
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016 639

Codes for Partially Stuck-At Memory Cells
Antonia Wachter-Zeh, Member, IEEE, and Eitan Yaakobi, Member, IEEE

Abstract— In this paper, we study a new model of defect
memory cells, called partially stuck-at memory cells, which is
motivated by the behavior of multi-level cells in non-volatile
memories, such as flash memories and phase change memories.
If a cell can store the q levels 0, 1, . . . , q − 1, we say that it is
partially stuck-at level s, where 1 ≤ s ≤ q −1, if it can only store
values, which are at least s. We follow the common setup where
the encoder knows the positions and levels of the partially stuck-
at cells whereas the decoder does not. Our main contribution
in this paper is the study of codes for masking u partially
stuck-at cells. We first derive lower and upper bounds on the
redundancy of such codes. The upper bounds are based on two
trivial constructions. We then present three code constructions
over an alphabet of size q, by first considering the case where
the cells are partially stuck-at level s = 1. The first construction
works for u < q and is asymptotically optimal if u +1 divides q.
The second construction uses the reduced row echelon form of
matrices to generate codes for the case u ≥ q, and the third
construction solves the case of arbitrary u by using codes, which
mask binary stuck-at cells. We then show how to generalize all
constructions to arbitrary stuck levels. Furthermore, we study
the dual defect model, in which cells cannot reach higher levels,
and show that codes for partially stuck-at cells can be used to
mask this type of defects as well. Last, we analyze the capacity
of the partially stuck-at memory channel and study how far our
constructions are from the capacity.

Index Terms— (Partially) stuck-at cells, defect cells, flash
memories, phase change memories.

I. INTRODUCTION

NON-VOLATILE memories such as flash memories and
phase change memories (PCMs) have paved their way

to be a dominant memory solution for a wide range of
applications, from consumer electronics to solid state drives.
The rapid increase in the capacity of these memories along
with the introduction of multi-level technologies have sig-
nificantly reduced their cost. However, at the same time,
their radically degraded reliability has demanded for advanced
signal processing and coding solutions.

The cells of PCMs can take distinct physical states. In the
simplest case, a PCM cell has two possible states, an amor-
phous state and a crystalline state. Multi-level PCM cells

Manuscript received May 13, 2015; revised September 16, 2015; accepted
December 9, 2015. Date of publication December 31, 2015; date of current
version January 18, 2016. A. Wachter-Zeh was supported by the European
Union’s Horizon 2020 Research and Innovation Programme under the Marie
Sklodowska-Curie under Grant 655109. E. Yaakobi was supported by the
Israel Science Foundation under Grant 1624/14. This paper was presented at
the 2015 10th International ITG Conference on Systems, Communications
and Coding and the 53rd Annual Allerton Conference on Communication,
Control, and Computing.

The authors are with the Computer Science Department,
Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
antonia@cs.technion.ac.il; yaakobi@cs.technion.ac.il).

Communicated by M. Schwartz, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2015.2512581

can be designed by using partially crystalline states [3].
Failures of PCM cells stem from the heating and cooling
processes of the cells. These processes may prevent a PCM
cell to switch between its states and thus the cells become
stuck-at [9], [13], [20], [23]. Similarly, in the multi-level
setup, a cell can get stuck-at one of the two extreme states,
amorphous or crystalline. Or, alternatively, the cells cannot
be programmed to a certain state, but can be in all other
ones; for example, if a cell cannot be programmed to the
amorphous state it can still be at the crystalline state as well
as all intermediate ones. A similar phenomenon appears in
flash memories. Here, the information is stored by electrically
charging the cells with electrons in order to represent multiple
levels. If charge is trapped in a cell, then its level can only
be increased, or it may happen that due to defects, the cell
can only represent some lower levels. Inspired by these defect
models, the goal of this paper is the study of codes which
mask cells that are partially stuck-at.

In the classical version of stuck-at cells (see e.g. [17]), the
memory consists of n binary cells of which u are stuck-at
either in the zero or one state. A cell is said to be stuck-at level
s ∈ {0, 1} if the value of the cell cannot be changed. Therefore,
only data can be written into the memory which matches the
fixed values at the stuck-at cells. A code for stuck-at cells maps
message vectors on codewords which mask the stuck-at cells,
i.e., the values of each codeword at the stuck positions coincide
with their stuck level. The encoder knows the locations and
values of the stuck-at cells, while the decoder does not. Hence,
the task of the decoder is to reconstruct the message given
only the codeword. The challenge in this defect model is to
construct schemes where a large number of messages can be
encoded and successfully decoded. If u cells are stuck-at, then
it is not possible to encode more than n − u bits, and thus
the problem is to design codes with redundancy close to u.
The same problem is relevant for the non-binary setup of this
model, where the cells can be stuck at any level.

The study of codes for memories with stuck-at cells, also
known as memories with defects, takes a while back to the
1970s. To the best of our knowledge, the problem was first
studied in 1974 by Kuznetsov and Tsybakov [17]. Since then,
several more papers have appeared, e.g. [1], [2], [6], [11], [15],
[16], [21], [28]–[30]. The main goal in all these works was
to find constructions of codes which mask a fixed number of
stuck-at cells and correct another fixed number of additional
random errors. Recently, the connection between memories
with stuck-at cells and the failure models of PCM cells
has attracted a renewed attention to this prior work. Several
more code constructions as well as efficient encoding and
decoding algorithms for the earlier constructions were studied;
see e.g. [7], [14], [18], [19], [25].

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

640 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

This paper studies codes which mask cells that are partially
stuck-at. We assume that cells can have one of the q levels
0, 1, . . . , q − 1. Then, it is said that a cell is partially stuck-at
level s, where 1 ≤ s ≤ q−1, if it can only store values which
are greater than or equal to s. In this work, we provide upper
and lower bounds on the redundancy and give several code
constructions with small redundancy in order to mask partially
stuck-at cells. To facilitate the explanations, our constructions
are first given for the case s = 1, and later generalized to
arbitrary levels.

In the first part of the paper, we derive lower and upper
bounds on the redundancy of codes that mask partially stuck-at
memory cells. The first lower bound is based on the number
of states that each partially stuck-at cell can attain. For the
case where all cells are partially stuck-at the same level s, we
also derive an improved lower bound. Further, codes which
mask any number of partially stuck-at cells can simply be
constructed by using only the levels maxi si , . . . , q − 1 in
each cell. Alternatively, codes which mask u stuck-at cells (not
partially) can be used to mask u partially stuck-at cells. Thus,
these two schemes provide an upper bound on the minimum
redundancy of codes that is necessary to mask u partially
stuck-at cells.

In the course of this paper, we provide several code con-
structions and analyze how far they are from our lower and
upper bounds on the redundancy. In particular, for u < q , we
first show that one redundancy symbol is sufficient to mask
all partially stuck-at cells. Further, an improvement of this
construction turns out to be asymptotically optimal in terms
of the redundancy if u+1 divides q . Our second construction
uses the parity-check matrix of q-ary error-correcting codes.
The third construction uses binary codes which mask (usual)
stuck-at cells. We also show how the codes we propose in the
paper can be used for the dual defect model in which cells
cannot reach higher levels. Lastly, we analyze the capacity of
the partially stuck-at memory channel and study how far our
constructions are from the capacity.

The rest of the paper is organized as follows. In Section II,
we introduce notations and formally define the model of
partially stuck-at cells studied in this paper. Our lower and
upper bounds on the redundancy are presented in Section III.
In Section IV, we propose codes along with encoding and
decoding algorithms for the case u < q . In Section V, we
give a construction based on q-ary codes and in Section VI
we show a more general solution by using codes which mask
binary stuck-at cells. Section VII generalizes the previous
constructions to cells which are partially stuck-at arbitrary
(possibly different) levels s0, s1, . . . , su−1. The (dual) problem
of codes for unreachable levels is studied in Section VIII
and Section IX analyzes the capacity of the partially stuck-
at channel. Finally, Section X concludes this paper.

