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Abstract—This paper studies defect memory cells and in par-
ticular partially stuck-at memory cells, which occur when charge
is trapped in multi-level cells of non-volatile memories such as
flash memories. If a cell can store the q levels 0, 1, . . . , q − 1,
we say that it is partially stuck-at level s, where 1 ≤ s ≤ q − 1,
if it can only store values which are at least s. We follow the
common setup where the encoder knows the positions and levels
of the partially stuck-at cells whereas the decoder does not. In
this paper, we study codes for masking u partially stuck-at cells.
We derive lower and upper bounds on the redundancy of such
codes and present code constructions. Furthermore, we analyze
the dual defect model in which cells cannot reach higher levels,
and show that codes for partially stuck-at cells can be used to
mask this type of defects as well. Lastly, we analyze the capacity
of the partially stuck-at memory channel and study how far our
constructions are from the capacity.

Index Terms—(partially) stuck-at cells, flash memories

I. INTRODUCTION

Information in flash memories is stored by electrically
charging the cells with electrons in order to represent multiple
levels. If charge is trapped in a cell, then its level can only be
increased, or it may happen that due to defects, the cell can
only represent some lower levels. Inspired by these defect
models, the goal of this paper is the study of codes which
mask cells that are partially stuck-at.

In the classical version of stuck-at cells (see e.g. [11]), the
memory consists of n binary cells of which u are stuck-at
either in the zero or one level. A cell is said to be stuck-at
level s ∈ {0, 1} if the value of the cell cannot be changed.
Only data which matches the fixed values at the stuck-at
cells can be written into the memory. A code for stuck-
at cells maps message vectors to codewords which mask
the stuck-at cells, i.e., the values of each codeword at the
stuck positions coincide with their stuck level. The encoder
knows the locations and values of the stuck-at cells, while the
decoder does not. The task of the decoder is to reconstruct
the message given only the codeword. The challenge in this
defect model is to construct schemes where a large number
of messages can be encoded and successfully decoded.

Codes for memories with stuck-at cells, also known
as memories with defects, were first studied in 1974 by
Kuznetsov and Tsybakov [11]. Since then, several more
papers have appeared, e.g. [1]–[3], [6], [9], [10], [14], [16]–
[18]. The main goal in all these works was to find construc-
tions of codes which mask a fixed number of stuck-at cells
and correct another fixed number of additional random errors.
Recently, the connection between memories with stuck-at

cells and the failure models of non-volatile memory cells has
attracted a renewed attention to this prior work. Several more
code constructions as well as efficient encoding and decoding
algorithms for the earlier constructions were studied; see
e.g. [4], [8], [12], [13], [15].

This paper studies codes which mask cells that are partially
stuck-at. We assume that cells can have one of the q levels
0, 1, . . . , q − 1. Then, it is said that a cell is partially stuck-
at level s, where 1 ≤ s ≤ q − 1, if it can only store
values which are at least s. We provide upper and lower
bounds on the redundancy of these codes and give several
constructions with small redundancy to mask partially stuck-
at cells. Our constructions are first given for the case s = 1,
and later generalized to arbitrary levels. We improve upon
our constructions from [19] and analyze how far they are
from our lower and upper bounds on the redundancy. In
particular, if q is a multiple of u+1, our code construction is
asymptotically optimal in terms of the redundancy. Another
construction uses binary codes which mask (usual) stuck-
at cells. We also show how the codes we propose in the
paper can be used for the dual defect model in which cells
cannot reach higher levels. Lastly, we analyze the capacity of
the partially stuck-at memory channel and study how far our
constructions are from the capacity. The results in this paper
build upon our previous constructions, presented in [19].

The rest of the paper is organized as follows. In Section II,
we introduce the notations and formally define the model of
partially stuck-at cells studied in this paper. Our lower and
upper bounds on the redundancy are presented in Section III.
In Section IV, we propose codes along with encoding and
decoding algorithms for the case u < q. In Section V we
show a more general solution by using codes which mask
binary stuck-at cells. Section VI generalizes the previous
constructions to cells which are partially stuck-at arbitrary
(possibly different) levels s0, s1, . . . , su−1. The (dual) prob-
lem of codes for unreachable levels is studied in Section VII
and Section VIII analyzes the capacity of the partially stuck-
at channel. Finally, Section IX concludes this paper.

Due to space limitations, some proofs are omitted and can
be found in the long version [20].

II. DEFINITIONS AND PRELIMINARIES

A. Notations

For positive integers a, b, we denote by [a] the set of
integers {0, 1, . . . , a−1} and [a, b−1] = {a, a+1, . . . , b−1}.
Vectors and matrices are denoted by lowercase and uppercase
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boldface letters, e.g. a and A, and are indexed starting
from 0. The all-zero and all-one vectors of length n are
denoted by 0n and 1n. Further, for a prime power q, Fq
denotes the finite field of order q.

We consider n memory cells with q levels, i.e., they are
represented as a vector in [q]n. In the classical model of
stuck-at cells, a cell is said to be stuck-at level s ∈ [q] if
it can store only the value s. In our new model of partially
stuck-at cells, a cell is partially stuck-at level s ∈ [q] if it can
store only values which are at least s. In the first part of this
work, when studying partially stuck-at cells, we only consider
s = 1 and we call such cells partially stuck-at-1. Throughout
this paper, we also use the notation partially stuck-at-s, when
one or several cells are partially stuck-at level s. Lastly, in
the most general case, u cells are partially stuck-at-s, where
s = (s0, s1, . . . , su−1) is a vector and contains the different
partially stuck levels s0, s1, . . . , su−1 of the u defect cells.

