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Abstract—Random I/O (RIO) codes, recently introduced by
Sharon and Alrod, is a coding scheme to improve the ran-
dom input/output performance of flash memories. Multilevel flash
memories require, on the average, more than a single read thresh-
old in order to read a single logical page. This number is important
to be optimized since it sets the read latency of flash memories.
An (n, M, t) RIO code assumes that t pages are stored in n cells
with t + 1 levels. The first page is read by applying a read thresh-
old between levels t and t + 1. Similarly, the second page is read
by applying a read threshold between levels t − 1 and t , and so
on. As a consequence, if a cell reads as bit 1 for a page (say
page m), the cell also reads as bit 1 for all the successive pages
(m + 1, m + 2 · · · ). Therefore, Sharon and Alrod showed that the
design of RIO codes is equivalent to the design of WOM codes.
The latter family of codes attracted substantial attention in recent
years in order to improve the lifetime of flash memories by allow-
ing writing multiple messages to the memory without the need for
an erase operation. In this paper, we notice two important distinc-
tions between RIO codes and WOM codes. While in WOM codes,
the messages are received one after the other and thus are not
known all in advance, in RIO codes the information of all logi-
cal pages can be known in advance when programming the cells.
Even though this knowledge does not improve the maximum sum-
rate of RIO codes, it allows the design of efficient high-rate codes
with a moderate block length, which do not exist for WOM codes.
We also study another family of RIO codes, called here partial RIO
codes, that allow to find even more efficient codes while allowing to
sense more than a single threshold to read some pages.

Index Terms—Flash memory, random input/output codes, read
latency, write once memories.

I. INTRODUCTION

F LASH memories are the prevalent type of non-volatile
memory (NVM) in use today. They are employed in a

wide range of applications such as mobile, embedded, and
enterprise, and their dominance in these applications continues
to grow at a staggering pace. Compared to other storage mem-
ories, one of the outstanding advantages of flash memories is
their significantly high random read performance, which places
them as an ideal solution for high throughput applications.

Flash memories are comprised of block of cells. These cells
can have binary values, i.e. they store a single bit, or can have
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multiple levels and thus can store multiple bits in a cell. For
example, in MLC flash two bits are stored in a cell and TLC
flash supports three bits in a cell; see Figure 1. The storage of
more than a single bit in a cell is accomplished by supporting
multiple charge levels in the cell, which are then distinguished
by different read thresholds. Assume the flash memory cells
have 2m different charge levels and thus can store m bits per
cell. If all these bits belong to the same logical information
unit (also called page), then, in order to read these bits, 2m − 1
read thresholds are applied which will significantly slow down
the reading speed of the memory. The solution to this obsta-
cle is to distribute bits sharing the same group of cells among
different logical pages such that when a page is read only a
single bit is read from each cell. Then, the number of read
thresholds depends on the page being read and the average num-
ber of read thresholds determines the memory read speed. For
example, consider the three bits stored in a TLC flash mem-
ory cell as shown in Figure 1. Then, a group of TLC flash cells
stores three logical pages, called page 0, page 1, and page 2.
In order to read page 0, one read threshold is required; to read
page 1, two read thresholds are required; and finally to read
page 2, four read thresholds are required. Hence, on the aver-
age 2.33 read thresholds are required to read one page of data.
Typically, each read threshold operation consumes 50 µsec and
therefore a large number of average reads reflects directly the
read performance of flash memories. This may prove to be a
crucial bottleneck to the usage of multi-level flash memories
in SSDs.

A solution to making the number of sensings almost uni-
form for all pages was introduced by Bhat [6] in the form of
using balanced Gray mapping. However, balanced Gray map-
ping does not permit the multi-step programming which is used
to program pages in succession. Multi-step programming is
essential to reduce the disturbing effects of the floating gate
coupling. Further, the average number of sensings is still the
same and hence there is no throughput improvement.

A solution to this problem of reducing the sensing overhead
was recently proposed in [11] by Sharon and Alrod, where
Random I/O (RIO) codes were proposed in order to permit read-
ing one page of data from multi-level flash memories using a
single read threshold. The authors of [11] showed a one-to-one
correspondence between RIO codes and the well studied WOM
codes [10]. Namely, a WOM code which permits writing k bits
into n cells in t consecutive writes without erasing also gives
a RIO code which permits writing t pages with k bits per page
into n cells with t + 1 levels, while ensuring that each page is
read with a single read threshold operation. For example, the
well-known WOM code which stores 2 bits twice into 3 binary
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Fig. 1. The cell voltage distribution of an 8-level Flash memory.

cells without erasure permits writing 2 pages with 2 bits each
into 3 ternary flash memory cells; See Example (1) in Section II.

This paper takes advantage of an important property which
can hold for RIO codes but not for WOM codes. In WOM
codes, the messages are stored sequentially and are not all
known in advance while encoding. Therefore, on each write,
the encoder sets deterministically the cell state values as a func-
tion of the current memory state and the received message.
However, in RIO codes, all the messages can be known in
advance and thus the encoding of a particular page can be a
function of the following pages as well. A code which lever-
ages the information of all messages will be called a parallel
RIO code since the information of all t messages is known
in advance and the encoding can be done in parallel. From
the information theory point of view, parallel RIO codes, RIO
codes, and WOM codes all have the same upper bound on
their sum-rate, which is the total number of bits that is possi-
ble to write to the memory, normalized by the number of cells.
However, the design of parallel RIO codes can be significantly
simpler due to this information availability and thus it is possi-
ble to find codes with parameters for which WOM codes do not
exist.