II. DEFINITIONS AND PRELIMINARIES

A. Notations

In this section, we formally define the models of (partially)
stuck-at cells studied in this paper and introduce the nota-
tions and tools we will use in the sequel. In general,

for positive integers a, b, we denote by [a] the set of integers
{0, 1, . . . , a−1} and [a, b−1] = {a, a+1, . . . , b−1}. Vectors
and matrices are denoted by lowercase and uppercase boldface
letters, e.g. a and A, and are indexed starting from 0. The all-
zero and all-one vectors of length n are denoted by 0n and 1n .
Further, for a prime power q , Fq denotes the finite field of
order q .

We consider n memory cells with q levels, i.e., they are
assumed to represent q-ary symbols having values belonging
to the set [q]. We can therefore represent the memory cells as
a vector in [q]n.

In the classical model of stuck-at cells, a cell is said to be
stuck-at level s ∈ [q] if it can store only the value s. In our
new model of partially stuck-at cells, a cell is partially stuck-at
level s ∈ [q] if it can store only values which are at least s.
In the first part of this work, when studying partially stuck-at
cells, we only consider s = 1 and we call such cells partially
stuck-at-1. Throughout this paper, we also use the notation
partially stuck-at-s, when one or several cells are partially
stuck-at level s, Lastly, in the most general case, u cells are
partially stuck-at-s, where s = (s0, s1, . . . , su−1) is a vector
and contains the different stuck levels s0, s1, . . . , su−1 of the u
defect cells.

B. Definitions for (Partially) Stuck-At Cells

We use the notation (n, M)q to indicate a coding scheme
to encode M messages into vectors of length n over the
alphabet [q]. Its redundancy is denoted by r = n − logq M .
A linear code over [q] (in which case q is a power of a
prime and [q] corresponds to the finite field Fq of order q),
will be denoted by [n, k]q , where k is its dimension and
its redundancy is r = n − k. Whenever we speak about a
linear [n, k, d]q code, then d refers to the minimum Hamming
distance of an [n, k]q code. We also denote by ρq (n, d) the
smallest (known) redundancy of any linear code of length n
and minimum Hamming distance d over Fq . For the purpose
of the analysis and the simplicity of notations in the paper, we
let ρq (n, d) = ∞ in case q is not a power of a prime.

Codes for (partially) stuck-at cells are defined as
follows.

Definition 1 (Codes for (Partially) Stuck-At Cells): We
define the following code properties:

1) An (n, M)q u-stuck-at-masking code (u-SMC) C is
a coding scheme with encoder E and decoder D.
The input to the encoder E is the set of loca-
tions {φ0, φ1, . . . , φu−1} ⊆ [n], the stuck levels
s0, s1, . . . , su−1 ∈ [q] of some u ≤ n stuck-at cells and
a message m ∈ [M]. Its output is a vector y(m) ∈ [q]n
which matches the values of the u stuck-at cells, i.e.,

y(m)
φi
= si , ∀i ∈ [0, u − 1],

and its decoded value is m, that is D(y(m)) = m.
2) An (n, M)q (u, s)-partially-stuck-at-masking code

((u, s)-PSMC) C is a coding scheme with encoder E
and decoder D. The input to the encoder E is the set
of locations {φ0, φ1, . . . , φu−1} ⊆ [n], the partially stuck
levels s = (s0, s1, . . . , su−1) ∈ [1, q−1]u of some u ≤ n

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 641

partially stuck-at cells and a message m ∈ [M]. Its
output is a vector y(m) ∈ [q]n which masks the values
of the u partially stuck-at cells, i.e.,

y(m)
φi
≥ si , ∀i ∈ [0, u − 1],

and its decoded value is m, that is D(y(m)) = m.
The term masking refers to the process of finding a code-

word that matches the levels of the (partially) stuck cells and
can therefore be written correctly to the memory.

Notice that in contrast to classical error-correcting codes,
(P)SMCs are not just a set of codewords, but also an explicit
coding scheme with encoder and decoder. Furthermore, in the
design of codes which mask stuck-at cells, the encoder and
decoder need to know in advance only the number of stuck-
at cells u. However, for codes that mask partially stuck-at
cells, the encoder and decoder need to know both the number
of partially stuck-at cells u as well as their partially stuck-at
levels, which are specified by the vector stored in s. Hence,
Construction 1 of an SMC (presented later) does not depend
on the explicit stuck levels (only on the number of stuck cells),
whereas our constructions and their redundancies depend on
the explicit partially stuck-at levels (stored in the vector s).

Clearly, a (u, s)-PSMC is also a (u′, s′)-PSMC, where
u′ ≤ u and s′ is a subvector of s of length u′. Whenever we
speak about (u, s)-PSMCs (i.e., s is a scalar), we refer to a
code that masks at most u partially-stuck-at-s cells and when
simply we speak about a u-PSMC, we mean a code which
masks at most u partially-stuck-at-1 cells.

In the design of (P)SMCs, the goal is therefore to minimize
the redundancy n − logq M for fixed values u and s,
while providing efficient encoding and decoding algorithms.
For positive integers n, q, u, where u ≤ n, and a vector
s ∈ [1, q − 1]u , we denote by rq (n, u, s) the minimum
redundancy of a (u, s)-PSMC over [q]. Note that throughout
this paper we only consider the problem of masking partially
stuck-at cells, without correcting additional (random) errors as
e.g. in [11] for stuck-at cells.

C. Codes for Stuck-At Cells

Codes for masking stuck-at cells were studied before and
one such construction and its encoding and decoding algo-
rithms are shown in the following; see e.g. [11]. We show the
proof of the properties of the construction for the completeness
of results in this paper and since our encoding and decoding
algorithms use similar ideas.

Construction 1 (Masking Stuck-At Cells, [11]): Let H be a
systematic (n − k)× n parity-check matrix of a code C which
is known to both, encoder and decoder. We define a u-SMC
by Algorithms 1 and 2.

Theorem 1: Let C be an [n, k, d]q code with minimum
distance d ≥ u + 1, where q is a prime power. Then,
Construction 1 is a u-SMC with redundancy r = n − k.

Proof: We assume that H is a systematic (n − k) × n
parity-check matrix of the code C which is known to both,
encoder and decoder.

Algorithm 1 describes the encoding process. We have to
prove that in Step 2, a vector z always exists such that the

Algorithm 1 ENCODING-1
(
m;φ0, φ1, . . . , φu−1; s0, s1,

. . . , su−1
)

Input: • message: m = (m0, m1, . . . , mk−1) ∈ [q]k
• positions of stuck-at cells:
{φ0, φ1, . . . , φu−1} ⊆ [n]
• levels of stuck-at cells: s0, s1, . . . , su−1 ∈ [q]

1 w = (w0, w1, . . . , wn−1)← (0n−k, m0, m1, . . . mk−1)

2 Find z ∈ [q]n−k such that y← w + z ·H masks the
stuck-at cells1

Output: vector y with yφi = si , ∀i ∈ [u]

Algorithm 2 DECODING-1
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn−1) ∈ [q]n

1 ẑ← (y0, y1, . . . , yn−k−1)
2 ŵ = (ŵ0, ŵ1, . . . , ŵn−1)← y− ẑ ·H
3 m̂← (ŵn−k, ŵn−k+1, . . . , ŵn−1)

Output: message vector m̂ ∈ [q]k

encoded vector y masks the u stuck-at cells. Define x =
(x0, x1, . . . , xn−1) = z · H. We have to fulfill the following
u equations:

wφi + xφi = si , ∀i ∈ [u].
Denote by Hu the u columns of H indexed by φ0, . . . , φu−1.
Then, we have to find z such that

z ·Hu = (s0 −wφ0 , s1 −wφ1 , . . . , su−1 −wφu−1).