B. Definitions for (Partially) Stuck-at Cells

We use the notation (n,M)q to indicate a coding scheme
to encode M messages into vectors of length n over the
alphabet [q]. Its redundancy is denoted by r = n − logqM .
A linear code over [q] will be denoted by [n, k]q , where k
is its dimension and its redundancy is r = n− k. Whenever
we speak about a linear [n, k, d]q code, then d refers to the
minimum Hamming distance of an [n, k]q code. We also
denote by ρq (n, d) the smallest (known) redundancy of any
linear code of length n and minimum Hamming distance d
over Fq . For the purpose of the analysis and the simplicity
of notations in the paper, we let ρq (n, d) = ∞ in case q is
not a power of a prime.

Codes for (partially) stuck-at cells are defined as follows.

Definition 1 (Codes for (Partially) Stuck-at Cells) We
define the following code properties:

1) An (n,M)q u-stuck-at-masking code (u-SMC) C is
a coding scheme with encoder E and decoder D.
The input to the encoder E is the set of loca-
tions {φ0, φ1, . . . , φu−1} ⊆ [n], the stuck levels
s0, s1, . . . , su−1 ∈ [q] of some u ≤ n stuck-at cells and
a message m ∈ [M ]. Its output is a vector y(m) ∈ [q]n

which matches the values of the u stuck-at cells, i.e.,

y
(m)
φi

= si, ∀i ∈ [u],

and its decoded value is m, that is D(y(m)) = m.

2) An (n,M)q (u, s)-partially-stuck-at-masking code
((u, s)-PSMC) C is a coding scheme with encoder E
and decoder D. The input to the encoder E is the set
of locations {φ0, φ1, . . . , φu−1} ⊆ [n], the partially
stuck levels s = (s0, s1, . . . , su−1) ∈ [1, q − 1]u of
some u ≤ n partially stuck-at cells and a message
m ∈ [M ]. Its output is a vector y(m) ∈ [q]n which
masks the values of the u partially stuck-at cells, i.e.,

y
(m)
φi
≥ si, ∀i ∈ [u],

and its decoded value is m, that is D(y(m)) = m.

Notice that in contrast to classical error-correcting codes,
(P)SMCs are not just a set of codewords, but also an explicit
coding scheme with encoder and decoder. The partially stuck
levels stored in s have to be known to the decoder of a PSMC,
whereas the decoders of SMCs are independent of the stuck
levels. Clearly, a (u, s)-PSMC is also a (u′, s′)-PSMC, where
u′ ≤ u and s′ is a subvector of s of length u′.

Whenever we speak about (u, s)-PSMCs (i.e., s is a
scalar), we refer to a code that masks at most u partially-
stuck-at-s cells and when we speak about a u-PSMC, we
mean a code which masks at most u partially-stuck-at-1 cells.

Our goal is to minimize the redundancy n − logqM for
fixed values u and s, while providing efficient encoding and
decoding algorithms. For positive integers n, q, u, where u ≤
n, and a vector s ∈ [1, q− 1]u, we denote by rq (n, u, s) the
minimum redundancy of a (u, s)-PSMC over [q].

C. Stuck-At-Masking Codes

Theorem 1 (Masking Stuck-At Cells, [6]) Let C be an
[n, k, d]q code with d ≥ u + 1, where q is a prime power.
Then, there exists a u-SMC with redundancy r = n− k.

It is not completely known whether the scheme of The-
orem 1 is optimal with respect to its achieved redundancy.
However, the redundancy of such a code has to be at least u
since there are u stuck-at cells that cannot store information.

III. BOUNDS ON THE REDUNDANCY

For deriving upper and lower bounds on the minimum
redundancy of PSMCs, we assume the most general case of
(u, s)-PSMCs, where s = (s0, s1, . . . , su−1) ∈ [1, q − 1]u.

Theorem 2 (Bounds on the Redundancy) For any num-
ber of u ≤ n partially stuck-at cells and any levels s =
(s0, s1, . . . , su−1) ∈ [1, q − 1]u, the value of the minimum
redundancy rq (n, u, s) to mask these cells satisfies

u− logq

(
u−1∏
i=0

(q − si)

)
≤ rq (n, u, s)

≤ min
{
n ·
(
1− logq

(
q −max

i
{si}

))
, ρq (n, u+ 1)

}
.

Proof: First, we prove the lower bound. The n − u
cells, which are not partially stuck-at, can each carry a q-
ary information symbol and the u partially stuck-at cells can
still represent q − si possible values (all values except for
[si]). Hence, we can store at most M ≤ qn−u

∏u−1
i=0 (q − si)

q-ary vectors and the code redundancy satisfies

r ≥ n−logq

(
qn−u

u−1∏
i=0

(q − si)

)
= u−logq

(
u−1∏
i=0

(q − si)

)
.