RIO codes can have another important property that can help
in their design. Assume multiple read thresholds are allowed,
for example two thresholds, then we show that this model is
equivalent to the case where both the encoder and decoder of
a WOM code are informed with the previous memory state. In
general, there can be four possible models depending whether
the encoder and decoder are or are not informed with the pre-
vious state of the memory; see [14] for a rigorous study of all
four models and recent results in [7]. The traditional setting of
WOM codes assumes the common and practical model, where
the encoder is informed while the decoder is not. However, this
setup of RIO codes provides a practical example where both the
encoder and decoder are informed. This knowledge allows con-
structing even more codes with parameters which did not exist
in the codes we mentioned so far.

The rest of this paper is organized as follows. In Section II,
we formally define WOM codes, RIO codes, and parallel RIO
codes and state the connection established between them in
[11]. In Section III, we show parameters for which it is pos-
sible to construct parallel RIO codes but not WOM codes or
RIO codes and state a condition for the existence of parallel
RIO codes. This condition leads in Section IV to an algorithm
to construct parallel RIO codes. In Section V, we define partial

RIO codes and study more code constructions for this family
of RIO codes with parameters that did not exist before. Finally,
Section VI concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we formally define the codes we study in the
paper. We assume that the cells can have two or more (q) lev-
els and we denote by [q] the set {0, 1, . . . , q − 1}. Initially,
all cells are in level zero and it is only possible to increase
the level of each cell. For n cells, a vector x = (x1, . . . , xn) ∈
{0, . . . , q − 1}n will be called a cell-state vector. For two vec-
tors x and y, we say that x ≥ y if xi ≥ yi for all 1 ≤ i ≤ n. We
use h(x) to denote the binary entropy function, that is h(x) =
−x log(x) − (1 − x) log(1 − x). For a function F : X → Y ,
the set I m(F) is the following set I m(F) = {F(x) | x ∈ X}.
We will first review the definition of WOM codes. In gen-
eral, there are two cases of WOM codes, known as fixed-rate
WOM codes, where the number of messages on each write is
the same, or unrestricted-rate WOM codes, where this con-
straint is not invoked [17]. In this work, we care about the
implementation point of view of these codes and thus con-
sider only the fixed-rate case for binary cells. However, we note
that all of these results can be extended to the unrestricted-rate
case as well. Furthermore, we assume that the write number is
known on each write as this side information does not affect the
asymptotic of the achievable rates; for more details, see [17].

Definition 1: An [n, M, t] WOM code is a coding scheme
comprising of n binary cells and is defined by t pairs of encod-
ing and decoding maps (Ei ,Di ), for 1 ≤ i ≤ t . The encoding
map Ei is defined by

Ei : [M] × I m(Ei−1) → {0, 1}n,

where, by definition, I m(E0) = {(0, . . . , 0)}, such that
Ei (m, c) ≥ c for all (m, c) ∈ [M] × I m(Ei−1). Similarly, the
decoding map Di is defined by

Di : I m(Ei ) → [M],

such that for all (m, c) ∈ [M] × I m(Ei−1), Di (Ei (m, c)) = m.

The individual rate on each write is defined by R = log M
n , and

the sum-rate is Rsum = tR.
In [5], the capacity region of a binary t-write WOM was

found to be

Ct = { (R1, . . . ,Rt )|R1 ≤ h(p1),R2 ≤ (1 − p1)h(p2), . . . ,

Rt−1 ≤
(

t−2∏
i=1

(1 − pi )

)
h(pt−1),Rt ≤

t−1∏
i=1

(1 − pi ),

where 0 ≤ p1, . . . , pt−1 ≤ 1/2} ,

and log(t + 1) was proved to be the maximum sum-rate. In
[4], it was shown that the maximum sum-rate for q levels is
log

(q+t−1
t

)
. It was also shown that all rate-tuples in the capac-

ity region are achievable. Since then several code constructions
were given with the intention of reaching high sum-rate, e.g.
[1], [3], [8], [16]. Recently, some capacity achieving construc-
tions were given both for two writes [2], [13], [15], [17] and
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multiple writes [2], [12]. However, they all suffer either from a
large block length and encoding/decoding complexities or are
not applicable in the worst case. Thus, the problem of find-
ing efficient WOM code constructions with moderate block
length still remains an important challenge. For binary two-
write WOM, the best sum-rate reported in the literature is
1.4928 [17] and a code construction which is capacity achieving
was given. Recently, the work in [13] shows another capac-
ity achieving construction with code length, encoding and
decoding complexities being significantly better.

Before we formally define RIO codes let us introduce the
operation of reading a single threshold from a group of cells.
Let c ∈ [q]n be a cell-state vector and r be a threshold level,
1 ≤ r ≤ q − 1, between levels r − 1 and r , called the r -th
threshold. The operation of reading the r -th threshold from the
cell-state vector c is denoted by RTr (c) and returns a binary
vector such that RTr (c)i = 1 if and only if ci ≥ r . That is, the
vector RTr (c) is a length-n binary vector, where RTr (c)i = 1
if and only if ci ≥ r . The next proposition is an immediate
property of the definition of this operation.

