d ′

μ � δi d ′
i−1, for i = 2, 3, . . . , μ. Then, the

minimum distance d of the μ-level tensor product code Cμ
T P

is d ′
μ.
Proof: First, we show that d � d ′

μ. For i =
1, 2, . . . , μ, let H ′

i = [h′
1(i), h′

2(i), . . . , h′
n′(i)] over F2vi ,

and let [h′′
11(i), h′′

21(i), . . . , h′′
λi 1

(i)]T over F2vi be the first
column of H ′′

i . Since the code with parity-check matrix Bμ has
minimum distance d ′

μ, there exist d ′
μ columns of Bμ, say in

the set of positions J = {b1, b2, . . . , bd ′
μ
}, which are linearly

dependent. That is
∑

j∈J h′
j (i) = 0, for i = 1, 2, . . . , μ. Thus,

we have
∑

j∈J h′′
p1(i)h

′
j (i) = h′′

p1(i)
(∑

j∈J h′
j (i)

)
= 0, for

p = 1, 2, . . . , λi and i = 1, 2, . . . , μ. That is, the columns in
positions b1, b2, . . . , bd ′

μ
of H are linearly dependent.

The inequality d � d ′
μ is shown in the proof of

[12, Th. 2].
Remark 38: Lemma 37 is a modified version of [12, Th. 2],

which incorrectly states that the minimum distance of a μ-level
tensor product code Cμ

T P is the largest integer dm satisfying
the following inequalities: 1) dm � d ′

μ, 2) dm � δ1, and
3) dm � δi d ′

i−1, i = 2, 3, . . . , μ. If this were true, the
2-level C2

T P code in Example 36, with δ1 = 2, δ2 = 3, d ′
1 = 2

and d ′
2 = 4, would have minimum distance 2. However, the

true minimum distance is 4. Theorem 2 only gives a lower
bound on the minimum distance, which we have used in the
proof of Lemma 37.

6278 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

We now present a construction of (r, 1)a-LRCs based on
the multi-level tensor product structure.

Construction D:

Step 1: Choose vi × n′ matrices H ′
i over F2 and λi × �

matrices H ′′
i over F2vi , for i = 1, 2, . . . , μ, which

satisfy the following two properties:
1) H ′

1 = [1, 1, · · · , 1], i.e., a length-n′ all-ones
vector, and H ′′

1 = I�×�, i.e., an �×� identity matrix.
2) The matrices H ′

i and H ′′
i are chosen such that

d ′
μ � δi d ′

i−1, for i = 2, 3, · · · , μ.
Step 2: Generate the parity-check matrix H of the (r, 1)a-

LRC according to (8) with the matrices H ′
i and H ′′

i ,
for i = 1, 2, . . . , μ. �

Theorem 39: The binary (r, 1)a-LRC from Construction D
has length n = n′�, dimension k = n′�−∑μ

i=1 viλi , minimum
distance d = d ′

μ, and all-symbol locality r = n′ − 1.
Proof: According to Construction D, the code length

n = n′� and dimension k = n′�−∑μ
i=1 viλi are determined by

the construction of the multi-level tensor product codes. From
property 1) in Step 1, the tensor product matrix H ′′

1

⊗
H ′

1 in
H gives all-symbol locality r = n′ − 1. Since δ1 = ∞ (H ′′

1
is the identity matrix), d ′

1 = 2, and d ′
μ � δi d ′

i−1, we conclude
from Lemma 37, that the minimum distance of the constructed
(r, 1)a-LRC is d = d ′

μ.
Construction D gives a general method to construct (r, 1)a-

LRCs, but not an explicit construction. Next, we give a specific
code design.

Let n′ = 2m − 1 and α be a primitive element of F2m .
In Construction D, for i = 2, 3, · · · , μ, we choose H ′

i =
[β0, β1, · · · , βn′−1] where β = α2i−3. Thus, Bi is the parity-
check matrix of an expurgated binary BCH code, so we
have d ′

i = 2i . We also choose H ′′
i to be the parity-check

matrix of an [�, � − λi , δi = � μ
i−1 �]2m code, so we have

d ′
μ = 2μ � δi d ′

i−1 = 2(i − 1)� μ
i−1�. We refer to the (r, 1)a-

LRC constructed according to the above design as CL RC , and
conclude with the following corollary.

Corollary 40: The (r, 1)a-LRC CL RC has parameters
[(2m −1)�, (2m −2)�−m

∑μ
i=2 λi , 2μ] and all-symbol locality

r = 2m − 2.
In particular, for the construction of the CL RC , in order

to minimize the value of λi , we can choose H ′′
i to be the

parity-check matrix of an [�, � − δi + 1, δi = � μ
i−1 �]2m

MDS code, where we require that � � 2m + 1 only for the
case μ > 2. Thus, the resulting (r, 1)a-LRC has parameters
[(2m −1)�, (2m−2)�−m

∑μ
i=2(� μ

i−1 �−1), 2μ] and all-symbol
locality r = 2m − 2. We refer to this particular (r, 1)a-LRC as
CI. We give some instances of CI as follows.