Second, we prove the upper bound. A trivial construction
to mask any u ≤ n partially stuck-at cells is to use only
the values maxi{si}, . . . , q − 1 as possible symbols in any

697



cell. Any cell therefore stores logq(q − maxi{si}) q-ary
information symbols. The achieved redundancy is

n− logq
(
(q −max

i
{si})n

)
= n

(
1− logq(q −max

i
{si})

)
,

and therefore rq (n, u, s) ≤ n
(
1− logq(q −maxi{si})

)
.

Furthermore, every u-SMC can also be used as (u, s)-
PSMC since the SMC restricts the values of the stuck-at cells
more than the PSMC. With Theorem 1, the redundancy of an
SMC is ρq (n, u+ 1), which provides another upper bound
on the value of rq (n, u, s).
Note that ρq (n, u+ 1) ≥ u (by the Singleton bound).

The bounds from Theorem 2 are a generalization of the
bounds from [20, Equation (1)] which were proven for the
case s = 1 only. For partially stuck-at-s cells, we further
improve the lower bound on the redundancy in the next
theorem. This bound is new and did not appear in [19].

Theorem 3 (Improved Lower Bound) For any (n,M)q
(u, s)-PSMC, we have M ≤

⌊ qn+u(q−s)n
u+1

⌋
, and therefore

rq (n, u, s) ≥ logq(u+ 1)− logq
(
1 + u(1− s/q)n

)
.

Proof: Assume that there exists an (n,M)q (u, s)-
PSMC, and let E , D be its encoder, decoder, respectively.
In this case we assume that the encoder’s input is a message
m ∈ [M ] and a set of indices U ⊆ [n], |U | ≤ u, of the
locations of the cells which are partially stuck-at level s. We
will show that M ≤

⌊ qn+(q−s)n
u+1

⌋
. For every m ∈ [M ], let

D−1(m) = {y ∈ [q]n | D(y) = m}.

For every m ∈ [M ] such that D−1(m) ∩ ([q] \ [s])n = ∅,
we have that |D−1(m)| ≥ u + 1. To see that, assume
on the contrary that |D−1(m)| = u (the same proof
holds if |D−1(m)| < u), so we can write D−1(m) =
{y0,y1, . . . ,yu−1}, while yj /∈ ([q] \ [s])n for j ∈ [u].
For j ∈ [u], let ij ∈ [n] be such that yj,ij < s, and
U = {i0, i1, . . . , iu−1}. Then, E(m,U) 6= yj for all j ∈ [u]
(where the message m and the positions set U are the input to
the encoder E) and thus |D−1(m)| ≥ u+ 1, in contradiction.

Since there are (q− s)n vectors all with values at least s,
there are M − (q − s)n vectors of the described type above
where for each such vector there exists a message m where
|D−1(m)| ≥ u + 1. Therefore, we get that (q − s)n + (u +
1)(M − (q − s)n) ≤ qn, or

M ≤
⌊
qn + u(q − s)n

u+ 1

⌋
.

We also conclude that

rq (n, u, s) ≥ logq(u+ 1)− logq
(
1 + u(1− s/q)n

)
.

IV. A CONSTRUCTION FOR PARTIALLY STUCK-AT LEVEL
s = 1 CELLS FOR u < q

In [19, Section III], we have presented a construction for
masking u < q partially stuck-at memory cells. For all n
and any u < q, this construction provides a PSMC with
redundancy of one symbol. In this section, we use a similar
principle as in [19, Section III] but reduce the redundancy.

Furthermore, we will show that if q is a multiple of u + 1,
our new construction is asymptotically optimal.

Theorem 4 (Construction A) If u < q and u ≤ n, then
for all n, there exists a u-PSMC over [q] of length n and
redundancy

r = 1− logq

⌊
q

u+ 1

⌋
.

Proof: In order to prove the statement, we show the
encoding and decoding procedures for Construction A.

Algorithm 1. ENCODING-A
(
m;m′;φ0, φ1, . . . , φu−1

)
Input: • message: m = (m0,m1, . . . ,mn−2) ∈ [q]n−1

• additional message: m′ ∈
[⌊

q
u+1

⌋]
• positions of stuck-at-1 cells:
{φ0, φ1, . . . , φu−1} ⊆ [n]

1 w = (w0, w1, . . . , wn−1)← (0,m0,m1, . . . ,mn−2)

2 Set v ∈ [u+ 1] such that
v /∈

{
wφ0

mod (u+ 1), . . . , wφu−1
mod (u+ 1)

}
3 z ← q − v −m′(u+ 1)

4 y← (w + z · 1n) mod q

Output: vector y with yφi
≥ 1, ∀i ∈ [u]

We will prove that the output vector y masks the par-
tially stuck-at-1 cells. In Step 2 of Algorithm 1, we can
always find a value v ∈ [u + 1] as required since the
set
{
wφ0

mod (u+ 1), . . . , wφu−1
mod (u+ 1)

}
has cardi-

nality u and there are u + 1 possible values to choose
from. Note that in Step 3, z ∈ [q] since v ∈ [u + 1] and
m′(u+ 1) ∈ [q − u]. In Step 4, we obtain:

yφi = (wφi − v −m′(u+ 1)) mod q.

Since v 6= wφi
mod (u + 1) from Step 2, yφi

6= 0, for all
i ∈ [u], and the partially stuck-at-1 positions are masked.