Proposition 2: For all 1 ≤ r < s ≤ q − 1, RTr (c) ≥ RTs(c).
The idea behind RIO codes is to use (t + 1)-ary cells in order

to store t pages. Assume c is the cell-state vector. The informa-
tion of the first page is stored in the vector which is generated
from the t-th threshold, i.e. RTt (c); the information of the sec-
ond page is stored in the vector which is generated from the
(t − 1)-th threshold, i.e. RTt−1(c); and so on, the t-th page
is generated from the vector which is generated from the first
threshold, i.e. RT1(c). In order to program the t messages, we
start with the first message. Since its information is carried by
the vector RTt (c) we only need to use levels 0 and t . Then,
when the second page is programmed, only the cells in level
zero can be programmed and since its information is carried by
the vector RTt−1(c), we only need to use levels 0 and t − 1 of
the non-programmed cells. This process repeats itself until we
reach the t-th message and then only levels 0 and 1 are used
of the non-programmed cells at that stage. Note that according
to this process, in order to program the i-th page, 2 ≤ i ≤ t ,
the encoder only needs to read one threshold and thus receive
the binary vector RTt+2−i (c). One property which follows from
Proposition Proposition 2 is that RTt (c) ≤ RTt−1(c) ≤ · · · ≤
RT1(c) and thus the binary vectors representing the t messages
satisfy a similar constraint to the cell-state vectors on consec-
utive writes of a WOM code. This connection between WOM
codes and RIO codes was established by Sharon and Alrod in
[11]; see Theorem 4 below.

As opposed to WOM codes where on each write only the cur-
rent message is known, in RIO codes it may happen that all t
messages are available to the encoder in advance at the time of
programming. This knowledge can simplify the construction
of such codes. We will distinguish between these two families
of RIO codes and show how this knowledge can provide the
construction of RIO codes that do exist if this information is
not known.

Definition 3: An (n, M, t) RIO code is a coding scheme
comprising of n (t + 1)-ary cells, t messages, and t encod-
ing and decoding maps (Ei ,Di ), for 1 ≤ i ≤ t , defined as
follows:

TABLE I
A [3,4,2] WOM CODE

TABLE II
A (3,4,2) RIO CODE

Ei : [M] × [2]n → [t + 1]n,

such that for all (m, c) ∈ [M] × [t + 1]n if c j > 0 then
Ei (m, RTt+2−i (c)) j = c j . Similarly, the decoding map Di is
defined by

Di : [2]n → [M],

such that for all (m, c) ∈ [M] × [t + 1]n , Di (RTt+1−i

(Ei (m, RTt+2−i (c))) = m.

An (n, M, t) parallel RIO code is a RIO code with an
encoding map

E : [M]t → [t + 1]n,

and t decoding maps Di : [2]n → [M], 1 ≤ i ≤ t , such that for
all m = (m1, . . . , mt ) ∈ [M]t , Di (RTt+1−i (E(m))) = mi .

We note that in our constructions the range of the i-th encod-
ing map, Ei , is {0, t + 2 − i}n , however we use [t + 1]n to make
this definition simpler and more general so it can apply to more
code constructions. The following theorem was proved in [11]
but is stated here for the completeness of the results.

Theorem 4 [11]: There exists an [n, M, t] WOM code if and
only if there exists an (n, M, t) RIO code.

Next, we show an example for the construction of RIO codes
from WOM codes.

Example 1: In this example we first review the well-known
[3, 4, 2] WOM codes given by Rivest and Shamir [10]. This
code is described in Table I. The construction of RIO code with
the same parameters (3, 4, 2) is described in Table II. For exam-
ple, assume that the information bits of the first page are (1, 1)

then the first encoder programs the cells to state (2, 0, 0). Then,
if the information bits of the second page are (1, 0), then the
second encoder programs the cells to state (2, 0, 1). Note that
the binary vector that the first decoder extracts from the cells
is (1, 0, 0) since the threshold is between levels 1 and 2 and
thus the two bits are decoded to (1, 1). In the same manner, the
binary vector that the second decoder extracts from the cells is
(1, 0, 1) since the threshold is between levels 0 and 1.
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Similar to WOM codes, an upper bound on the sum-rate of
the two families of RIO codes is log(t + 1).

Theorem 5: log(t + 1) is an upper bound on the sum-rate of
RIO codes and parallel RIO codes with t messages.

Proof: Since a RIO code uses (t + 1)-ary cells, it is not
possible to store together more than (t + 1)n messages. Thus
the sum-rate of these codes is bounded by log(t + 1). �

The upper bound from Theorem 5 can be achievable both
for WOM codes and RIO codes only if the rates on different
writes (or different messages for RIO codes) are not the same.
However, for the fixed-rate case a better upper bound for WOM
codes was given by Heegard [5] and thus holds for RIO codes
as well. Hence, for example for t = 2 the upper bound on the
sum-rate is roughly 1.546 and for t = 3 it is roughly 1.937. The
existence of RIO codes or WOM codes necessarily guarantees
the existence of parallel RIO codes with the same parameters.
However, the converse does not necessarily hold. In general, in
the design of a WOM code or RIO code, when encoding the i-th
message, the output to be written into the cells does not depend
on the consecutive messages to come simply because they are
not available by the time of encoding. However, for parallel
RIO codes, it is possible to program a different cell-state vec-
tor for a given message based on the consecutive messages that
will be written to the memory. The information of all the mes-
sages in advance cannot improve the capacity results, however
it can simplify the constructions of codes with high sum-rate
and moderate block lengths.

III. WOM CODES AND RIO CODES

We start this section by showing an example of parameters
where WOM codes and RIO codes do not exist, however par-
allel RIO codes do exist. Assume one wishes to construct a
(4, 7, 2) RIO code. Such a code does not exist, which will be
proved next.

Lemma 6: There does not exist a (4, 7, 2) RIO code.