Example 41: For μ = 2, CI is a [(2m−1)�, (2m−2)�−m, 4]
LRC with r = 2m − 2. It has an optimal minimum distance
with respect to bound (6). For μ = 3 and � � 2m + 1, CI is
a [(2m − 1)�, (2m − 2)� − 3m, 6] LRC with r = 2m − 2. For
μ = 4 and � � 2m + 1, CI is a [(2m − 1)�, (2m − 2)� − 5m, 8]
LRC with r = 2m − 2.

In the design of the code CL RC , we can also choose H ′′
i

to be the parity-check matrix of a non-MDS code to remove
the length constraint on �. We illustrate this design with the
following example.

TABLE IV

CONSTRUCTED BINARY (r, 1)a -LRCs IN SECTION IV-B

Example 42: For the CL RC with μ = 3, we choose H ′′
2 to

be the parity-check matrix of an [� = 2ms−1
2m−1 , 2ms−1

2m−1 − s, 3]2m

non-binary Hamming code and H ′′
3 = [1, 1, · · · , 1]. The

resulting (r, 1)a-LRC has parameters [2ms −1, (2m−2)(2ms−1)
2m−1 −

(s + 1)m, 6] and all-symbol locality r = 2m − 2. For
the CL RC with μ = 4, we choose H ′′

2 to be the parity-
check matrix of an [� = 22m + 1, 22m − 3, 4]2m non-binary
code (see [25, problem (3.44)]), H ′′

3 = [1, 1, · · · , 1], and
H ′′

4 = [1, 1, · · · , 1]. The resulting (r, 1)a-LRC has parameters
[(22m + 1)(2m − 1), (22m + 1)(2m − 2) − 6m, 8] and all-
symbol locality r = 2m − 2. In general, we can choose
the matrix H ′′

i for i = 2, 3, . . . , μ to be the parity-check
matrix of an [� = 2ms − 1, � − λi � � − s(� μ

i−1 � − 1), δi �
� μ

i−1 �]2m non-binary BCH code [16]. The resulting (r, 1)a-
LRC has parameters [n = (2ms − 1)(2m − 1), k � (2ms − 1)
(2m − 2) − ms

∑μ
i=2(� μ

i−1 � − 1), d = 2μ] and all-symbol
locality r = 2m − 2. We refer to this code as C ′

I.
Remark 43: There exist other choices of the matrices

H ′
i and H ′′

i in Construction D. For example, we can choose
H ′

i so that Bi is the parity-check matrix of an extended binary
BCH code, and choose H ′′

i to be the parity-check matrix of
an MDS code. Then, the resulting (r, 1)a-LRC has parameters
[2m�, (2m − 1)� − m

∑μ
i=2(� μ

i−1 � − 1), 2μ] and all-symbol
locality r = 2m − 1, where we require that � � 2m + 1 if
μ > 2. We refer to this code as CII.

The (r, 1)a-LRCs constructed in this subsection are summa-
rized in Table IV.

C. Comparison to Existing Results

In this subsection, we summarize our constructions of binary
LRCs and compare them with previous results.

Our constructions of binary (r, 1)i -LRCs and (r, 1)a-LRCs
have the following features.

1) They provide LRCs with a wide range of values of
minimum distance and locality. This diversity is based on the
flexible choices of the base code Cbase for Construction A,
B, C, and of the matrices H ′

i and H ′′
i for Construction D.

This feature of our constructions makes it possible to satisfy
different design requirements on the code parameters.

2) They produce high-rate LRCs. For example, for the fam-
ily of code CI(μ = 2), its code rate asymptotically approaches

r
r+1 as � → ∞. Moreover, for all of the constructed binary
LRCs with d = 3 or d = 4, the minimum distance is optimal
with respect to bound (6).

HUANG et al.: BINARY LINEAR LRCs 6279

TABLE V

EXISTING CONSTRUCTIONS OF BINARY (r, 1)a -LRCs

There exist several other constructions of binary
(r, 1)a-LRCs, which are summarized in Table V. Goparaju
and Calderbank [7] and Zeh and Yaakobi [40] focused on
constructing high-rate binary (r, 1)a-LRCs with fixed small
locality 2 and small minimum distance. In [40], another
construction for LRCs with arbitrary locality and fixed
minimum distance 6 was given. In contrast, Silberstein
and Zeh [29] proposed constructions of low-rate binary
(r, 1)a-LRCs with fixed small locality but large minimum
distance. In [33], Tamo et al. gave some specific examples of
cyclic binary (r, 1)a-LRCs from subfield subcodes.

Compared to these previous code constructions, our con-
structions offer more flexibility with regard to the possible
code parameters. First, we compare our results to those in [7]
and [40]. Roughly speaking, for a given length and minimum
distance, our codes generally offer higher rate but at the
cost of larger locality. For example, Goparaju et al. give
a [255, 162, 6] LRC with locality r = 2 and rate 0.6353.
Zeh et al. give a [198, 155, 6] LRC with locality r = 5 and
rate 0.7828. By comparison, referring to Table IV, we can use
CI(μ = 3) and parameters m = 4 and � = 16 to construct a
[240, 212, 6] LRC with locality r = 14 and rate 0.8833.