Algorithm 2. DECODING-A
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn−1) ∈ [q]n

1 ẑ ← y0

2 v̂ ← (q − ẑ) mod (u+ 1)

3 m̂′ ← q − ẑ − v̂
u+ 1

4 m̂← ((y1, y2, . . . , yn−1)− ẑ · 1n−1) mod q

Output: message vector m̂ ∈ [q]n−1

additional message m̂′

The decoding algorithm has to guarantee that we can recover
m and m′ and is shown in Algorithm 2. Here, we notice that
y0 = z = q − v − m′(u + 1) from the encoding step and
therefore, in Step 1, ẑ = z and in Step 2, v̂ = v. Solving
y0 = q − v − m′(u + 1) for m′ shows that in Step 3, the
result of the fraction is always an integer and that m̂′ = m′.
Since ẑ = z, it follows that m̂ = m in Step 4.
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The statement on the redundancy follows since we have
one redundancy symbol (the first position), but the additional
information m′ is stored there, which reduces the redundancy
by logqb

q
u+1c in terms of q-ary symbols.

The difference to [19, Section III] is the additional in-
formation m′ that can be stored with Construction A. The
principle is also illustrated in the following example.

Example 1 Let u = 2, q = 6 and n = 5. We choose
m = (0, 1, 5, 2, 4) and m′ = 1 ∈ [2]. Assume φ0 = 1
and φ1 = 5. We follow the steps of Algorithm 1 and obtain
w = (0, 0, 1, 5, 2, 4). In Step 2, v should not be in {0, 1}
but in [3] and therefore v = 2. In Step 3, we obtain z = 1
and finally, Step 4 gives y = (1, 1, 2, 0, 3, 5) and we see that
yφ0 = y1 = 1 and yφ1 = y5 = 5 and the partially stuck-at
cells are masked.

The decoder from Algorithm 2 knows y and calculates in
Step 1: ẑ = 1, in Step 2: v̂ = 2 and in Step 3: m′ = 1.
Finally, we can correctly reconstruct m̂ = (0, 1, 5, 2, 4).

The important difference to [19, Section III] is that z can
always be chosen from a small subset of [q], namely from [u+
1] (whereas in [19, Section III], z was chosen from [q]). This
makes it possible to store the “additional information” of m′

in the first cell. Thus, the information stored (in terms of q-ary
symbols) increases by log6(6/3) and the required redundancy
reduces from one symbol to 1 − log6(2) ≈ 0.613 symbols
while the lower bound from Theorem 2 gives ≈ 0.204. The
lower bound from Theorem 3 gives 0.284 for n = 5. For n→
∞, the lower bound from Theorem 3 reaches 0.613 which is
exactly the redundancy achieved by our construction.

Theorem 5 (Optimality of Theorem 4) If (u + 1) divides
q, then the u-PSMC from Theorem 4 is asymptotically optimal
in terms of the redundancy.

Proof: If (u+1)|q, then the redundancy from Theorem 4
is r = logq(u + 1). The lower bound on the minimum
redundancy from Theorem 3 is rq (n, u,1) = logq(u+ 1)−
logq

(
1 + u(1− 1/q)n

)
. The difference between both is

∆q(n, u) = r − rq (n, u,1) = logq
(
1 + u(1− 1/q)n

)
.

For n→∞ and since (1− 1/q) < 1, this value approaches

logq
(
1 + u(1− 1/q)n

)
→ logq

(
1 + 0

)
= 0.

Thus, the construction is asymptotically optimal.

V. CONSTRUCTION USING BINARY CODES FOR
PARTIALLY STUCK-AT LEVEL s = 1 CELLS

In this section, we describe a construction of u-PSMCs
for masking u partially stuck-at-1 cells by means of binary
SMCs. This construction works for any u; however, for u <
q, the construction from the previous section achieves smaller
redundancy, therefore and unless stated otherwise, we assume
in this section that n ≥ u ≥ q.

For a vector w ∈ [q]n and a set U ⊆ [n], the notation
wU denotes the subvector of w of length |U | which consists
of the positions in U . Let U contain the locations of the u

partially stuck-at-1 cells, and let a vector w ∈ [q]n be given,
then our construction of PSMCs has two main parts:

1) Find z ∈ [q] such that the number of zeros and (q−1)s
is minimized in the vector

(w(z))U = (w + z · 1n+1)U ,

and denote this value by ũ.
2) Use a binary ũ-SMC to mask these ũ stuck-at cells.

This idea provides the following construction. Later, we will
demonstrate this idea with two examples.

Theorem 6 (Construction B) Let n, q ≥ 4 and u ≤ n be
positive integers and define ũ = b2u/qc. Assume that C̃ is an
[n, k, d ≥ ũ+1]2 binary ũ-SMC with encoder Ẽ and decoder
D̃ given by Theorem 1. Then, there exists a u-PSMC over [q]
of length (n+ 1) and redundancy

r = (n− k − 1) logq

(
q

bq/2c

)
+ 2.

Proof: We will give the explicit algorithms for encoding
and decoding. We assume that H is a systematic (n−k)×n
parity-check matrix of the code C̃ and we refer to Theorem 1
as the encoder Ẽ and decoder D̃ of the code C̃, respectively.

Let us start with the encoding algorithm for the u-PSMC.