This is a heterogeneous linear system of equations with at
most u ≤ d − 1 ≤ n − k linearly independent equations and
n−k unknowns (the elements of z). Therefore, there is at least
one solution for the vector z such that y masks the stuck-at
cells.

Algorithm 2 describes the decoding process. We have to
prove that m̂ = m. Note that H is a systematic parity-check
matrix and therefore, the first n − k positions of the output
vector y of Algorithm 1 (which is at the same time the input
of Algorithm 2) equal z. Therefore, in Step 1 in Algorithm 2,
we obtain ẑ = z and thus, in Step 2, ŵ = y − z ·H = w and
in Step 3, m̂ = m.

It is not completely known whether Construction 1 is
optimal with respect to its achieved redundancy. However, the
redundancy of such a code has to be at least u since there
are u stuck-at cells that cannot store information.

Let us illustrate Construction 1 with an example.
Example 1: Let u = 2, q = 3 and n = 5. Therefore, we

need a ternary code of minimum distance at least u + 1 = 3.
The largest such code is a [5, 2, 3]3 code (see [10]) with a

1We assume here and in the rest of the paper that there is a one-to-one
mapping F : [q] → Fq so arithmetic operations like multiplication and
addition in w+ z ·H are defined as F(w)+ F(z) ·H.

642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

systematic parity-check matrix

H =
⎛

⎝
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎞

⎠.

We will show how to construct a (5, 32 = 9)3 2-SMC which
masks any u′ ≤ u = 2 stuck-at cells.

For the encoding, we proceed as in Algorithm 1.
Let m = (m0, m1) = (2, 1) be the information we want
to store and assume that the cells at positions φ0 = 0
and φ1 = 4 are stuck-at s0 = 1 and s1 = 2. Further,
let w = (0, 0, 0, m0, m1) = (0, 0, 0, 2, 1). Given w, φ0, φ1
and s0, s1, our goal is to find a vector x ∈ [3]5 such that
y ≡ (w + x) mod 3 matches the partially stuck-at cells and
yet the information stored in m can be reconstructed from y.

We use z = (1, 0, 1). Then, x = z · H = (1, 0, 1, 1, 1) and
y = w + x = (1, 0, 1, 0, 2) which masks the stuck-at cells.

To reconstruct w, given y, we notice that (y0, y1, y2) = z =
(1, 0, 1) and we can simply calculate y − (y0, y1, y2) · H to
obtain w and therefore m.

Thus, the required redundancy for masking u = 2 stuck-at
cells with Theorem 1 is r = 3 (the first three symbols).

III. BOUNDS ON THE REDUNDANCY

For deriving upper and lower bounds on the minimum
redundancy of PSMCs, we assume the most general case of
(u, s)-PSMCs, where s = (s0, s1, . . . , su−1) ∈ [1, q − 1]u .
Hence, when a cell at position φi is partially stuck-at level si ,
it can only store the values {si , si + 1, . . . , q − 1}.

Theorem 2 (Bounds on the Redundancy): For any number
of u ≤ n partially stuck-at cells and any levels s =
(s0, s1, . . . , su−1) ∈ [1, q − 1]u, the value of the minimum
redundancy rq (n, u, s) to mask these cells satisfies

u − logq

(
u−1∏

i=0

(q − si)

)

≤ rq (n, u, s)

≤ min

{
n · (1− logq

(
q −max

i
{si }

))
, ρq (n, u + 1)

}
.

Proof: Let us start with the lower bound. The n−u cells,
which are not partially stuck-at, can each carry
a q-ary information symbol and the u partially stuck-at cells
can still represent q − si possible values (all values except
for [si]). Hence, we can store at most M ≤ qn−u ∏u−1

i=0 (q−si)
q-ary vectors and the code redundancy satisfies

r ≥ n − logq

(

qn−u
u−1∏

i=0

(q − si)

)

= u − logq

(
u−1∏

i=0

(q − si)

)

.

Second, we prove the upper bound. A trivial construction to
mask any u ≤ n partially stuck-at cells is to use only the values
maxi {si }, . . . , q − 1 as possible symbols in any cell. Any cell
therefore stores logq(q−maxi {si }) q-ary information symbols.
The achieved redundancy is

n − logq

(
(q −max

i
{si })n) = n

(
1− logq(q −max

i
{si })

)
,

and therefore rq (n, u, s) ≤ n
(
1− logq(q −maxi {si })

)
.

Furthermore, every u-SMC can also be used as (u, s)-PSMC
since the SMC restricts the values of the stuck-at cells more
than the PSMC. With Theorem 1, the redundancy of an SMC
is ρq (n, u + 1), which provides another upper bound on the
value of rq (n, u, s).
Note that ρq (n, u + 1) ≥ u (by the Singleton bound).

The bounds from Theorem 2 will serve as a reference for
our constructions, as we should ensure to construct codes with
smaller redundancy than the upper bound and study how far
their redundancy is from the lower bound.

For the special case of partially stuck-at-1 cells, we
obtain the following bounds on the redundancy rq (n, u, 1) of
a u-PSMC for all positive integers n, q, u where u ≤ n:

u
(
1− logq (q − 1)

)

≤ rq (n, u, 1)

≤ min
{
n
(
1− logq(q − 1)

)
, ρq (n, u + 1)

}
. (1)

For partially stuck-at-s cells, we further improve the lower
bound on the redundancy in the next theorem.

Theorem 3 (Improved Lower Bound): For any (n, M)q

(u, s)-PSMC, we have M ≤ ⌊ qn+u(q−s)n

u+1

⌋
, and therefore

rq (n, u, s) ≥ logq(u + 1)− logq

(
1+ u(1− s/q)n).

Proof: Assume that there exists an (n, M)q (u, s)-PSMC,
and let E , D be its encoder, decoder, respectively. In this case
we assume that the encoder’s input is a message m ∈ [M]
and a set of indices U ⊆ [n], |U | ≤ u, of the locations of the
cells which are partially stuck-at level s. We will show that
M ≤ ⌊ qn+(q−s)n

u+1

⌋
. For every m ∈ [M], let

D−1(m) = {y ∈ [q]n | D(y) = m}.
For every m ∈ [M] such that D−1(m) ∩ ([q] \ [s])n = ∅,
we have that |D−1(m)| ≥ u + 1. To see that, assume on
the contrary that |D−1(m)| = u (the same proof holds
if |D−1(m)| < u), so we can write D−1(m) =
{y0, y1, . . . , yu−1}, while y j /∈ ([q] \ [s])n for j ∈ [u].
For j ∈ [u], let i j ∈ [n] be such that y j,i j < s, and
U = {i0, i1, . . . , iu−1}. Then, E(m, U) �= y j for all j ∈ [u]
(where the message m and the positions set U are the input to
the encoder E) and thus |D−1(m)| ≥ u + 1, in contradiction.

Since there are (q − s)n vectors all with values at least s,
there are M − (q − s)n vectors of the described type above
where for each such vector there exists a message m where
|D−1(m)| ≥ u + 1. Therefore, we get that (q − s)n + (u + 1)
(M − (q − s)n) ≤ qn, or

M ≤
⌊

qn + u(q − s)n

u + 1

⌋
.

We also conclude that

rq (n, u, s) ≥ n − logq

(
qn + u(q − s)n

u + 1

)

= logq(u + 1)− logq

(
1+ u(1− s/q)n).