We also compare our constructions to some of those exam-
ples given in [33]. One example is a [45, 30, 4] binary (r, 1)a-
LRC with r = 8, while we can construct a [45, 35, 4]
binary (r, 1)a-LRC with r = 8 from Construction C using
a [13, 8, 4] binary base code Cbase. Another example in [33]
is a [21, 12, 4] binary (r, 1)a-LRC with r = 5. In contrast,
we can construct a [20, 12, 4] binary (r, 1)a-LRC with r = 4
from Construction C using an [8, 4, 4] binary base code Cbase.
In these cases, our codes offer higher rates with the same or
smaller locality.

Finally, we apply bound (2) to give an upper bound on
the dimension of the constructed (r, 1)a-LRC CI from Con-
struction D, which has parameters [n = (2m − 1)�, k =
(2m − 2)� − m

∑μ
i=2(� μ

i−1 � − 1), d = 2μ] and r = 2m − 2.
For x = � − 1, bound (2) gives an upper bound kub,

kub = xr + k(q)
opt(n − x(r + 1), d)

= (2m −2)(�−1)+k(2)
opt

(
(2m −1)�−(2m − 1)(� − 1), 2μ

)
= (2m − 2)(� − 1) + k(2)

opt

(
2m − 1, 2μ

)
(a)
� (2m − 2)(� − 1) + 2m − 2 − (μ − 1)m

= (2m − 2)� − (μ − 1)m,

where step (a) follows from the existence of an [n = 2m − 1,
k = 2m − 2 − (μ − 1)m, d = 2μ] expurgated BCH code.

For small μ, the gap between k and the upper bound kub

is small, e.g., for μ = 3, kub − k = m, and for μ = 4,
kub−k = 2m. For large μ, the gap between k and kub becomes
large. However, it is not known whether bound (2) is tight.

We note that Construction D generates families of binary
(r, 1)a-LRCs over a range of parameters, characterized by even
minimum distance. The locality is relatively larger than in
previous binary LRC constructions, so an interesting topic for
future research is to find constructions that yield odd minimum
distance and that offer a flexible range of smaller locality
values.

V. BINARY LRCs WITH AVAILABILITY

In this section, we study binary (r, t)a -LRCs based on one-
step majority-logic decodable codes [15].

Definition 44: An [n, k, d]q linear code C is said to be
a one-step majority-logic decodable code with t orthogonal
repair sets if the i th symbol, for i ∈ [n], has t pairwise disjoint
repair sets R j

i , j ∈ [t], such that for every j ∈ [t] the ith
symbol is a linear combination of all symbols in R j

i .
According to Definition 44, it is evident that if C is a one-

step majority-logic decodable code with t orthogonal repair
sets, and if the size of all repair sets is at most r , then C has
all-symbol locality r and availability t . Moreover, referring
to a well known result [15, Th. 8.1], we can see that for
an [n, k, d]q one-step majority-logic decodable code with t
orthogonal repair sets, all of the same size r , the availability t
satisfies

t �
⌊

n − 1

r

⌋
. (9)

Note that for a cyclic code, once t repair sets are found
for one symbol, the repair sets for all other symbols can be
determined correspondingly from the cyclic symmetry of the
code. Therefore, most of one-step majority-logic decodable
codes found so far are cyclic codes. There are several con-
structions of one-step majority-logic decodable codes, such as
doubly transitive invariant (DTI) codes, cyclic simplex codes,
cyclic difference-set codes, and 4-cycle free regular linear
codes [15]. The following examples present two families of
one-step majority-logic decodable cyclic codes, and we give
their locality and availability.

Example 45: Consider a cyclic binary simplex code with
parameters [n = 2m − 1, k = m, d = 2m−1]. It is a one-step
majority-logic decodable code with 2m−1 − 1 disjoint repair
sets [15]. It is easy to verify that every repair set has size 2.
Therefore, it has all-symbol locality r = 2 and availability t =
2m−1 − 1. This code has the optimal minimum distance, due
to the Plotkin bound. This locality and availability property of
the simplex codes was also observed independently in [14].

Example 46: Consider a cyclic binary difference-set code
with parameters [n = 22m + 2m + 1, k = 22m + 2m − 3m, d =
2m + 2]. It is a one-step majority-logic decodable code with
2m +1 disjoint repair sets [15]. We can verify that every repair
set has size 2m . Thus, this code has all-symbol locality r = 2m

and availability t = 2m + 1. For the codes with 2 � m � 5,
Table VI gives the upper bound tu on t from bound (9) and
the upper bound du on d from bound (6). The table also

6280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

TABLE VI

DIFFERENCE-SET CODES

TABLE VII

TWO-DIMENSIONAL TYPE-I CYCLIC (0, m)th-ORDER EG-LDPC CODES

gives the upper bounds du
1 and du

2 from bounds (3) and (5),
respectively. In all of the examples, we see that du is smaller
than du

1 and du
2 , meaning that bound (6) is tighter.