Algorithm 3. ENCODING-B
(
m;m′;U

)
Input: • messages: m = (m0,m1, . . . ,mk−1) ∈ [q]k

and
m′ = (m′0,m

′
1, . . . ,m

′
n−k−2) ∈

[
bq/2c

]n−k−1

• positions of partially stuck-at-1 cells:
U = {φ0, φ1, . . . , φu−1} ⊆ [n+ 1]

1 w = (w0, w1, . . . , wn)← (0n−k,m0,m1, . . . ,mk−1, 0)

2 Find z ∈ [q] such that the vector (w(z))U has at most ũ
zeros and (q− 1)s, where w(z) = (w+ z ·1n+1) mod q.
Let Ũ be the set of these positions.

3 If z > 0 then w(z)
n ← z, else w(z)

n ← q − 2

4 Let v = (v0, v1, . . . , vn−1) ∈ [2]n be such that vi ← 1 if
w

(z)
i = q − 1, else vi ← 0

5 Apply Theorem 1:
c′ ← Ẽ

(
(vn−k, vn−k+1, . . . , vn−1); Ũ ;1n

)
c̃← (c′ 0)

6 m̃← (2m′0, 2m
′
1, . . . , 2m

′
n−k−2,0k+2) ∈ [q]n+1

7 y← (w(z) + c̃ + m̃) mod q

Output: vector y ∈ [q]n+1 with yφi
≥ 1, ∀i ∈ [u]

First, we show that in Step 2 of Algorithm 3, there exists
z ∈ [q] such that the vector (w(z))U has at most ũ zeros
and (q − 1)s, where w(z) = (w + z · 1) mod q. The value
ũ is equivalent to the minimum number of cells in any two
(cyclically) consecutive levels in w. That is, let us denote
vi = |{j : wj = i, j ∈ {φ0, . . . , φu−1}|, for all i ∈ [q]. Then,
we seek to minimize the value of

vi + v(i+1) mod q,
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where i ∈ [q]. Since
∑q−1
i=0 (vi + v(i+1) mod q) = 2u, with

the pigeonhole principle, there exists an integer z ∈ [q] such
that vz + v(z+1) mod q ≤ b2u/qc = ũ. Therefore, the vector
(w(z))U has at most ũ zeros and (q−1)s, and the set of these
positions is denoted by Ũ . We write the value of z in the
last cell and if z = 0, we write wn = q−1. This is necessary
in the case where the last cell is partially stuck-at-1.

Next, we treat the ũ cells of w(z) of value 0 or q − 1 as
binary stuck-at cells since adding 0 or 1 to the other u − ũ
cells still masks those partially stuck-at-1 cells as they will
not reach level 0. Therefore, according to Theorem 1, we can
use the encoder of Ẽ of the code C̃ as done in Steps 4 and
5. The first part of Step 5 is a call of Theorem 1. In order
to do so, we first generate a length-n binary vector v where
its value is 1 if and only if the corresponding cell has value
q−1. Then, we require that the ũ cells will be stuck-at level
1. This will guarantee that the output c̃ has value 1 if the
corresponding partially stuck-at cell was in level 0 and its
value is 0 if the corresponding cell was in level q − 1.

The first n − k cells contain so far only binary values,
thus, we use the first n−k−1 cells to write another symbol
with bq/2c values in each cell, as done in Steps 6 and 7. The
last cell in this group of n− k cells remains to store only a
binary value, which is necessary to determine the value of z
in the decoding algorithm.

To complete the proof, we present the decoding algorithm.

Algorithm 4. DECODING-B
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn) ∈ [q]n+1

1 If (yn−k−1 − yn) mod q ≤ 1 then ẑ ← yn, else ẑ ← 0

2 ŷ← y − ẑ · 1n+1

3 m̂′ ← (bŷ0/2c , bŷ0/2c , . . . , bŷn−k−2/2c)
4 t̂←(ŷ0− 2m̂′0, . . . , ŷn−k−2− 2m̂′n−k−2, ŷn−k−1) mod q

5 ĉ′ ← t̂ ·H
6 m̂← (ŷn−k − ĉ′n−k, . . . , ŷn−1 − ĉ′n−1) mod q

Output: message vectors m̂ ∈ [q]k and
m̂′ ∈

[
bq/2c

]n−k−1

In Step 1, we first determine the value of z. Note that if
z 6= 0 then yn−k = yn = z or yn−k = (yn + 1) mod q
and in either case the condition in this step holds. In case
z = 0 then yn = q − 2 and yn−k = 0 or yn−k = 1 so
(yn−k−1 − yn) mod q ≥ 2 (since q ≥ 4). Therefore, we
conclude that ẑ = z.

In Step 3, we determine the value of the second message
m′. Since ẑ = z, we get that m̂′ = m′. In Steps 4 and 5, we
follow the principle behind Theorem 1 in order to decode the
vector c′ and get that ĉ′ = c′. Lastly, in Step 5 we retrieve
the first message vector and get m̂ = m.

The size of the message we store in this code is M =
qk · b(q/2)cn−k−1 and the redundancy of this u-PSMC is

r = (n− k − 1) logq

(
q

bq/2c

)
+ 2.

The following examples show the complete encoding and
decoding processes described in Theorem 6.

Example 2 Let q = 4, n = 15, k = 11, u = 5 and
U = {1, 4, 8, 12, 15} ⊂ [16] be the set of partially stuck-at-1
positions. Then, ũ = b2u/qc = 2 and we can use the
[15, 11, 3]2 code C̃ as the binary 2-SMC. The following
matrix is a systematic parity-check matrix of C̃:

H =

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 0 0 0 1 1 1
0 0 1 0 1 1 0 1 1 0 1 1 0 0 1
0 0 0 1 0 1 1 0 1 1 0 1 0 1 1

 .