For u = 1, we obtain from Theorem 3:

rq (n, 1, s) ≥ logq 2 − logq

(
1+ (1− s/q)n).

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 643

For s = (s0, s1, . . . , su−1) and smax = maxi∈[u]{si } and smin =
mini∈[u]{si }, we have

rq (n, u, smax) ≥ rq (n, u, s) ≥ rq (n, u, smin), (2)

so we can always use rq (n, u, 1) as a lower bound for partially
stuck-at-s0, s1, . . . , su−1 cells.

Examples 2 and 3 show cases where the lower bound from
Theorem 3 is better than the lower bound from (1).

IV. A CONSTRUCTION FOR PARTIALLY STUCK-AT

LEVEL s = 1 CELLS FOR u < q

A. Code Construction

In this section, we show a simple construction of u-PSMCs
for masking any u < q partially stuck-at-1 cells, which works
for any q (not necessarily a prime power). Let us illustrate the
idea of this construction with an example.

Example 2: Let u = 2, q = 3 and n = 5. We will show
how to construct a (5, 34 = 81)3 u-PSMC.

Let m = (m0, m1, m2, m3) = (2, 0, 1, 0) be the information
we want to store and assume that the two cells at positions
φ0 = 1 and φ1 = 2 are partially stuck-at-1. We set
w = (0, m0, m1, m2, m3) = (0, 2, 0, 1, 0). Given w,
φ0 and φ1, our goal is to find a vector x such that
y ≡ (w + x) mod 3 masks the partially stuck-at-1 cells and
yet the information stored in m can be reconstructed from y.

We use x = z · 15, for some z ∈ [3]. Since w1 = 2, we can
choose any value from [3] for z except for 1, and since w2 = 0,
we can choose any value but 0. Thus, we choose z = 2 and
encode the vector y to be y = w + 2 · 15 = (2, 1, 2, 0, 2),
which masks the two partially stuck-at-1 cells.

To reconstruct w, given y, notice that y0 = z = 2 and we
can simply calculate y− y0 · 15 to obtain w and therefore m.

Thus, the required redundancy for masking u = 2 partially
stuck-at-1 cells is r = 1 (the first symbol). The lower
bound from (1) is 2 · (1 − log3 2) = 0.738, the lower
bound from Theorem 3 gives 0.787 (and therefore improves
upon the bound from Theorem 2) and the upper bound
is min{5 · (1 − log3 2), ρ3 (5, 3) = 3} = 1.845, where the
second part was shown in Example 1.

Construction 2: Let u < q and u ≤ n. We define a u-PSMC
over [q] by Algorithms 3 and 4.

The following theorem shows that this construction yields
u-PSMCs with small redundancy for any u < q .

Theorem 4: If u < q and u ≤ n, then for all n, Construc-
tion 2 provides an (n, M = qn−1)q u-PSMC with redundancy
of one symbol.

Proof: The encoding is shown in Algorithm 3. Let
φ0, φ1, . . . , φu−1 be the positions of some u partially stuck-
at-1 cells and let m = (m0, m1, . . . , mn−2) ∈ [q]n−1 be
the message to be written to the memory w. We first set
w = (0, m0, m1, . . . , mn−2). Since u < q , there exists at
least one value v ∈ [q] such that wφ0 , wφ1 , . . . , wφu−1 �= v.
Choose z = q − v ≡ −v mod q and therefore, wφi + z ≡
(wφi − v) mod q �= 0. Thus, the output vector y masks all u
partially stuck-at-1 cells.

The decoding algorithm is shown in Algorithm 4 and it
simply uses the fact that y0 is used to store the value of z.
Thus, m̂ = m.

Algorithm 3 ENCODING-2
(
m;φ0, φ1, . . . , φu−1

)

Input: • message: m = (m0, m1, . . . , mn−2) ∈ [q]n−1

• positions of partially stuck-at-1 cells:
{φ0, φ1, . . . , φu−1} ⊆ [n]

1 w = (w0, w1, . . . , wn−1)← (0, m0, m1, . . . mn−2)
2 Set v ∈ [q] such that v /∈ {wφ0 , wφ1 , . . . , wφu−1}
3 z ← q − v
4 y← (w + z · 1n) mod q

Output: vector y with yφi ≥ 1, ∀i ∈ [u]

Algorithm 4 DECODING-2
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn−1) ∈ [q]n

1 ẑ ← y0
2 m̂← ((y1, y2, . . . , yn−1)− ẑ · 1n) mod q

Output: message vector m̂ ∈ [q]n−1

Lastly, since we need only one symbol to store the value of
z = q − v in the first cell, the redundancy is one.

This principle works for any n since 1n always exists.
Further, q does not have to be a prime power and we can
use this strategy even if [q] does not constitute a finite field.

Construction 2 provides a significant improvement com-
pared to codes for the (stronger) model of usual stuck-at cells,
where the required redundancy is ρq (n, u + 1) ≥ u (compare
Construction 1). In order to compare our result to the first
term in the upper bound from (1), we use the approximation
ln(q)− ln(q − 1) ≈ 1/q for q large enough and thus,

1− logq(q − 1) ≈ 1

q ln q
.

Hence, for n ≥ q ln q , Construction 2 achieves smaller
redundancy than the upper bound from (1). However, for
u < q and n large enough the lower bound on the redundancy
from Theorem 3 is logq(u + 1) < 1. This suggests that codes
with better redundancy might exist, as we shall see in the next
subsection.

B. Improvement of Construction 2
In this subsection, we show how to improve Construction 2

and therefore, how to reduce the required redundancy. Let us
first show an example of this modification.

Example 3: Let u = 2 and q = 6. Then, with the same
principle as in Algorithm 1 and z ∈ [3], we can mask any two
partially stuck-at-1 cells with one redundancy symbol. The
important observation here is that z can always be chosen
from a small subset of [q]. Assume that the first cell stores
the redundancy, namely y0 = z, and takes therefore only three
out of six possible values. We can store additional information
in this cell e.g. as follows: 0 is represented by 0 or 3; 1 is
represented by 1 or 4; and 2 is represented by 2 or 5.
By choosing e.g. between storing 1 or 4, we store additional
information in the redundancy cell. Thus, the information

644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Algorithm 5 ENCODING-3
(
m;m′;φ0, φ1, . . . , φu−1

)

Input: • message: m = (m0, m1, . . . , mn−2) ∈ [q]n−1

• additional message: m′ ∈
[⌊ q

u+1

⌋]

• positions of stuck-at-1 cells:
{φ0, φ1, . . . , φu−1} ⊆ [n]

1 w = (w0, w1, . . . , wn−1)← (0, m0, m1, . . . , mn−2)
2 Set v ∈ [u + 1] such that

v /∈ {
wφ0 mod (u + 1), . . . , wφu−1 mod (u + 1)

}

3 z ← q − v − m′(u + 1)

4 y← (w + z · 1n) mod q
Output: vector y with yφi ≥ 1, ∀i ∈ [u]

stored (in terms of q-ary symbols) increases by log6(6/3)
and the required redundancy reduces from one symbol to
1− log6(2) ≈ 0.613 symbols while the lower bound from (1)
gives ≈ 0.204. The lower bound from Theorem 3 gives 0.284
for n = 5, and 0.457 for n = 10. For n → ∞, the lower
bound from Theorem 3 reaches 0.613 which is exactly the
redundancy achieved by our construction.

In general, assume that u < q , then there is some v ∈
[u + 1] such that wφ0 , wφ1, . . . , wφu−1 �= v. Hence, if u is
significantly smaller than q , then there is more than one value
to choose the value of v from and the redundancy decreases
by logq(�q/(u + 1)�) symbols.