Another important class of one-step majority-logic decod-
able codes is 4-cycle free linear codes that have a parity-check
matrix H with constant row weight ρ and constant column
weight γ . Obviously, such codes have all-symbol locality
r = ρ − 1 and availability t = γ . In particular, 4-cycle free
(ρ, γ)-regular low-density parity-check (LDPC) codes have
this property. Based upon this observation, a family of codes
with all-symbol locality and availability were constructed
using partial geometries in [19]. The authors of [19] also
derived lower and upper bounds on the code rate; however,
the exact dimension and minimum distance of these codes are
still not known.

Many 4-cycle free regular LDPC codes have been con-
structed by leveraging different mathematical tools, e.g., finite
geometries, algebraic methods, and block designs [15]. Here
we consider a family of such codes based on Euclidean
Geometries (EG), and we give explicit expressions for their
code length, dimension, and minimum distance, as well as
their locality and availability.

Example 47: Consider the class of binary 4-cycle free reg-
ular LDPC codes called in [15] the two-dimensional type-I
cyclic (0, m)th-order EG-LDPC codes, with parameters [n =
22m −1, k = 22m −3m, d = 2m +1]. From the structure of their
parity-check matrices, they have all-symbol locality r = 2m−1
and availability t = 2m . Table VII lists the parameters of these
codes for 2 � m � 5 and gives the upper bound tu on t from
bound (9) and the upper bound du on d from bound (6). The
table also includes the upper bounds du

1 and du
2 from bounds

(3) and (5), respectively. We see that, in all of these cases,
du is smaller than du

1 and du
2 .

Finally, we briefly show how to get a long LRC with avail-
ability from a short one-step majority-logic decodable code
based on a multi-level tensor product structure. We modify
Step 1 in Construction D to provide availability by using
the parity-check matrix of a one-step majority-logic decodable
code as H ′

1. We illustrate this modification with the following
example where we use for H ′

1 the parity-check matrix of the
[15, 7, 5] binary BCH code, which is a one-step majority-logic

decodable code with all-symbol locality r = 3 and availability
t = 4 [15].

Example 48: Let n′ = 15 and α be a primitive element of
F16. Let

H ′
1 =

[
α0 α1 · · · α14

(α3)0 (α3)1 · · · (α3)14

]

and H ′
2 = [(α5)0, (α5)1, · · · , (α5)14]. Let H ′′

1 = I�×� and
H ′′

2 = [1, 1, · · · , 1]. The parity-check matrix H of the con-
structed LRC is

H =
[

H ′′
1

⊗
H ′

1
H ′′

2

⊗
H ′

2

]
.

This LRC has parameters [15�, 7� − 2, 7] with all-symbol
locality r = 3 and availability t = 4.

VI. CONCLUSION

In this paper, we first studied the locality of binary classical
codes and their modified versions obtained from standard
code operations. We then presented several constructions of
binary LRCs by using phantom parity-check symbols and
a multi-level tensor product structure. Compared to other
recently proposed schemes which produce binary LRCs with
fixed minimum distance or locality, our constructions are
more flexible and offer wider choices of the code parameters,
i.e., code length, dimension, minimum distance, and locality.
We also showed that our binary LRCs with minimum distance
3 or 4 are optimal with respect to the minimum distance.
Finally, we studied the locality and availability properties of
one-step majority-logic decodable codes, and demonstrated a
construction of a long binary LRC with availability from a
short one-step majority-logic decodable code.

APPENDIX A
PROOF OF LEMMA 3

Proof: Assume that x ∈ Z
+, y = (y1, . . . , yx) ∈ ([t])x

satisfy the condition x � � k
(r−1)t+1� in the lemma. Also,

assume without loss of generality that the first k symbols of
the code C form an information set.

The set I is constructed according to the following proce-
dure.

Procedure A:

1) Let I0 = ∅.
2) For j = 1, . . . , x
3) Choose an integer a j ∈ [k] and a j /∈ I j−1, such that

kI j−1∪{a j } = kI j−1 + 1.
4) I j = I j−1 ∪ {a j } ∪ R1

a j
∪ · · · ∪ Ry j

a j .
5) End
6) Let I = Ix ∪S, where S ⊆ [n]\Ix is a set of cardinality

min{n, B(r, x, y)} − |Ix |. �
This completes the construction of the set I.
First, let us show that the construction of the set I is well

defined.
Claim 49: In step 3), it is always possible to find a coor-

dinate a j ∈ [k], for 1 � j � x, that satisfies the condition in
this step.

HUANG et al.: BINARY LINEAR LRCs 6281

Proof: To see this, we show that on the j th loop, for
1 � j � x , the value of kI j−1 satisfies kI j−1 < k, and thus at
least one of the first k coordinates does not belong to the set
I j−1. Since the value of kI j−1 increases with j , it is enough
to show that kIx−1 � k − 1.