Proof: Since RIO codes and WOM codes are equivalent,
we will simply show that a [4, 7, 2] WOM code does not exist.
Assume in the contrary that such a code exists. Let E1 be its
encoding map. Let us denote by a = maxm∈[7]{wH (E1(m))},
that is, a is the maximum Hamming weight of all possible
cell-state vectors after the first write. We claim that a ≥ 2.
Otherwise, since the number of length-4 binary vectors of
weight at most 1 is 5, it is not possible to encode 7 differ-
ent messages. If c is an achievable cell-state vector of weight
two (or more), then on the next write it will be possible to
encode at most 4 messages since the number of zeros, i.e. non-
programmed cells, in c is at most 2. Therefore, we conclude
that there does not exist a [4, 7, 2] WOM code and a (4, 7, 2)

RIO code. �
Next we show the existence of a (4, 7, 2) parallel RIO code.

The construction of such a code is given in Table III which
describes the encoding and decoding maps. The columns cor-
respond to the symbol value of the first page and the rows
correspond to the symbol value of the second page. We note
again that the encoder knows in advance, at the time of encod-
ing, the two messages. Thus, for example the binary vectors

TABLE III
A (4,7,2) PARALLEL RIO CODE

which can be extracted from the cells in case the first page
stores the symbol 5 are 0011, 1010, or 1101, and if the symbol
6 is stored then these binary vectors can be 1100, 1001, 0111,

or 0101. In any event the different set of binary vectors corre-
sponding to different symbols are mutually disjoint. As another
example, if the cell-state vector is 2011 and we seek to read
the first message then by applying the threshold between levels
one and two, we get the binary vector 1000 which corresponds
to message 4. Similarly, if we seek to read the second message,
then the binary vector 1011, which corresponds to message 3, is
received by applying the threshold between levels zero and one.
We will show that this construction is optimal by proving that
a (4, 8, 2) parallel RIO code does not exist. To do so, we first
prove a more general theorem on the sufficient and necessary
conditions for the existence of (n, M, 2) parallel RIO codes.

Theorem 7: An (n, M, 2) parallel RIO code exists if and
only if there exist two sets of non-empty subsets of vectors
A = {A0, . . . , AM−1} and B = {B0, . . . , BM−1}, where for
0 ≤ i ≤ M − 1, Ai , Bi ⊆ {0, 1}n , which satisfy the following
conditions:

1) For all 0 ≤ i < j ≤ M − 1, Ai ∩ A j = ∅ and Bi ∩ B j =
∅,

2) For all 0 ≤ i, j ≤ M − 1, there exist a ∈ Ai and b ∈ B j

such that a ≤ b.

Proof: We first show that if the condition in the theo-
rem holds then there exists an (n, M, 2) parallel RIO code
C. Let A = {A0, . . . , AM−1} and B = {B0, . . . , BM−1} be the
sets of subsets which satisfy the conditions in the theorem.
We show how to construct the encoding and decoding maps,
E,D1,D2, of the code C. Assume that (m1, m2) ∈ [M]2 are
the two messages to be stored in the cells. According to the
second condition, there exists am1 ∈ Am1 and bm2 ∈ Bm2 such
that am1 ≤ bm2 . Then, the cell-state vector is encoded to be
E(m1, m2) = c, where

ci =
⎧⎨
⎩

2 if am1,i = 1,

1 if am1,i = 0, bm2,i = 1,

0 if am1,i = bm2,i = 0.

For the decoding maps D1 and D2, for a binary vector v ∈ [2]n ,
we let D1(v) = i , if v ∈ Ai , and similarly D2(v) = j if v ∈ B j .
Note that RT2(E(m1, m2)) = am1 and RT1(E(m1, m2)) = bm2 ,
and according to the first condition in the theorem the decoding
succeeds.

To prove the only if part of this theorem, let us assume that C
is an (n, M, 2) parallel RIO code with an encoding map E and
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decoding maps D1 and D2. Let m1 ∈ [M]. For every m2 ∈ [M],
let E(m1, m2) be the programmed cell-state vector, and let us
define the set Am1 to be

Am1 = {RT2(E(m1, m2)) : m2 ∈ [M]}.
Since D1(RT2(E(m1, m2))) = m1 we conclude that all sets
A0, . . . , Am−1 are mutually disjoint. Similarly, we define the
sets Bm2 for m2 ∈ [M]

Bm2 = {RT1(E(m1, m2)) : m1 ∈ [M]},
and conclude that they are mutually disjoint. Lastly, for
given m1, m2 ∈ [M] we let am1 = RT2(E(m1, m2)) and bm2 =
RT1(E(m1, m2)) and we get that am1 ≤ bm2 while am1 ∈ Am1

and bm2 ∈ Bm2 . �
We now show that a (4, 8, 2) parallel RIO code does not

exist.
Lemma 8: There does not exist a (4, 8, 2) parallel RIO code.

Proof: Assume in the contrary that such a code indeed
exists. According to the conditions of Theorem 7, there exist
two sets of subsets A = {A0, . . . , A7} and B = {B0, . . . , B7}
which satisfy the conditions in Theorem 7. Since there are five
vectors of length four and weight at most one, there exist at least
three subsets in A which do not have any vectors of weight one.
Furthermore, since there are six length-4 vectors of weight two,
there exists at least one subset in A which has at most two vec-
tors of weight two, and assume without loss of generality that
this is the subset A7. However, it is possible to verify that then
there are at most seven different vectors which satisfy the sec-
ond condition in Theorem 7. Thus, it is not possible to write 8
messages on the second page, in contradiction. �

IV. CONSTRUCTION OF PARALLEL RIO CODES

In this section, an algorithm to construct an (n, M, t) par-
allel RIO codes is outlined. When reading the i-th message,
we apply a threshold between levels t − i and t − i + 1,
for 1 ≤ i ≤ t . Let c ∈ [t + 1]n be the cell-state vector and
RTt+1−i (c) ∈ [2]n is the input to the i-th decoder Di to decode
the i-th message. Let I(r) denote the function which converts
binary n-tuple r to its integer representation. Let Ai