With these considerations, we obtain the following result.
Construction 3: Let u < q and u ≤ n. We define a u-PSMC

over [q] by Algorithms 5 and 6.
Theorem 5: If u < q and u ≤ n, then for all n,

Construction 3 provides a u-PSMC over [q] of length n and
redundancy

r = 1− logq

⌊
q

u + 1

⌋
.

Proof: In order to prove the statement, we modify
Algorithm 3 to obtain the encoding procedure for
Construction 3.

The encoding algorithm is a generalization of
Algorithm 3. We will prove that the output vector y
masks the partially stuck-at-1 cells. In Step 2, we can
always find a value v ∈ [u + 1] as required since the set{
wφ0 mod (u + 1), . . . , wφu−1 mod (u + 1)

}
has cardinality u

and there are u + 1 possible values to choose from. Note that
in Step 3, z ∈ [q] since v ∈ [u + 1] and m′(u + 1) ∈ [q − u].
In Step 4, we obtain:

yφi = (wφi − v − m′(u + 1)) mod q.

Since v �= wφi mod (u + 1) from Step 2, we conclude that
yφi �= 0, for all i ∈ [u], and the partially stuck-at-1 positions
are masked.

The decoding algorithm has to guarantee that we can recover
m and m′ and is shown in Algorithm 6. Here, we notice
that y0 = z = q − v − m′(u + 1) from the encoding step
and therefore, in Step 1, ẑ = z and in Step 2, v̂ = v.

Algorithm 6 DECODING-3
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn−1) ∈ [q]n

1 ẑ ← y0
2 v̂ ← (q − ẑ) mod (u + 1)

3 m̂′ ← q − ẑ − v̂

u + 1
4 m̂← ((y1, y2, . . . , yn−1)− ẑ · 1n−1) mod q

Output: message vector m̂ ∈ [q]n−1

additional message m̂′

Solving y0 = q−v−m′(u+1) for m′ shows that in Step 3, the
result of the fraction is always an integer and that m̂′ = m′.
Since ẑ = z, it follows that m̂ = m in Step 4.

Clearly, for u < q , the redundancy is r ≤ 1. The following
lemma shows that this construction is asymptotically optimal.

Theorem 6 (Optimality of Construction 3): If (u + 1)
divides q, the u-PSMC from Construction 3 is asymptotically
optimal in terms of the redundancy.

Proof: If (u+1)|q , then the redundancy from Theorem 5
is r = logq(u + 1). The lower bound on the minimum
redundancy from Theorem 3 is rq (n, u, 1) = logq(u+1)−logq(
1+ u(1− 1/q)n

)
. The difference between both is

�q(n, u) = r − rq (n, u, 1) = logq

(
1+ u(1− 1/q)n).

For n→∞ and since (1− 1/q) < 1, this value approaches

logq

(
1+ u(1− 1/q)n)→ logq

(
1+ 0

) = 0.

Thus, the construction is asymptotically optimal.

V. CONSTRUCTIONS USING q -ARY CODES FOR

PARTIALLY STUCK-AT LEVEL s = 1 CELLS

For u ≥ q , it is not always possible to construct
u-PSMCs with Construction 3. Therefore, this section provides
a construction which works well for u ≥ q and can be seen as a
generalization of Construction 2 (instead of the all-one vector,
we use a parity-check matrix). Let us start with a general
statement for any u and any prime power q .

Theorem 7: Let q be a prime power and let a κ×n matrix
H = (

Hi, j
)i∈[κ]

j∈[n] over Fq be given. If the reduced row Echelon

(RRE) form of any κ × u submatrix (denoted by H(u)) has the
following form (up to column permutations)2:

RRE(H(u))

=

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 • . . . •︸ ︷︷ ︸
≤q−1

◦ ◦ . . . ◦ ◦
1 • . . . •︸ ︷︷ ︸
≤q−1

◦ ◦ . . . ◦ ◦
1 • . . . •︸ ︷︷ ︸
≤q−1

◦ ◦
. . .

...

0 1 • . . . •︸ ︷︷ ︸
≤q−1

⎞

⎟
⎟
⎟⎟
⎟
⎠

,

(3)

where • has to be a non-zero element from Fq and ◦ is any
element from Fq , then, there exists a u-PSMC over Fq of
length n and redundancy r = κ .

2Notice that RRE(H(u)) can have less than κ rows.

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 645

Proof: Assume w.l.o.g. that the partially stuck-at-1
positions are [u]. As before, if q is a prime power, we fix
a mapping from the elements of the extension field Fq to
the set of integers [q]. The encoding and decoding follow
similar steps as Algorithm 1. From a given message vector
m ∈ [q]n−κ , we first define a vector w = (0κ , m). Then, we
search a vector z such that y = w+z ·H masks all the partially
stuck-at-1 cells.

First, assume that RRE(H) can mask any u partially stuck-
at-1 cells and let us show that then also H can mask any
u partially stuck-at-1 cells. By assumption, there is a vector
z = (z0, z1, . . . , zκ−1) such that y = w + z · RRE(H) masks
all the partially stuck-at-1 cells. Since H = T · RRE(H),
for some κ × κ full-rank matrix T, the vector z̃ = z · T−1

masks the same stuck-at cells when multiplied by H since
z̃ ·H = z · T−1H = z · RRE(H).

Second, we prove that RRE(H) can mask any u partially
stuck-at-1 cells. To simplify notations, assume w.l.o.g. that
each “block” of RRE(H(u)) has length exactly q − 1, if is
shorter it is clear that the principle also works. Similar to the
proof of Theorem 4, there is (at least) one value z0 ∈ Fq such
that

z0 · H0,i �= −wi , ∀i ∈ [q − 1], (4)

since (4) consists of (at most) q−1 constraints and there are q
possible values for z0. Hence, (z0, z1, . . . , zκ−1) · RRE(H(u))
will mask the first q − 1 partially stuck-at-1 cells for any
z1, . . . , zκ−1 since wi + z0 ·H0,i �= 0, for all i = 0, . . . , q−2.

Similarly, there is (at least) one value z1 ∈ Fq such that

z1 · H1,i �= −(wi + z0 · H0,i), ∀i ∈ [q − 1, 2q − 3],
and (z0, z1, . . . , zκ−1) ·RRE(H(u)) will mask the second q−1
partially stuck-at-1 cells for any z2, . . . , zκ−1. This principle
can be continued for each block of q − 1 cells and clearly,
column permutations of RRE(H(u)) pose no problem on this
strategy.

Even though Theorem 7 provides a general scheme to con-
struct u-PSMCs, it is not necessarily clear how to choose the
matrix H in a way that it satisfies both the properties specified
in the theorem and provides codes with good redundancy.
We will next show an example of a simple application of this
theorem and then provide a construction of u-PSMCs with low
redundancy. Note also that in contrast to Theorem 4, it is not
clear if a similar statement as Theorem 7 also holds if q is
not a prime power.

Example 4: Based on Theorem 7, the following κ × n
matrix, where κ = � n

q−1�, can clearly mask up to u = n

partially stuck-at-1 cells over Fq:
⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

1 1 . . . 1︸ ︷︷ ︸
q−1 1 1 . . . 1︸ ︷︷ ︸

q−1

0
1 1 . . . 1︸ ︷︷ ︸

q−1 . . .

0 1 1 . . . 1︸ ︷︷ ︸
≤q−1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

.