Let Sa j = {a j } ∪ R1
a j

∪ · · · ∪ Ry j
a j for j ∈ [x]. First, we

show that kSa j
� (r − 1)t + 1. Let G = [g1, . . . , gn] be

a generator matrix of the code C. For the repair set Ru
a j

,
u ∈ [y j], ga j is a linear combination of the columns gm ,
m ∈ Ru

a j
, so there exists a coordinate bu

j ∈ Ru
a j

such that

ga j = ∑
m∈Ru

a j
\{bu

j } αm gm + βbu
j
gbu

j
, where αm , βbu

j
∈ Fq and

βbu
j
�= 0. Thus, k{a j }∪Ru

a j
\{bu

j } = k{a j }∪Ru
a j

. Therefore, we have

kSa j
= kSa j \{∪

y j
u=1bu

j }
(a)
� |Sa j \{∪y j

u=1bu
j }| � (r − 1)y j + 1

� (r − 1)t + 1,

where (a) follows from the fact that kM � |M| for any set
M ⊆ [n].

From the construction of the set I, we have that Ix−1 =
∪x−1

j=1Sa j and therefore

kIx−1 = k∪x−1
j=1Sa j

(a)
�

x−1∑
j=1

kSa j

(b)
� (x − 1)[(r − 1)t + 1]
(c)
�

(⌈
k

(r − 1)t + 1

⌉
− 1

)
[(r − 1)t + 1]

<
k

(r − 1)t + 1
[(r − 1)t + 1] = k,

where (a) follows from the fact that kM1
⋃M2 � kM1 +kM2

for any sets M1,M2 ⊆ [n] and a simple induction. Inequality
(b) follows from kSa j

� (r − 1)t + 1, and (c) follows from

x � � k
(r−1)t+1�.

It is clear to see that the set I has size of |I| =
min{n, B(r, x, y)}.

Next, we show that kI � A(r, x, y). To do this, in
Procedure A, for each j th iteration, let us add the following
coordinate selection steps between step 3) and step 4).

3.1) For � = 1, . . . , y j

3.2) Choose an integer a�
j ∈ R�

a j
and a�

j /∈ I j−1, such
that k{a j }∪R�

a j
\{a�

j } = k{a j }∪R�
a j

.

3.3) End
We next show that the above steps are well defined.
Claim 50: In step 3.2), it is always possible to find an

integer a�
j , for 1 � j � x and 1 � � � y j , that satisfies

the condition in this step.
Proof: First, assume on the contrary that R�

a j
⊆ I j−1.

Then, we conclude that kI j−1∪{a j } = kI j−1 , which violates
the selection rule in step 3). Second, for the case of R�

a j
�

I j−1, since ga j is a linear combination of gi , i ∈ R�
a j

, there

exists at least one coordinate a�
j ∈ R�

a j
and a�

j /∈ I j−1 such
that ga j = ∑

i∈R�
a j

\{a�
j } αi gi + βa�

j
ga�

j
, where αi , βa�

j
∈ Fq

and βa�
j

�= 0. Therefore, ga�
j

can be expressed as a linear

combination of the columns gi , for i ∈ {a j } ∪ R�
a j

\{a�
j }, so

we have k{a j }∪R�
a j

\{a�
j } = k{a j }∪R�

a j
.

Now, let P be the set of coordinates chosen in
steps 3.1) – 3.3): P = {a1

1, . . . , ay1
1 , . . . , a1

x , . . . , ayx
x }. From

the construction, the integers a1
1, . . . , ay1

1 , . . . , a1
x , . . . , ayx

x are
all different, i.e., |P | = ∑x

j=1 y j .
Next, we prove that kI � A(r, x, y) by showing that

kI\P � A(r, x, y) and kI = kI\P .
Claim 51: kI\P � A(r, x, y).

Proof:

kI\P � |I\P | (a)= min{n, B(r, x, y)} −
x∑

j=1

y j

� B(r, x, y) −
x∑

j=1

y j = A(r, x, y),

where (a) follows from |I| = min{n, B(r, x, y)} and |P | =∑x
j=1 y j .
Claim 52: kI = kI\P .

Proof: Showing that kI = kI\P is equivalent to showing
that for any two codewords c and ĉ in code C, if cI\P = ĉI\P ,
then cP = ĉP .

Assume on the contrary that there exist two codewords
c = (c1, . . . , cn) and ĉ = (ĉ1, . . . , ĉn) in code C that cI\P =
ĉI\P , but cP �= ĉP . Let E = {i : ci �= ĉi , i ∈ P}. We order
the elements in E according to the lexicographical order ≺
defined as follows:

1. If i < j , then au
i ≺ av

j , for i, j ∈ [x], u ∈ [yi],
and v ∈ [y j].