I(r) ⊆ [t +
1]n be the subset of cell-state vectors c such that RTt+1−i (c) =
r . Evidently, the sum of the cardinality of all the sets Ai

I(r), over

all r ∈ [2]n is (t + 1)n ; that is, for 1 ≤ i ≤ t ,
∑

r∈[2]n |Ai
I(r)| =

(t + 1)n .
A table of dimension t with M entries per dimension con-

sists of Mt entries with each entry c ∈ [t + 1]n . A parallel
RIO code can be represented by a t-dimensional table with
each entry of the table representing the cell-state vector for
that t-tuple message vector m ∈ [M]t . For 1 ≤ i ≤ t, m ∈ [M],
a (t − 1)-dimensional sub-table Hi

m of this table with Mt−1

entries corresponds to message i taking some value m ∈ [M].
The Mt−1 entries of the (t − 1)-dimensional sub-table Hi

m will
have all other possible symbols in [M] for the other t − 1 mes-
sages. The idea of parallel RIO code is to be able to decode
the i-th message by applying a threshold between levels t − i
and t − i + 1 for any entry in the (t − 1)-dimensional sub-table

Hi
m . This parallel RIO code constraint can be mathematically

expressed as

RTt+1−i (H
i
m) ∩ RTt+1−i (H

i
m′ ) = ∅,

for all 1 ≤ i ≤ t and m, m
′ ∈ [M], m 
= m

′
. This constraint

is equivalent to the condition that elements from Ai
I(r) can be

used to populate a (t − 1)-dimensional sub-table Hi
m for only

one possible m ∈ M and no other (t − 1)-dimensional sub-
table Hi

m′ , m
′ 
= m, for any i , 1 ≤ i ≤ t . That is, the cell-state

vectors from every set Ai
I(r) can belong to at most one (t − 1)-

dimensional sub-table Hi
m . The cardinality of Ai

I(r) plays an
important role in the code construction. It is possible to ver-
ify that for 1 ≤ i ≤ t, r ∈ [2]n, |Ai

I(r)| = i j (t + 1 − i)n− j ,
where j = wH (r).

Let us take for an example the (4, 7, 2) parallel RIO
code of Table III. For this RIO code, a table of dimension
2 (t = 2) with M = 7 entries per dimension consisting of
total 72 entries has to be populated. The 2-D table and one
(t − 1)-dimensional which is a 1-D sub-table corresponds to
message i taking a particular value m has Mt−1 entries which
corresponds to any row or column of Table III. Each column or
row corresponds to message 1 or message 2 respectively taking
a particular value. For one particular value of one message,
the other message can take M possible values for t = 2. For
t = 2, each row or column has Mt−1 = 7 elements, which
correspond to the other message resp. taking any of the 7
allowed values. In general, for one particular value of one
message, the other messages can take Mt−1 values which is
called as a (t − 1)-dimensional sub-table. The figure for t = 2
is the 2-D table, like Table III. Each row and each column
is a (t − 1)-dimensional sub-table. Each entry of the table
is an intersection of the t (t − 1)-dimensional sub-tables,
for example in Table III, the (2, 2) entry of the table which
corresponds to message 1 and message 2 both taking value
2, is 0020. For a given message, its M (t − 1)-dimensional
sub-tables are disjoint. The columns correspond to the (t − 1)-
dimensional sub-tables when reading the first message and
the rows when reading the second message. When reading the
first message columns, the possible binary length-4 vectors
which are read for the seven different symbols in {0, 1, . . . , 6}
are 0000, 0001, 0010, 0100, 1000, {0011, 1010, 1101} and
{0101, 1100, 1001, 0111}, respectively. Similarly, for the
second message, when reading the rows for the seven dif-
ferent symbols in [7] we respectively get the corresponding
binary vectors {0000, 1111}, {0001, 1110}, {0010, 1101},
{0100, 1011}, {1000, 0111}, {0011, 1100}, {1010, 0101}.
The (t − 1)-dimensional sub-tables for the first message for
columns 1 through 7 are formed from subsets of the sets
A1

0,A
1
1,A

1
2,A

1
4,A

1
8,A

1
3 ∪ A1

10 ∪ A1
13,A

1
5 ∪ A1

7 ∪ A1
9 ∪ A1

12,
respectively, and for the second message, these are the
sets A2

0 ∪ A2
15, A2

1 ∪ A2
14, A2

2 ∪ A2
13, A2

4 ∪ A2
11, A2

7 ∪ A2
8,

A2
3 ∪ A2

12, A
2
5 ∪ A2

10, respectively.
The 2n sets Ai

j , 0 ≤ j ≤ 2n − 1, for each message i, 0 ≤ i ≤
t − 1, have to be grouped into M groups so that each (t − 1)-
dimensional sub-table can be populated from elements of a
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TABLE IV
UPPER BOUNDS ON M FOR AN (n, M, 2) PARALLEL RIO CODE FROM THE

WEAK PERMISSIBILITY CONDITION

group. The sets or union of sets selected to populate the (t − 1)-
dimensional sub-tables have to satisfy some conditions. We
formulate these conditions now.

The M groups for each message are said to satisfy the weak
permissibility condition if the number of elements in each group
is at least Mt−1, and the total number of dropped elements (vec-
tors not used in the parallel RIO code) in groups formed from
single sets does not exceed (t + 1)n − Mt .

Lemma 9: Weak permissibility (WP) is a necessary condi-
tion for the grouping to satisfy in order for that grouping to
generate a parallel RIO code.