The redundancy of this code for masking any u ≤ n stuck-
at-one cells is r = κ = � n

q−1�. Thus, for q ≥ n + 1, this

Algorithm 7 ENCODING-4
(
m;φ0, φ1, . . . , φu−1

)

Input: • message: m = (m0, m1, . . . , mk−1) ∈ [q]k
• positions of partially stuck-at-1 cells:
{φ0, φ1, . . . , φu−1} ⊆ [n]

1 w = (w0, w1, . . . , wn−1)← (0n−k, m0, m1, . . . mk−1)
2 Find z = (z0, z1, . . . , zn−k−1) as explained in the proof

of Theorem 7
3 y← w + z ·H

Output: vector y with yφi ≥ 1, ∀i ∈ [u]

Algorithm 8 DECODING-4
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn−1) ∈ [q]n

1 ẑ← (y0, y1, . . . , yn−k−1)
2 ŵ = (ŵ0, ŵ1, . . . , ŵn−1)← y − ẑ ·H
3 m̂← (ŵn−k, ŵn−k+1, . . . , ŵn−1)

Output: message vector m̂ ∈ [q]k

provides codes for masking up to u = n partially stuck-at-1
cells with redundancy r = 1. However, for u = n partially
stuck-at-1 cells, we can always use the trivial construction
from Section II, which outperforms the previous matrix for
all q > 2.

We are now ready to show a construction of u-PSMCs
based upon the parity-check matrix of linear codes. The
proof of its properties will be based on the result from
Theorem 7.

Construction 4: Let u ≤ q + d − 3, u ≤ n, k < n, and
let H be a systematic (n − k) × n parity-check matrix of an
[n, k, d]q code. We define a u-PSMC by Algorithms 7 and 8.

The correctness and the parameters of the code from
Construction 4 are proved in the next theorem.

Theorem 8: Let u ≤ q + d− 3, u ≤ n, k < n, and let H be
a systematic (n − k)× n parity-check matrix of an [n, k, d]q
code. Then, Construction 4 provides a u-PSMC over Fq of
length n and redundancy r = n − k.

Proof: Since H is the parity-check matrix of an
[n, k, d]q code, for � ≥ d − 1, any (n − k) × � submatrix
of H has rank at least d − 1 and contains no all-zero
column.

Let us consider the reduced row echelon (RRE) of any u
columns of H. If u < d − 1, it is a square u × u matrix of
rank u and a special case of (3) with exactly one element in
each “block”. Else, it has at least d − 1 rows and u columns
of the following form:

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 ◦ ◦ ◦ . . . ◦
1 ◦ ◦ ◦ . . . ◦

1 ◦ . . . ◦ ◦ . . . ◦
. . .

. . . ◦ ◦ . . . ◦
0 1 ◦ ◦ . . . ◦︸ ︷︷ ︸

≤u−d+1

⎞

⎟
⎟
⎟⎟
⎟
⎠

, (5)

646 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

where ◦ is some element from Fq . The matrix H contains
no all-zero columns, and thus its RRE contains no all-zero
columns. This holds since RRE(H) = T ·H for some full-rank
matrix T and therefore, for some column vector bT (which
denotes an arbitrary column of H), the column vector
aT = T·bT (the corresponding column of RRE(H)) is all-zero
if and only if b = 0.

Hence, each of the (at most) u − d + 1 rightmost columns
in (5) has at least one non-zero element. For any of these
u−d+1 columns, its lowermost non-zero symbol determines
to which of the first d−1 columns it will be associated. Hence,
in the worst case, there is one such set of columns of size
u − d + 2 (the rightmost u − d + 1 columns and one of the
leftmost d − 1 columns). Thus, for u− d + 2 ≤ q− 1, (5) is a
special case of (3). According to Theorem 7, we can therefore
mask any u partially stuck-at-1 cells with this matrix and the
redundancy is r = n − k.

Algorithm 7 shows the encoding procedure for this
u-PSMC. For simplicity, a systematic (n− k)×n parity-check
matrix H of the [n, k, d]q code is used.

The decoding is shown in Algorithm 8. Both algorithms
work similarly as Algorithms 1 and 2, but the restric-
tion on the error-correcting code [n, k, d]q is weaker and
therefore our u-PSMC has a smaller redundancy than
the u-SMC.

Notice that for q = 2, a PSMC is just an SMC
and the construction from Theorem 8 is equivalent to the
one from Theorem 1. Theorem 8 leads to the following
corollaries.

Corollary 1: If q ≥ 2 is a prime power, then for
all u ≤ n, there exists a u-PSMC with redundancy
r = max{1, ρq (n, u − q + 3)} and therefore rq (n, u, 1) ≤
max{1, ρq (n, u − q + 3)}.

Corollary 2 (Construction 4 for u = q): If q ≥ 2 is a
prime power, then for all u = q ≤ n, there exists a q-PSMC
with redundancy r = ρq (n, 3) and therefore rq (n, q, 1) ≤
ρq (n, 3).

Theorem 8 shows that in many cases, we can decrease
the redundancy by several q-ary symbols compared to SMCs.
More specifically, according to Theorem 1, in order to con-
struct codes which correct u = q stuck-at cells, one needs
to use a linear code with minimum distance u + 1, while
according to Theorem 8, for u = q partially stuck-at-1 cells,
it is enough to use a linear code with minimum distance 3.
The next example demonstrates that in many cases, this
improvement is quite large.

Example 5: Let u = q = 5 and n = 30. To mask u
partially stuck-at-1 cells, we use the parity-check matrix of
a [30, 27, 3]5 code, which is the code of largest cardinality
over F5 for n = 30 and d = 3 and thus its redundancy is
r = 3 (see [10]).

To compare with SMCs, we need a code with minimum
distance d = 6 (compare Theorem 1). The best known one
according to [10] has parameters [30, 22, 6]5 so its redun-
dancy is r = 8. The trivial construction from the upper bound
requires redundancy 4.16. Therefore, we improve upon both
constructions.

However, note that it is still far from the lower bounds
from (2) (which is 0.69) and from Theorem 3 (which is 1.11).

Another application of Construction 4 uses the parity-check
matrix of the ternary Hamming code with parameters
[n = 3r−1

2 , n − r, 3]3 to obtain a 3-PSMC. The redundancy
of this construction is r = log3(2n + 1).

The following example shows how to use the same
Hamming code, but double the code length and thus reduce
the redundancy.

Example 6: Let u = q = 3, and n = 8. We will show how
to encode 6 ternary symbols using the matrix

H =
(

1 1 0 0 1 1 1 1
0 0 1 1 1 1 2 2

)
.

Any two columns of
(

1 0 1 1
0 1 1 2

)
are linearly independent (it is

the parity-check matrix of the [4, 2, 3]3 Hamming code), and
therefore, any submatrix of H, which consists of three columns,
has rank two and its RRE is of the form stated in (3).

Let m = (m0, m1, m2, m3, m4, m5) = (1, 0, 2, 0, 1, 2) be
the message and assume that the cells at positions 0, 2, 4
are partially stuck-at-1. We first set the memory state to be
w = (0, 0, m0, m1, m2, m3, m4, m5) = (0, 0, 1, 0, 2, 0, 1, 2).
Similar to Construction 2, we seek to find a length-2 ternary
vector z = (z0, z1) such that the vector y = w + z ·H masks
the three partially stuck-at-1 cells. Hence, we can choose
z = (1, 1) and thus, y = (1, 1, 2, 1, 1, 2, 1, 2) masks the
three partially stuck-at-1 cells. It is possible to show that this
property holds for any three partially stuck-at-1 cells and any
message vector of length 6.

This provides a code of length n = 8 and redundancy r = 2
for masking any u = 3 partially stuck-at-1 cells. The first part
of the upper bound from (1) uses the trivial construction and
gives 2.95. The second part of the upper bound is ρ4 (8, 4) = 4
(compare [10]) and thus, our construction requires less redun-
dancy. The lower bound on the redundancy from (1) is 1.107,
and the one from Theorem 3 is 1.161.