2. If u < v, then au
i ≺ av

i , for i ∈ [x], u, v ∈ [yi].
Suppose that the smallest element with respect to the lexi-

cographical order ≺ in E is au
i . According to the construction

steps, we have ({ai} ∪ Ru
ai

\{au
i }) ⋂E = ∅ and ({ai } ∪

Ru
ai

\{au
i }) ⊆ I. Since cI\E = ĉI\E , we have c{ai }∪Ru

ai
\{au

i } =
ĉ{ai }∪Ru

ai
\{au

i }, but cau
i

�= ĉau
i
. This violates the selection rule

in step 3.2) for au
i : k{ai }∪Ru

ai
\{au

i } = k{ai }∪Ru
ai

, which indicates
that if c{ai }∪Ru

ai
\{au

i } = ĉ{ai }∪Ru
ai

\{au
i } then cau

i
= ĉau

i
. Thus,

we get a contradiction and conclude that there do not exist
two codewords c and ĉ in code C that cI\P = ĉI\P , but
cP �= ĉP .

From Claims 51 and 52, it is clear to see that we have
kI � A(r, x, y). Therefore, there exists a set I ⊆ [n], |I| =
min{n, B(r, x, y)}, such that kI � A(r, x, y). Finally, choose
a set I, produced by Procedure A, satisfying A(r, x, y) < k.
Since kI � A(r, x, y) < k and k[n] = k, we conclude that
B(r, x, y) < n and |I| = min{n, B(r, x, y)} = B(r, x, y).

APPENDIX B
PROOF OF THEOREM 4

Proof: We follow similar steps to the proof in [4] which
consists of two parts. First, from Lemma 3, for any [n, k, d]q

linear code C with information locality r and availability t ,
for all x ∈ Z

+ and y = (y1, . . . , yx) ∈ ([t])x satisfying 1 �
x � � k

(r−1)t+1� and A(r, x, y) < k, there exists a set I ⊆ [n],
|I| = B(r, x, y), such that kI � A(r, x, y).

For the second part of the proof, for any x ∈ Z
+ and y =

(y1, . . . , yx) ∈ ([t])x , the I ⊆ [n] is constructed as in the

6282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

first part. Then, we consider the code C0
I = {c[n]\I : cI = 0

and c ∈ C}. Since the code C is linear, the size of the code
C0
I is qk−kI and it is a linear code as well. Moreover, the

minimum distance D of the code C0
I is at least d , i.e., D � d .

Thus, we get an upper bound on the minimum distance d ,

d � D � d(q)
�−opt [n − |I|, k − kI]

� d(q)
�−opt [n − |I|, k − A(r, x, y)].

Therefore, we conclude that

d � d(q)
�−opt [n − |I|, k − A(r, x, y)]

= d(q)
�−opt [n − B(r, x, y), k − A(r, x, y)].

Similarly, we also get an upper bound on the dimension k,

k − kI � k(q)
�−opt [n − |I|, D] � k(q)

�−opt [n − |I|, d].
Therefore, we conclude that

k � k(q)
�−opt [n − |I|, d] + kI

� k(q)
�−opt [n − B(r, x, y), d] + A(r, x, y).

APPENDIX C
PROOF OF LEMMA 23

Proof: We prove that the minimum distance of the
constructed (r, 1)i -LRC from Construction A is at least 3 by
verifying that it can correct any two erasures. We consider the
following 2-erasure patterns, where we refer to their locations
in the blocks in Fig. 1. We refer to block I-II as the union of
block I and block II.

1) Two erasures are in the same row in block I-II,
e.g., μ11 and pL1 are erased in the first row. We can first
recover parity-check symbols (p11, . . . , p1,n′−k′), based on
which two erased symbols can be recovered.

2) Two erasures in different rows in block I-II can be
recovered individually from the local parity-check equation.

3) Two erasures in block IV can be recovered from all
existing information symbols.

4) One erasure is in block I-II and one erasure is in
block IV. First, the erasure in block I-II can be recovered from
the local parity-check equation. Then, the erasure in block IV
can be recovered from all the existing information symbols.

The proof for the constructed (r, 1)i -LRC from Construc-
tion A′ follows the same ideas and is thus omitted.

APPENDIX D
PROOF OF THEOREM 32

Proof: From Construction B, the code length, dimension,
and locality are determined. As in the proof of Lemma 23,
to prove that the minimum distance of the (r, 1)i -LRC
is at least 5, we only need to enumerate all possible
4-erasure patterns and then verify they can be corrected. In the
following, we show how to recover two typical 4-erasure
patterns in Fig. 2. Other patterns can be verified in a similar
way and hence are omitted.

1) There are two erasures in a row in block I and two
erasures in another row in block I. Without loss of generality,
assume they appear on the first two rows (μ11, . . . , μ1k′)
and (μ21, . . . , μ2k′) in block I. We can recover this
4-erasure pattern as follows. First, with (pG11, . . . , pG1,w)
and (pG21, . . . , pG2,w), we can recover (p11, . . . , p1,w)
and (p21, . . . , p2,w). Then, two erasures in the first row
(μ11, . . . , μ1k′) can be recovered since only two erasures
appear in the codeword (μ11, . . . , μ1k′ , p11, . . . , p1,w) which
belongs to a code with minimum distance at least 3.
Similarly, two erasures in the second row (μ21, . . . , μ2k′) can
be recovered since only two erasures appear in the codeword
(μ21, . . . , μ2k′ , p21, . . . , p2,w).