Let m = (0, 3, 2, 1, 2, 2, 3, 1, 3, 2, 2) and m′ = (1, 0, 1).
Let us first show the steps of the encoding algorithm. With

z = 1 in Step 2, we have in the different steps of Algorithm 3
(the partially stuck-at-1 positions are underlined):

Step 1: w = (0, 0, 0, 0, 0, 3, 2, 1, 2, 2, 3, 1, 3, 2, 2, 0)

Steps 2&3: w(z) = (1, 1, 1, 1, 1, 0, 3, 2, 3, 3, 0, 2, 0, 3, 3, 1)

Therefore, (w(z))U = (1, 1, 3, 0, 1) has two cells in level 0
or 3 which equals ũ. Further, we obtain:

Step 4: v = (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1)

Step 5: c′ = (1, 0, 0, 0) ·H =

= (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

c̃ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0)

Step 6: m̃ = (2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Step 7: y = (0, 1, 3, 1, 1, 0, 3, 2, 3, 0, 1, 3, 1, 0, 0, 1)

Clearly, the partially stuck-at-1 positions are masked in the
vector y.

Let us now show the decoding process, i.e., Algorithm 4.

Step 1: y3−y15 = 0 =⇒ ẑ = 1

Step 2: ŷ = (3, 0, 2, 0, 0, 3, 2, 1, 2, 3, 0, 2, 0, 3, 3, 0)

Step 3: m̂′ = (b3/2c , 0, b2/2c) = (1, 0, 1)

Step 4: t̂ = (3− 2, 0− 0, 2− 2, 0) = (1, 0, 0, 0)

Step 5: ĉ′ = t̂ ·H = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

Step 6: m̂ = (0, 3, 2, 1, 2, 2, 3, 1, 3, 2, 2).

We have therefore successfully recovered the messages m
and m′ and the redundancy to mask these five partially stuck-
at-1 cells is r = 3.5 q-ary cells.

The lower bound from Theorem 2 gives 1.037 and the
lower bound from Theorem 3 gives 1.26.

As a comparison, to mask u = 5 usual stuck-at cells in
a block of 16 cells, we need a quaternary code of length
n = 16 and distance d ≥ u + 1 = 6. The largest such
code is a [16, 9, 6]4 code with 7 redundancy symbols. The
trivial construction from Theorem 2 needs redundancy 3.11.
For this example, the new construction is thus worse than the
trivial one. However, for larger n, the influence of the +2 in
the redundancy diminishes and our construction outperforms
the trivial one (see Example 3), but the principle of the
construction is easier to show with short vectors.
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Example 3 Let q = 4, n = 63, k = 57 and u = 5. Then, the
required redundancy for Construction B from Theorem 6 is
r = 4.5. This improves significantly upon the upper bounds
from Theorem 2 since the trivial construction from Theorem 2
needs redundancy 13.1 and ρ4 (64, 6) = 13.

The next corollary summarizes this upper bound on the
redundancy for n cells.

Corollary 1 For all 4 ≤ q ≤ u ≤ n we have that

rq (n, u,1) ≤
(
ρ2

(
n− 1,

⌊
2u
q

⌋
+ 1
)
−1
)
·logq

(
q

bq/2c

)
+2.

Note that for u→ n and for large q, the trivial construction
from Section II is quite good. Construction B outperforms the
trivial construction if u > q and n� u.

VI. GENERALIZATION OF THE CONSTRUCTIONS TO
ARBITRARY PARTIALLY STUCK-AT LEVELS

The main goal of this section is to consider the generalized
model of partially stuck-at cells as in Definition 1. This model
is applicable in particular for non-volatile memories where
the different cells might be partially stuck-at different levels.

Let U = {φ0, φ1, . . . , φu−1} be the set of locations of
the partially stuck-at cells where the i-th cell, for i ∈
{φ0, φ1, . . . , φu−1}, is partially stuck-at level si. We denote
by ui, i ∈ [q], the number of cells which are partially stuck-
at level i (thus,

∑q−1
i=1 ui = u) and by Ui ⊆ [n], ∀i ∈ [q], the

positions of the cells which are partially stuck-at-i.

A. Generalization of Construction A

Theorem 7 (Generalized Construction A) If
∑u−1
i=0 si <

q and u ≤ n, then for all n, there exists a (u, s)-PSMC,
where s = (s0, s1, . . . , su−1) ∈ [0, q− 1]u, over [q] of length
n and redundancy

r = 1− logq

⌊
q∑u−1

i=0 si + 1

⌋
.

The encoding and decoding processes are analogous to
Algorithms 1 and 2, respectively. Unfortunately, we cannot
claim (as in Theorem 5 for si = 1, ∀i) that this construction
is asymptotically optimal, since the lower bound on the
redundancy in Theorem 3 does not depend asymptotically
on the value of s.

B. Generalization of Construction B

Let us now describe a method to generalize the construc-
tion from Theorem 6 to the case where the cells are partially
stuck-at different levels, given by s = (s0, s1, . . . , su−1). We
want to use a Q-ary SMC, where Q ≥ maxi{si}+1, to obtain
an (u, s)-PSMC. We do this by refining the “minimization
step” as done in the following theorem.