Proof: For each message i , elements from the M groups
are used to populate one (t − 1)-dimensional sub-table. Since a
(t − 1)-dimensional sub-table has Mt−1 elements, each group
must have cardinality of at least Mt−1. The total number of
cell state vectors are (t + 1)n . The parallel RIO code uses Mt

of these vectors. Hence the maximum allowable dropped out
elements are (t + 1)n − Mt . �

It is easy to check the weak permissibility condition. From
the weak permissibility condition, it is possible to obtain an
upper bound on an achievable M for a given n. For t = 2 case,
this bound is given in Table IV.

We next introduce a permissibility condition which needs
large number of computations and hence is not that easy
to test for. For 1 ≤ i ≤ t , a set of M disjoint subsets Ci

k ⊂
{Ai

j , 0 ≤ j < 2n}, 1 ≤ k ≤ M,Ci
k = ⋃ f (k,i)

b=0 Ai
l(k,i,b) is called

permissible if

∑ f (k,i)
b=0 |Ai

l(k,i,b)| ≥ Mt−1∑t
i=1

∑M
k=1((

∑ f (k,i)
b=0 |Ai

l(k,i,b)|) − Mt−1) ≤ (t + 1)n − Mt

}
(1)

The subscript function of Ai
l(k,i,b) is a function of the page i ,

the message k and and the number of sets. The number of sets
f (k, i) + 1 is also a function of the page i and the message
k, hence the running index b takes values from 0 until f (k, i),
meaning the Ci

k is contained in the union of f (k, i) + 1 sets.

TABLE V
(n, M, 2) PARALLEL RIO CODES FOR n ≤ 6

The first condition of permissibility ensures that the num-
ber of cell states available to populate the (t − 1)-dimensional
sub-table is at least the size of the (t − 1)-dimensional sub-
table. The second condition of permissibility implies that the
number of elements dropped out does not exceed the maximum
available limit.

Note that though the weak permissibility condition checks
the first condition of (1), it checks the second condition only
for those Ci

k which are formed from only one Ai
l .

The computer simulation to generate the M groups for the
i-th message satisfying the permissibility condition consists of
populating an M × 2n matrix L with ones and zeros. There can
be at most one 1 entry in a column. The rows correspond to a
group and the one entry in a particular row means that this set
participates in that group. If b is a 2n × 1 vector whose j-th
entry is the cardinality of Ai

j , then the first condition of (1) can
be evaluated in the software as

Lb ≥ Mt−1[1 1 · · · 1]T .

The second condition of (1) can be evaluated in the software as∑
all columns

(Lb − Mt−1[1 1 · · · 1]T ) ≤ (t + 1)n − Mt . (2)

From the permissibility condition, it is possible to obtain an
upper bound on achievable M for a given n. For t = 2, using
(2) for all possible L and M values, the obtained bound on M
is given in Table V.

As an example, for the (4,7,2) parallel RIO code of Table III,
the subsets C1

1 = A1
0,C

1
2 = A1

1,C
1
3 = A1

2,C
1
4 = A1

4,C
1
5 = A1

8,

C1
6 = A1

3 ∪ A1
10 ∪ A1

13,C
1
7 = A1

5 ∪ A1
7 ∪ A1

9 ∪ A1
12, and C2

1 =
A2

0 ∪ A2
15,C

2
2=A2

1 ∪ A2
14,C

2
3=A2

2 ∪ A2
13,C

2
4=A2

4 ∪ A2
11,C

2
5 =

A2
7 ∪ A2

8,C
2
6 = A2

3 ∪ A2
12,C

2
7 = A2

5 ∪ A2
10 are permissible.

Lemma 10: For every (n, M, t) parallel RIO code, there
exists a permissible set configuration.

Proof: Let the set of cell-state vectors corresponding
to the message i , taking a value m ∈ M for the exist-
ing parallel RIO code be Hi

m . By definition of the paral-
lel RIO code, RTt+1−i (H

i
m) ∩ RTt+1−i (H

i
m′ ) = ∅, ∀m, m

′ ∈
M, m 
= m

′
, 1 ≤ i ≤ t. Every Hi

m can hence be expressed as
a subset of ∪lA

i
jl
. The collection of Ci

k = ∪lA
i
jl
, m ∈ [M], 0 ≤

i ≤ t − 1 is hence permissible. �
With this background, we propose an algorithm to construct

(n, M, t) parallel RIO codes which attempts to populate the
table to construct the code. We then simulated our algorithm
to obtain parallel RIO codes for (n, M, 2), n ≤ 6. The maxi-
mum values of M for which codes could be obtained are listed
in Table V.



YAAKOBI AND MOTWANI: CONSTRUCTION OF RANDOM INPUT-OUTPUT CODES WITH MODERATE BLOCK LENGTHS 1825

TABLE VI
A (5,11,2) PARALLEL RIO CODE

TABLE VII
A (6,19,2) PARALLEL RIO CODE

The (5, 11, 3) and the (6, 18, 3) parallel RIO codes obtained
using this algorithm are listed in Table VI and Table VII
respectively.

Lemma 11: If an (n, M, t) parallel RIO code exists, Algo-
rithm 1 will be successful in constructing it, if all the sets⋂t

i=1 C
i
ki

corresponding to the existing parallel RIO codes have
a single unique element. ki ’s here is the i − th page messages
which can take any value in [M] for each i, 1 ≤ i ≤ t .