2) There are two erasures in a row in block I, one erasure
in (pG11, . . . , pG1,w) in block IV, and one more erasure in
(pG21, . . . , pG2,w) in block IV. For simplicity, we assume that
the erasures are located in positions μ11, μ12, pG11 , and pG21 .
We can recover this 4-erasure pattern as follows. First,
with (pG12, . . . , pG1,n′−k′), we can recover (p12, . . . , p1,n′−k′).
Then, μ11 and μ12 can be recovered since only three erasures
appear in the codeword (μ11, . . . , μ1k′ , p11, . . . , p1,n′−k′).
Finally, pG11 and pG21 can be recovered.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for a
number of very helpful comments and suggestions. Portions of
this work were performed while the second author was visiting
the Center for Memory and Recording Research (CMRR) at
UC San Diego. He is thankful for the hospitality and financial
support provided by the Center during his stay.

REFERENCES

[1] R. Ahlswede, H. K. Aydinian, and L. H. Khachatrian, “On per-
fect codes and related concepts,” Designs, Codes Cryptogr., vol. 22,
no. 3, pp. 221–237, 2001. [Online]. Available: http://dx.doi.org/
10.1023/A%3A1008394205999

[2] M. Asteris and A. G. Dimakis, “Repairable fountain codes,”
IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 1037–1047,
May 2014.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[4] V. Cadambe and A. Mazumdar. (Mar. 2015). “An upper bound
on the size of locally recoverable codes.” [Online]. Available:
http://arxiv.org/abs/1308.3200

[5] T. Ernvall and T. Westerbäck, and C. Hollanti. (Jun. 2014). “Construc-
tions of optimal and almost optimal locally repairable codes.” [Online].
Available: http://arxiv.org/abs/1406.4277

[6] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2011.

[7] S. Goparaju and R. Calderbank, “Binary cyclic codes that are locally
repairable,” in Proc. IEEE Int. Symp. Inf. Theory, Jun./Jul. 2014,
pp. 676–680.

[8] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Proc. 6th IEEE Int. Symp. Netw. Comput. Appl., Jul. 2007, pp. 79–86.

[9] C. Huang et al., “Erasure coding in windows azure storage,” in Proc.
USENIX Annu. Tech. Conf., Jun. 2012, pp. 15–26.

[10] P. Huang, E. Yaakobi, H. Uchikawa, and P. Siegel, “Cyclic linear
binary locally repairable codes,” in Proc. IEEE Inf. Theory Workshop,
Apr./May 2015, pp. 1–5.

[11] P. Huang, E. Yaakobi, H. Uchikawa, and P. Siegel, “Linear locally
repairable codes with availability,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2015, pp. 1871–1875.

HUANG et al.: BINARY LINEAR LRCs 6283

[12] H. Imai and H. Fujiya, “Generalized tensor product codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 2, pp. 181–187, Mar. 1981.

[13] J. Justesen and T. Høholdt, A Course in Error-Correcting Codes, vol. 1.
European Mathematical Society, Zürich, Switzerland. 2004.

[14] M. Kuijper and D. Napp. (Mar. 2014). “Erasure codes with simplex
locality.” [Online]. Available: http://arxiv.org/abs/1403.2779

[15] S. Lin and D. J. Costello, Error Control Coding. Englewood Cliffs, NJ,
USA: Prentice-Hall, 2004.

[16] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. New York, NY, USA: Elsevier, 1977.

[17] J. L. Massey, Threshold Decoding. Cambridge, MA, USA: MIT Press,
1963.

[18] F. Oggier and A. Datta, “Self-repairing homomorphic codes for dis-
tributed storage systems,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 1215–1223.

[19] L. Pamies-Juarez, H. D. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2013, pp. 892–896.

[20] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 2771–2775.

[21] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal linear
codes with a local-error-correction property,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2012, pp. 2776–2780.

[22] N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with locality for
two erasures,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014,
pp. 1962–1966.

[23] A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, “Locality
and availability in distributed storage,” in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2014, pp. 681–685.

[24] A. Rawat and S. Vishwanath, “On locality in distributed storage sys-
tems,” in Proc. IEEE Inf. Theory Workshop, Sep. 2012, pp. 497–501.

[25] R. Roth, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

[26] M. Sathiamoorthy et al., “XORing elephants: Novel erasure codes for
big data,” in Proc. VLDB Endowment, vol. 6, no. 5, pp. 325–336,
Mar. 2013.

[27] W. C. Schmid and R. Schürer. (2014). MinT, the online database
for optimal parameters of (t, m, s)-nets, (t, s)-sequences, orthogonal
arrays, linear codes, and OOAs. University of Salzburg. Salzburg,
Austria [Online]. Available: http://mint.sbg.ac.at/index.php

[28] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath,
“Optimal locally repairable codes via rank-metric codes,” in Proc. IEEE
Int. Symp. Inf. Theory, Jul. 2013, pp. 1819–1823.

[29] N. Silberstein and A. Zeh, “Optimal binary locally repairable codes
via anticodes,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 1247–1251.

[30] W. Song, S. H. Dau, C. Yuen, and T. Li, “Optimal locally
repairable linear codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 1019–1036, May 2014.