Theorem 8 (Generalized Construction B) Let n, q ≥ 4
and u be positive integers. Let s = (s0, s1, . . . , su−1) ∈
[1, q − 1]u be given and denote ui = |{sj = i,∀j ∈ [u]}|,
∀i ∈ [q]. Then, u =

∑q−1
i=1 ui and let Q ≥ maxi{si}+ 1 be

a prime power. Denote σi = min{q,Q + i − 1}, ∀i ∈ [q],
and

ũ =

⌊∑q−1
i=1 ui · σi

q

⌋
.

Assume that C̃ is an [n, k, d ≥ ũ + 1]Q Q-ary ũ-SMC
with encoder Ẽ and decoder D̃ given by Theorem 1. Then,
there exists a (u, s)-PSMC over [q] of length (n + 1) and
redundancy

r = (n− k − 1) logq

(
q

bq/Qc

)
+ 2. (1)

Proof: If a cell in Ui has a cell level in [i, q−Q], then this
partially stuck-at cell is still masked after adding any value
from [Q]. Thus, we want to find z ∈ [q] such that the partially
stuck-at positions in the vector (w(z))Ui

= (w+ z ·1n+1)Ui

contain as many values in [i, q − Q], ∀i ∈ [1, q − 1], as
possible. Equivalently, we want to minimize the number of
values from [q] \ [i, q−Q] in (w(z))Ui , for all i ∈ [1, q− 1].

Let us describe a way how accomplish this. We have

σi
def
=
∣∣[q] \ [i, q −Q]

∣∣ = min{q,Q+ i− 1}, ∀i ∈ [q],

and generalizing Theorem 6, we define:

v
(i)
` = |{j : wj = `, j ∈ Ui}|, ∀` ∈ [q], i ∈ [1, q − 1]. (2)

We want to minimize (subject to ` ∈ [q])

q−1∑
i=1

σi−1∑
j=0

v
(i)
`+j mod q.

We know that
∑q−1
`=0

∑q−1
i=1

σi−1∑
j=0

v
(i)
`+j mod q =

∑q−1
i=1 ui · σi.

Thus, by the pigeonhole principle, there exists an integer ` ∈
[q] such that

q−1∑
i=1

σi−1∑
j=0

v
(i)
`+j mod q ≤

⌊∑q−1
i=1 ui · σi

q

⌋
def
= ũ.

Similarly to Theorem 6, we can treat these ũ partially stuck-
at cells as Q-ary cells which are stuck-at. A similar proof as
in Theorem 6 leads to the statement.

VII. CODES FOR CELLS WITH UNREACHABLE LEVELS

In flash memories, it might happen that certain levels
cannot be reached or should not be programmed anymore
since they are highly unreliable, see e.g. [5]. Finding codes
that mask these cells can be seen as the dual problem to
finding PSMCs. Namely, we want to find a code as follows.

Definition 2 (Codes for Unreachable Levels) An (n,M)q
(u, s)-unreachable-masking code ((u, s)-UMC) C is a cod-
ing scheme with encoder E and decoder D. The input to
the encoder E is the set of locations {φ0, . . . , φu−1} ⊆ [n],
the unreachable levels s = (s0, s1, . . . , su−1) ∈ [q − 1]u of
some u ≤ n cells and a message m ∈ [M ]. Its output is
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a vector y(m) ∈ [q]n which masks the values of the u cells
with unreachable levels, i.e.,

y
(m)
φi
≤ si, ∀i ∈ [u],

and its decoded value is m, that is D(y(m)) = m.

Theorem 9 Assume there exists a (u, s)-PSMC with s =
(q − 1 − s0, q − 1 − s1, . . . , q − 1 − su−1) and redundancy
r. Then, this code can be used as a (u, s̃)-UMC with s̃ =
(s0, s1, . . . , su−1) and redundancy r.

Proof: Assume we want to write a message into n
memory cells where the levels at positions φ0, φ1, . . . , φu−1

can be at most s0, s1, . . . , su−1. We construct a (u, s)-PSMC
with redundancy r for the levels s = (q − 1 − s0, q − 1 −
s1, . . . , q− 1− su−1). The output of this encoder is a vector
y(m) such that y(m)

φi
≥ q − 1− si, ∀i ∈ [0, u− 1].

Therefore, the vector y(m) def
= (q − 1 − y

(m)
0 , q − 1 −

y
(m)
1 , . . . , q − 1− y(m)

n−1) has the property that

y
(m)
φi
≤ q − 1− (q − 1− si) = si, ∀i ∈ [0, u− 1],

and therefore, we write y(m) into the cells and have con-
structed a (u, s̃)-UMC with s̃ = (s0, s1, . . . , su−1).

It is easy to show that our constructions improve on
both, [5] and [6], when used for masking memory cells with
unreachable levels.

VIII. THE CAPACITY OF THE PARTIALLY STUCK-AT
CELL CHANNEL

In this section, we study the setup of partially stuck-at cells
from the capacity point of view. For fixed integers q > 1
and 0 < s < q, we consider the storage channel in which
a cell can be partially stuck-at level s with probability p.
This channel model is an example of a discrete memoryless
memory cell which was studied in [7]. In the partially stuck-
at cell model, we assume that a cell is partially stuck-at level
s with some probability p. If a letter x ∈ X = {0, 1, . . . , q−
1} is stored in a cell, then the letter y ∈ Y = {0, 1, . . . , q−1}
is retrieved where y = max{x, s} with probability p.