Example 6 is not a special case of Construction 4. The
principle from Example 6 works for u = 3 and arbitrary q
with the corresponding q-ary Hamming code. Unfortunately, it
is not clear how to generalize it to arbitrary values of u or how
to find other non-trivial matrices which fulfill the requirements
of Theorem 7.

VI. CONSTRUCTION USING BINARY CODES FOR

PARTIALLY STUCK-AT LEVEL s = 1 CELLS

In this section, we describe a construction of u-PSMCs
for masking u partially stuck-at-1 cells by means of binary
SMCs. This construction works for any u; however, for u < q ,
the constructions from the previous sections achieve smaller
redundancy, therefore and unless stated otherwise, we assume
in this section that n ≥ u ≥ q .

For a vector w ∈ [q]n+1 and a set U ⊆ [n], the notation wU

denotes the subvector of w of length |U | which consists of the
positions in U . Let U contain the locations of the u partially
stuck-at-1 cells, and let a vector w ∈ [q]n+1 be given, then
our construction of PSMCs has two main parts:

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 647

Algorithm 9 ENCODING-5
(
m;m′;U)

Input: • messages: m = (m0, m1, . . . , mk−1) ∈ [q]k
and

m′ = (m′0, m′1, . . . , m′n−k−2) ∈
[�q/2�]n−k−1

• positions of partially stuck-at-1 cells:
U = {φ0, φ1, . . . , φu−1} ⊆ [n + 1]

1 w = (w0, w1, . . . , wn)← (0n−k, m0, m1, . . . , mk−1, 0)
2 Find z ∈ [q] such that (w(z))U has at most ũ entries that

are equal to either zero or (q − 1), where
w(z) = (w+ z · 1n+1) mod q . Let Ũ be the set of these
positions.

3 If z > 0 then w
(z)
n ← z, else w

(z)
n ← q − 2

4 Let v = (v0, v1, . . . , vn−1) ∈ [2]n be such that vi ← 1 if
w

(z)
i = q − 1, else vi ← 0

5 Apply Algorithm 1:
c′ ← Ẽ(

(vn−k , vn−k+1, . . . , vn−1); Ũ ; 1ũ
)

c̃← (c′ 0)
6 m̃← (2m′0, 2m′1, . . . , 2m′n−k−2, 0k+2) ∈ [q]n+1

7 y← (w(z) + c̃ + m̃) mod q
Output: vector y ∈ [q]n+1 with yφi ≥ 1, ∀i ∈ [u]

Algorithm 10 DECODING-5
(
y)

Input: • stored vector: y = (y0, y1, . . . , yn) ∈ [q]n+1

1 If (yn−k−1 − yn) mod q ≤ 1 then ẑ ← yn , else ẑ← 0
2 ŷ← y − ẑ · 1n+1
3 m̂′ ← (�ŷ0/2� , �ŷ1/2� , . . . , �ŷn−k−2/2�)
4 t̂←(ŷ0 − 2m̂′0, . . . , ŷn−k−2 − 2m̂′n−k−2, ŷn−k−1) mod q
5 ĉ′ ← t̂ ·H
6 m̂← (ŷn−k − ĉ′n−k, . . . , ŷn−1 − ĉ′n−1) mod q

Output: message vectors m̂ ∈ [q]k and

m̂′ ∈ [�q/2�]n−k−1

1) Find z ∈ [q] such that the number of zeros and (q−1)s
is minimized in the vector

(w(z))U = (w + z · 1n+1)U ,

and denote this value by ũ.
2) Use a binary ũ-SMC to mask these ũ stuck-at cells.

This idea provides the following construction.
Construction 5: Let n, q ≥ 4 and u ≤ n be positive integers

and let ũ = �2u/q�. Assume that C̃ is an [n, k, d ≥ ũ +
1]2 binary ũ-SMC with encoder Ẽ and decoder D̃ given by
Construction 1.

We define a u-PSMC of length (n + 1) over [q] by
Algorithms 9 and 10.

In the following theorem, we will prove the correctness
of Construction 5 and afterwards give a detailed example
to better illustrate the steps of the encoding and decoding
algorithms.

Theorem 9: Let n, q ≥ 4 and u ≤ n be positive integers and
let ũ = �2u/q�. Assume that C̃ is an [n, k, d ≥ ũ+1]2 binary

ũ-SMC with encoder Ẽ and decoder D̃ given by Theorem 1.
Then, Construction 5 provides a u-PSMC over [q] of length
(n + 1) and redundancy

r = (n − k − 1) logq

(
q

�q/2�
)
+ 2.

Proof: We assume that H is a systematic (n−k)×n parity-
check matrix of the code C̃ and we refer to Algorithms 1 and 2
as the encoder Ẽ and decoder D̃ of the code C̃,
respectively.

Let us start with the analysis of the encoding algorithm.
Step 2: we have to show that there exists z ∈ [q] such

that the vector (w(z))U has at most ũ entries which are equal
to either zero or (q − 1). This value ũ is equivalent to the
minimum number of cells in any two (cyclically) consecutive
levels in w. That is, let us denote

vi = |{ j : w j = i, j ∈ {φ0, . . . , φu−1}|,
for all i ∈ [q]. Then, we seek to minimize the value of

vi + v(i+1) mod q ,

where i ∈ [q]. Since
∑q−1

i=0 (vi + v(i+1) mod q) = 2u, according
to the pigeonhole principle, there exists an integer z ∈ [q]
such that vz + v(z+1) mod q ≤ �2u/q� = ũ. Therefore, the
vector (w(z))U has at most ũ entries that are equal to zero or
(q − 1). The set of these positions is denoted by Ũ .

Step 3: we store the value of z in the last cell and if z = 0,
we write wn = q − 1 which is necessary in the event where
the last cell is partially stuck-at-1.

Steps 4 and 5: we treat the ũ cells of w(z) of value 0 or q−1
as binary stuck-at cells since adding 0 or 1 to the other u − ũ
cells still masks those partially stuck-at-1 cells as they will
not reach level 0. Therefore, according to Theorem 1, we can
use the encoder of Ẽ of the code C̃. In the first part of Step 5,
we invoke Algorithm 1. In order to do so, we first generate
a length-n binary vector v where its value is 1 if and only if
the corresponding cell has value q − 1. Then, we require that
the ũ cells will be stuck-at level 1. This will guarantee that
the output c̃ has value 1 if the corresponding partially stuck-at
cell was in level 0 and its value is 0 if the corresponding cell
was in level q − 1.

Note that only the last n − k entries of v are passed to
Algorithm 1, while the vector v corresponds to the vector w
in Algorithm 1.

Steps 6 and 7: the first n − k cells contain so far only
binary values, thus, we use the first n − k − 1 cells to write
another symbol with �q/2� values in each cell. The last cell
in this group of n − k cells remains to store only a binary
value, which is necessary to determine the value of z in the
decoding algorithm.

To complete the proof, we discuss the decoding
algorithm.

Step 1: we first determine the value of z. Note that if z �= 0
then yn−k = yn = z or yn−k = (yn + 1) mod q and in either
case the condition in this step holds. In case z = 0 then yn =
q− 2 and yn−k = 0 or yn−k = 1 so (yn−k−1− yn) mod q ≥ 2
(since q ≥ 4). Therefore, we conclude that ẑ = z.

Step 2: with the value of ẑ, we can reconstruct ŷ.

648 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

Step 3: we determine the value of the second message m′.
Since ẑ = z, we get that m̂′ = m′.

Step 4: we follow Algorithm 2 in order to decode the vector
c′ and get that ĉ′ = c′.

Step 5: we retrieve the first message vector and get m̂ = m.
After proving the correctness of the encoding and decoding

algorithms, we now calculate the redundancy. The size of the
message we store in this code is M = qk · �(q/2)�n−k−1 and
the redundancy of this u-PSMC is

r = n + 1− logq M = n + 1− logq(qk · �q/2�n−k−1)

= n − k + 1− (n − k − 1) · logq (�q/2�)
= (n − k − 1) logq

(
q

�q/2�
)
+ 2.