[31] I. Tamo and A. Barg, “Bounds on locally recoverable codes with multiple
recovering sets,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014,
pp. 691–695.

[32] I. Tamo and A. Barg, “A family of optimal locally recoverable
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676,
Aug. 2014.

[33] I. Tamo, A. Barg, S. Goparaju, and R. Calderbank, “Cyclic LRC codes
and their subfield subcodes,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2015, pp. 1262–1266.

[34] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2013, pp. 1814–1818.

[35] A. Wang and Z. Zhang. (Sep. 2014). “An integer programming
based bound for locally repairable codes.” [Online]. Available:
http://arxiv.org/abs/1409.0952

[36] A. Wang and Z. Zhang, “Repair locality with multiple erasure tol-
erance,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979–6987,
Nov. 2014.

[37] A. Wang and Z. Zhang, “Achieving arbitrary locality and availability
in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 1866–1870.

[38] J. Wolf, “On codes derivable from the tensor product of check
matrices,” IEEE Trans. Inf. Theory, vol. 11, no. 2, pp. 281–284,
Apr. 1965.

[39] J. Wolf, “An introduction to tensor product codes and applications to
digital storage systems,” in Proc. IEEE Inf. Theory Workshop, Oct. 2006,
pp. 6–10.

[40] A. Zeh and E. Yaakobi, “Optimal linear and cyclic locally repairable
codes over small fields,” in Proc. IEEE Inf. Theory Workshop, Apr. 2015,
pp. 1–5.

Pengfei Huang (S’13) received the B.E. degree in electrical engineering
from Zhejiang University, Hangzhou, China, in 2010 and the M.S. degree in
electrical engineering from Shanghai Jiao Tong University, Shanghai, China,
in 2013. He is currently working toward the Ph.D. degree with the Department
of Electrical and Computer Engineering, University of California, San Diego,
where he is associated with the Center for Memory and Recording Research.
His current research interests are coding for distributed storage systems and
non-volatile memories.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer Sci-
ence Department at the Technion Israel Institute of Technology. He received
the B.A. degrees in computer science and mathematics, and the M.Sc. degree
in computer science from the Technion—Israel Institute of Technology, Haifa,
Israel, in 2005 and 2007, respectively, and the Ph.D. degree in electrical
engineering from the University of California, San Diego, in 2011. Between
2011–2013, he was a postdoctoral researcher in the department of Electrical
Engineering at the California Institute of Technology. His research interests
include information and coding theory with applications to non-volatile
memories, associative memories, data storage and retrieval, and voting theory.
He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

Hironori Uchikawa (M’01) received the B.E. and M.E. degrees in elec-
trical engineering from Yokohama National University in 2001 and 2003
respectively. He received the Ph.D. degree in electrical engineering from
Tokyo Institute of Technology in 2012. Since 2003, he has been with Toshiba
Corporation. From March 2013 to December 2014, he was a Visiting Scholar
in the Center for Memory Recording Research at University of California,
San Diego. His research interests include coding theory, information theory,
communication theory and their application to storage systems. He received
the 2008 Young Researcher’s Award of the Institute of Electronics, Informa-
tion and Communication Engineers of Japan.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees in
mathematics from Massachusetts Institute of Technology (MIT), Cambridge,
MA, USA, in 1975 and 1979, respectively. He held a Chaim Weizmann
Postdoctoral Fellowship with the Courant Institute, New York University,
New York, NY, USA. He was with the IBM Research Division, San Jose,
CA, USA, from 1980 to 1995. He joined the faculty of the University
of California, San Diego, CA, USA, in July 1995, where he is currently
a Distinguished Professor of Electrical and Computer Engineering in the
Jacobs School of Engineering. He is affiliated with the Center for Memory
and Recording Research where he holds an Endowed Chair and served as
Director from 2000 to 2011. His research interests include information theory
and communications, particularly coding and modulation techniques, with
applications to digital data storage and transmission. He was a Member
of the Board of Governors of the IEEE Information Theory Society from
1991 to 1996 and again from 2009 to 2014. He served as Co-Guest Editor
of the May 1991 Special Issue on “Coding for Storage Devices” of the
IEEE TRANSACTIONS ON INFORMATION THEORY. He served the same
Transactions as Associate Editor for Coding Techniques from 1992 to 1995,
and as Editor-in-Chief from July 2001 to July 2004. He was also Co- Guest
Editor of the May/September 2001 two-part issue on “The Turbo Principle:
From Theory to Practice” and the February 2016 issue on “Recent Advances
in Capacity Approaching Codes” of the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS. He is a member of the National Academy
of Engineering. He was the 2015 Padovani Lecturer of the IEEE Information
Theory Society. He was the corecipient of the 2007 Best Paper Award in Signal
Processing and Coding for Data Storage from the Data Storage Technical
Committee of the IEEE Communications Society. He was the corecipient of
the 1992 IEEE Information Theory Society Paper Award and the 1993 IEEE
Communications Society Leonard G. Abraham Prize Paper Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