If both, the encoder and decoder, know the state of the
memory, i.e. the locations and levels of the partially stuck-at
cells, then the capacity of this channel is

Cq(p, s) = 1−p+p logq(q−s) = 1−p logq

(
q

q − s

)
. (3)

To see this, notice that the lower bound on the redundancy
from Theorem 2 holds also in this case as this is the number
of all different memory states that can be programmed. The
capacity is achievable since both the encoder and decoder
know the locations of the partially stuck-at memory cells and
thus can use all programmable memory states. According
to [7], the capacity of any discrete memoryless memory
cell channel in the case where only the encoder knows the
memory state is the same as the one where both the encoder
and decoder know the memory state. Thus, (3) is the capacity
of the model studied in this work.

In the following, we want to analyze how close our
constructions are to the capacity. Let us first consider the
case s = 1. The construction based on binary codes from
Section V can mask u = pn partially stuck-at-1 memory
cells if there exists an [n, k, d]2 binary code that can mask
ũ = b2u/qc = b2pn/qc binary usual stuck-at cells (which is
the case if d ≥ ũ+1, see Theorem 1). Assume there exists a
family of capacity-achieving linear binary codes with these
properties, then we can use this family of codes in order to
construct a family of PSMCs. Asymptotically, for large n and
any q, the maximum achievable code rate of the construction
from Theorem 6 approaches the value

Rq(p, 1) =
n− r
n

= 1− 2p

q
logq

(
q

bq/2c

)
.

Similarly, for arbitrary s (for simplicity assume that Q =
s+ 1 is a power of a prime), we obtain a family of PSMCs
whose maximum achievable rate approaches the value

Rq(p, s) = 1− 2sp

q
logq

(
q

bq/(s+ 1)c

)
.

Finally, we conclude that the difference between the ca-
pacity and the redundancy of this construction is given by

Cq(p, s)−Rq(p, s)

= p ·
(

2s

q
logq

(
q

bq/(s+ 1)c

)
− logq

(
q

q − s

))
︸ ︷︷ ︸

def
= ∆(q,s)

, (4)

where we call ∆(q, s) the difference coefficient.
Figure 1 illustrates the difference coefficient for some

values of q and s. We see that the difference coefficient tends
to zero for q large enough. The “plateaus” in the plots occur
due to the floor operation in (4). A similar analysis can be
done for the (u, s)-PSMC construction from Theorem 8.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

q

∆(q, s)

s = 1

s = 2

s = 3

s = 6

s = 10

Figure 1. The difference coefficient ∆(q, s) for different values of q and
s.

We note that the trivial construction from Theorem 2, in
which only the levels s, . . . , q− 1 are used, can also be used
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to mask any number of cells which are partially stuck-at-s.
The rate of this construction is logq(q − s), and it is greater
than the value of Rq(p, s), when q is a multiple of s+ 1, if

logq(q − s) ≥ 1− 2sp

q
logq(s+ 1),

or
p ≥ q

2s
logs+1

(
q

q − s

)
.

For example, for s = 1 we get that this threshold equals
q
2 log

(
q
q−1

)
and for q large enough, this value approaches

1/(2 ln 2) ≈ 0.7213.
We conclude that the maximum achievable rates, denoted

by Rmax
q (p, s), according to the constructions from Theo-

rems 2, 6 and 8, when q is a multiple of s + 1, is given
by

Rmax
q (p, s) =

{
1− 2sp

q logq(s+ 1) if p ≤ q
2s logs+1

(
q
q−s

)
logq(q − s) else

In Fig. 2, we plot the capacity C(p, s) and the maximum
achievable rates Rmax

q (p, s) for q = 8 and s = 1, 3.
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(p
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C8(p, 1)

Rmax
8 (p, 1)

C8(p, 3)
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8 (p, 3)

SMC

Figure 2. Capacity Cq(p, s) & max. achievable rate Rmax
q (p, s) for q = 8.

Notice that asymptotically, an SMC has rate R = 1 − p
and is therefore worse than Rmax

q (p, s).

IX. CONCLUSION

In this paper, we have considered codes for masking
partially stuck-at memory cells. After defining the defect
model, we have derived lower and upper bounds on the
minimum redundancy which is required to mask partially
stuck-at cells in multilevel memories. We have presented two
constructions of partially stuck-at masking codes (PSMCs).
The first one masks any u < q partially stuck-at cells,
where q is the number of cell levels, and requires less than
one redundancy symbol. When the cells are partially stuck-
at level 1 (i.e., s = 1), this construction is asymptotically
optimal. The second construction is based on using a binary

error-correcting code and can be applied for any u and
q. The constructions were first derived for s = 1 and
then generalized to arbitrary stuck levels. We have further
shown how these PSMCs can be applied for cells with
unreachable levels (which can be seen as the dual problem to
partially stuck-at cells) and that they outperform known code
constructions for this model. Further, we have considered the
capacity of the partially stuck-at channel and have analyzed
the gap between the capacity and the achieved code rate. For
s = 1, we achieve the capacity asymptotically.
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