Proof: Since every (n, M, t) parallel RIO code has a
permissible set configuration and Algorithm 1 spans all the
permissible set configurations, it includes the permissible set
configuration of the existing parallel RIO code. Since the
entries in

⋂t
i=1 C

i
ki

are unique, there is a unique way to pop-
ulate these and hence Algorithm 1 will always be successful in
generating that parallel RIO code. �

We now comment on the complexity of algorithm 1 as a func-
tion of n. For each message, the 2n sets have to be grouped into
all possible M groups. For a given group for each message,
the algorithm checks if the permissibility condition is satisfied.
If it does, then the algorithm attempts to construct the code.
As n increases, the number of sets increases exponentially and
the search space quickly becomes memory and computationally
intensive.

V. PARTIAL RIO CODES

In Lemma 8, we proved that a (4, 8, 2) parallel RIO code
does not exist. Note that the existence of such a code could
have been possible according to the upper bound of Theorem 5,
since for the 3-level flash memory, it is theoretically possible
to store log2(3) = 1.585 bits per cell. While MLC and TLC
flash memories attain their storage limits of 2 bits per cell and
3 bits per cell, 3-level flash memory is also expected to reach
its storage limit, else its costs cannot be justified. Therefore, a
desirable solution is to store 1.5 bits per cell or higher while 2
read thresholds are not permitted in order to read the two mes-
sages. An alternative solution then is to relax the RIO constraint
of a single read threshold per page and permit some messages to
be read with more than a single read threshold. This motivates
us to define a new family of RIO codes, called here partial RIO
codes, which have relaxed constraints and thus inferior read
performance than RIO codes, but they can reach higher rates.

The idea is that in order to decode some of the messages,
the decoder will read two read thresholds instead of one. If,
for RIO codes, the i-th decoder reads the {(t + 1 − i)-th} read
threshold then, now the (t + 2 − i)-th threshold will be read as
well. We note that this setup could be extended such that more
and different read thresholds will be read, however we leave
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Algorithm 1 (n, M, t) Parallel RIO code construction

input: the code parameters (n, M, t), t-dimensional table
of length M per dimension with all-zero entries, sets
Bi , 1 ≤ i ≤ t .

output: populated t-dimensional table (if parallel RIO code
exists).

1 Check if M satisfies the permissibility condition. If not,
parallel RIO code does not exist, EXIT.

2 Generate all possible permissible sets Ci
k, 1 ≤ k ≤ M, for

each 1 ≤ i ≤ t .
3 Enlist all possible unique permissible set configurations

generated in step 1, denote the total number of such configu-
rations by S;

4 j = 1;
5 Populate (t − 1)-dimensional sub-tables Hi

m for each m ∈
M , for 1 ≤ i ≤ t , by selecting elements from Ci

m from the
j − th permissible set configuration. The table element at
the intersection of

⋂t
i=1 C

i
mi

for different messages mi can
be assigned if

⋂t
i=1 C

i
mi


= ∅. If
⋂t

i=1 C
i
mi

has a single ele-
ment, that entry is populated. If

⋂t
i=1 C

i
mi

has more than one
element, any entry can be used. For example of the (4,7,2)
parallel RIO code, the element at the intersection of the
(t − 1)-dimensional sub-tables H1

6 and H2
2 is populated with

the element 2120 which belongs to the intersection of C1
6 and

C2
2.

6 If
⋂t

i=1 C
i
mi

= ∅, this algorithm could not construct a parallel
RIO code for this permissible set, increment j by 1, go to
step 4.

7 Else, if all (t − 1)-dimensional sub-tables are populated,
then the populated table which is the parallel RIO code is
constructed, EXIT.

8 If j > S, the algorithm could not construct a parallel RIO
code, EXIT.

this generalization as it is application dependent and needs to
be customized based on the system latency requirements. This
model of two read thresholds corresponds in the WOM model
to the case where both the encoder and decoder are informed
with the previous state of the memory. In general there are four
possible models which were extensively studied in [14], and
recently in [7]. We now formally define partial RIO codes.

Definition 12: An (n, M, t; t1) partial RIO code for 1 ≤
t1 ≤ t is a coding scheme comprising of n (t + 1)-ary cells,
t messages, an encoding map E, and t decoding maps Di , for
1 ≤ i ≤ t , defined as follows:

E : [M]t → [t + 1]n,

and the decoding map Di is defined by

Di : [2]n → [M], 1 ≤ i ≤ t1,

Di : [2]n × [2]n → [M], t1 + 1 ≤ i ≤ t,

such that for all m = (m1, . . . , mt ) ∈ [M]t , if 1 ≤ i ≤ t1,
then Di (RTt+1−i (E(m))) = mi , and if t1 + 1 ≤ i ≤ t , then
Di (RTt+1−i (E(m)), RTt+2−i (E(m))) = mi

TABLE VIII
A (4,8,2;1) PARTIAL RIO CODE

According to the last definition, parallel RIO codes are a spe-
cial case of partial RIO codes in case t1 = t . We could also
define the non-parallel version of partial RIO codes, that is,
the set of all t messages is not known in advance, however we
refrain from diving into the details of this variation.

Example 2: The construction of a (4, 8, 2; 1) partial RIO
code is given in the Table VIII. Notice that now we only need
to guarantee that the binary vectors which are read for differ-
ent symbols on the first page are different from each other. For
the second page, it is enough to require different cell-state vec-
tors since the two read thresholds are read. For example, if on
the first page the read binary vector is 1010 or 0101 then the
decoded symbol is 6 and if the read vector is 0110 or 1001, the
decoded symbol is 7. For the second page, all cell-state vec-
tors for different message symbols are different and thus it is
possible to determine the stored message for each case.

In order to prove the optimality of the code construction in
Example (2), we show that a (4,9,2;1) partial RIO code does not
exist.

Lemma 13: There does not exist a (4,9,2;1) partial RIO code.

Proof: Assume in the contrary that such a code exists.
Since there are 81 possible cell-state vectors, then in the

encoding/decoding table, each of the 81 cell-state vectors will
appear. In particular, there is a message m ∈ [9] such that
D1(0000) = m. However, in order to read the first page only
the read threshold between levels 1 and 2 is read and since there
are 16 cell-state vectors c ∈ [3]4 such that RT2(c) = 0000, only
9 of them could be used in the table. Therefore, there will be at
least 7 cell-state vectors that can not appear in the table which
results in a contradiction. �

The upper bound we derived in Lemma 13 for the case of
n = 4 can be generalized for all values of n. We prove this result
in the next theorem.

Theorem 14: For n ≥ 5, if there exists an (n, M, 2; 1) partial
RIO code then

M2 ≤ 3n −
�∑

i=0

(
n

i

)
(2n−i − M),

where � =
⌊

(2−log 3)n
2

⌋
.

Proof: Assume that there exists an (n, M, 2; 1) partial
RIO code, so it can be represented in a two-dimensional table
of size M × M . Thus, we have that M ≤ 3n or M ≤ 3n/2 and in
particular for n ≥ 5, M < 2n−1. If there is no message m ∈ [M]
such that D1(0) = m, then all 2n ternary vectors c in which
RT2(c) = 0 do not appear in the M × M table. If there exists a
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message message m ∈ [M] such that D1(0) = m, then exactly
M of these 2n ternary vectors can appear in the table. Hence, we
already conclude that M2 ≤ 3n − (2n − M). Similarly, since
n ≥ 5, we have that 22(n−1) > 3n , and thus we conclude that
M < 2n−1. Therefore, for all n binary vectors of weight 1, we
get that n(2n−1 − M) ternary vectors won’t appear in the table.
Together we conclude that

M2 ≤ 3n − (2n − M) − n(2n−1 − M).

We repeat this process for all binary vectors of weight i as long
as we can show that M ≤ 2n−i . We also know that 22(n−i) ≤ 3n

and hence the maximum value of i in which we can claim
that M ≤ 2n−i is �, where � is the largest integer which satis-

fies 22(n−�) > 3n , i.e. � =
⌊

(2−log 3)n
2

⌋
. Next, we conclude that

there are at least
∑�

i=0

(n
i

)
(2n−i − M) ternary vectors which do

not appear in the table and therefore the value of M satisfies

M2 ≤ 3n −
�∑

i=0

(
n

i

)
(2n−i − M).

�
We conclude with the following condition on the existence

of partial RIO codes. The proof follows the same outline as the
proof of Theorem 7 and thus is omitted.

Theorem 15: An (n, M, 2; 1) partial RIO exists if and only
if it is possible to divide the 2n binary vectors into two sets of
non-empty subsets A = {A1, . . . , AM } and B = {B1, . . . , BM }
which satisfy the following conditions:

1) For all 1 ≤ i < j ≤ M , Ai ∩ A j = ∅,
2) For all 1 ≤ i, j ≤ M , there exists ai ∈ Ai and b j ∈ B j

such that ai ≤ b j .
Note that opposed to Theorem 7, we did not need to add

the constraint that Bi ∩ B j = ∅ since the first message read is
allowed for retrieving the second message. Note that for the
t = 2, a partial RIO code has to satisfy constraints for only one
message. There are no constraints imposed by the second mes-
sage since it permits 2 reads. The permissibility condition for
the partial RIO code for t = 2 is

∑ f (k,1)

b=0 |A1
l(k,1,b)| ≥ Mt−1

∑M
k=1((

∑ f (k,1)

b=0 |A1
l(k,1,b)|) − Mt−1) ≤ (t + 1)n − Mt

⎫⎬
⎭

(3)
We ran a computer search according to (3) in order to find more
partial RIO codes for t = 2 and n ≤ 15. The results are sum-
marized in Table IX. The upper bound for each case on the
sum-rate was derived according to the bound in Theorem 14.

Lastly in this section we discuss whether for MLC flash it is
possible to construct meaningful partial RIO codes. The con-
ventional read setup for this case is to read the lower page
with a single read threshold and the upper page with 2 reads
so the average number of sensing operations is 1.5. A meaning-
ful RIO code for this case would be a (n, M, 3; 2) code since a
(n, M, 3; 1) partial RIO code will have an average of 5/3 read
thresholds. We state here that a (3, 3, 3; 2) partial RIO code
does not exist, however a (3, 3, 3; 1) partial RIO code and a
(4, 3, 3; 2) partial RIO code do exist.

TABLE IX
ATTAINABLE M FOR (n, M, 2; 1) PARTIAL RIO CODES

VI. CONCLUSION

In this work we studied the design of several families of RIO
codes. RIO codes are proven to be equivalent to WOM codes,
however we made use of the fact that while encoding the infor-
mation of all pages is available. This allowed us to define a new
set of codes which we called parallel RIO codes. As expected,
we achieve higher sum-rates with parallel RIO codes as com-
pared to RIO codes. We proposed further generalizations by
relaxing the read thresholds constraint and permitted reading
some pages with more than one strobe. These codes which we
called partial RIO codes have even higher sum-rates than par-
allel RIO codes. The tradeoff is that partial RIO codes have a
higher read latency, but are suited for applications which require
more efficient storage. We proposed an algorithm to construct
parallel RIO codes and the same algorithm can also be used to
construct partial RIO codes. We presented upper bounds on the
message size based on permissibility condition for parallel and
partial RIO codes.
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