The following example shows the complete encoding and
decoding processes of Construction 5.

Example 7: Let q = 4, n = 15, k = 11, u = 5 and
U = {1, 4, 8, 12, 15} ⊂ [16] be the set of partially stuck-
at-1 positions. Then, ũ = �2u/q� = 2 and we can use the
[15, 11, 3]2 code C̃ as the binary 2-SMC. The following matrix
is a systematic parity-check matrix of C̃:

H =
(1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 0 0 0 1 1 1
0 0 1 0 1 1 0 1 1 0 1 1 0 0 1
0 0 0 1 0 1 1 0 1 1 0 1 0 1 1

)

.

Let m = (0, 3, 2, 1, 2, 2, 3, 1, 3, 2, 2) and m′ = (1, 0, 1).
Let us first show the steps of the encoding algorithm. With

z = 1 in Step 2, we have in the different steps of Algorithm 9
(the partially stuck-at-1 positions are underlined):

Step 1: w = (0, 0, 0, 0, 0, 3, 2, 1, 2, 2, 3, 1, 3, 2, 2, 0)

Steps 2&3: w(z) = (1, 1, 1, 1, 1, 0, 3, 2, 3, 3, 0, 2, 0, 3, 3, 1)

Therefore, (w(z))U = (1, 1, 3, 0, 1) and hence, ũ = 2 and
Ũ = {2, 3}. Further, we obtain:

Step 4: v = (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1)

Step 5: v′ = (0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1)

c′ = Ẽ(v′; {2, 3}; (1, 1))

= (1, 0, 0, 0) ·H
= (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

c̃ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0)

Step 6: m̃ = (2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Step 7: y = (0, 1, 3, 1, 1, 0, 3, 2, 3, 0, 1, 3, 1, 0, 0, 1)

Clearly, the partially stuck-at-1 positions are masked in the
vector y.

Let us now show the decoding process, i.e., Algorithm 10.

Step 1: y3 − y15 = 0 �⇒ ẑ = 1

Step 2: ŷ = (3, 0, 2, 0, 0, 3, 2, 1, 2, 3, 0, 2, 0, 3, 3, 0)

Step 3: m̂′ = (�3/2� , 0, �2/2�) = (1, 0, 1)

Step 4: t̂ = (3− 2, 0 − 0, 2 − 2, 0) = (1, 0, 0, 0)

Step 5: ĉ′ = t̂ ·H=(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

Step 6: m̂ = (0, 3, 2, 1, 2, 2, 3, 1, 3, 2, 2).

We have therefore successfully recovered the messages
m and m′ and the redundancy to mask these five partially
stuck-at-1 cells is r = 3.5 q-ary cells. Construction 4 from
Corollary 1 requires redundancy ρ4 (16, 4) = 4.

The lower bound from (1) gives 1.037 and the lower bound
from Theorem 3 gives 1.26.

As a comparison, to mask u = 5 usual stuck-at cells in
a block of 16 cells, we need a quaternary code of length
n = 16 and distance d ≥ u + 1 = 6. The largest such
code is a [16, 9, 6]4 code with 7 redundancy symbols. The
trivial construction from Theorem 2 needs redundancy 3.11.
For this example, the new construction is thus worse than the
trivial one. However, for larger n, the influence of the +2 in
the redundancy diminishes and our construction outperforms
the trivial one (see Example 8), but the principle of the
construction is easier to show with short vectors.

Example 8: Let q = 4, n = 63, k = 57 and u = 5. Then,
the required redundancy for Construction 4 is ρ4 (64, 4) = 6
and for Construction 5, it is r = 4.5. This improves sig-
nificantly upon the upper bounds from Theorem 2 since the
trivial construction from Theorem 2 needs redundancy 13.1
and ρ4 (64, 6) = 13.

The next corollary summarizes this upper bound on the
redundancy for n cells.

Corollary 3: For all 4 ≤ q ≤ u ≤ n we have that

rq (n, u, 1) ≤
(
ρ2

(
n − 1,

⌊ 2u
q

⌋+ 1
)
−
)
· logq

(
q

�q/2�
)
+ 2.

Therefore, if we use a binary [n = 2rH − 1, n − rH , 3]2
Hamming code as a ũ-SMC with ũ = 2, then u ≤ q +

⌊
q−1

2

⌋

has to hold. For even q , we therefore have u ≤ q + q/2− 1.
Then, the required redundancy is r = (rH − 1) logq(2)+ 2 =
(log2(n + 1)− 1) · logq (2)+ 2.

Note that for u → n and for large q , the trivial construction
from Section II is quite good. Construction 5 outperforms the
trivial construction if u > q and n � u.

VII. GENERALIZATION OF THE CONSTRUCTIONS TO

ARBITRARY PARTIALLY STUCK-AT LEVELS

The main goal of this section is to consider the generalized
model of partially stuck-at cells as in Definition 1. This model
is applicable in particular for non-volatile memories where the
different cells might be partially stuck-at different levels.

Let U = {φ0, φ1, . . . , φu−1} be the set of locations of
the partially stuck-at cells where the i -th cell, for i ∈
{φ0, φ1, . . . , φu−1}, is partially stuck-at level si . We denote
by ui , i ∈ [q], the number of cells which are partially stuck-at
level i (thus,

∑q−1
i=1 ui = u) and by Ui ⊆ [n], ∀i ∈ [q], the

set of positions which are partially stuck-at-i . Note that some
values of ui might be zero and thus the corresponding sets Ui

are the empty set.
In the sequel of this section, we generalize the constructions

from Sections IV, V and VI to the generalized model of
partially stuck-at-s cells, where s = (s0, s1, . . . , su−1) ∈
[1, q− 1]u . We only give the main theorems without showing
the explicit decoding algorithms and mostly without examples

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 649

since these results are a direct consequence of the previous
sections.

A. Generalization of Construction 2

Construction 2 from Theorem 4 (including its improvement
from Theorem 5) generalizes as follows.

Theorem 10 (Generalized Construction 2): If
∑u−1

i=0 si < q
and u ≤ n, then for all n, there exists a (u, s)-PSMC, where
s = (s0, s1, . . . , su−1) ∈ [0, q − 1]u, over [q] of length n and
redundancy

r = 1− logq

⌊
q

∑u−1
i=0 si + 1

⌋

.

Proof: The proof is a generalization of the proofs of
Theorem 4 and Theorem 5. Let m ∈ [q]n−1 be the message
vector, define w = (0 m) and let y = w + z · 1n be
the vector that we will store. We have to find z such that
yφi = (wφi + z) /∈ [si], ∀i ∈ [u]. Each partially stuck-
at-si cell excludes at most si possible values for z, in total
the u cells therefore exclude at most

∑u−1
i=0 si values and if∑u−1

i=0 si < q , there is at least one value z ∈ [q] such that
y�i = (w�i + z) /∈ [si], ∀i ∈ [u].

In particular, there is always a z ∈ [∑u−1
i=0 si + 1] such that

yφi = (wφi + z) /∈ [si], for all i ∈ [u]. Therefore, we can
save additional information in the redundancy cell and as a
generalization of Theorem 5, the statement follows.

The encoding and decoding processes are analogous to
Algorithms 3 and 4, and Algorithms 5 and 6, respec-
tively. Unfortunately, we cannot claim (as in Theorem 6 for
si = 1, ∀i) that this construction is asymptotically optimal,
since the lower bound on the redundancy in Theorem 3 does
not depend asymptotically on the value of s. For example, if
si = s, ∀i , and (su+1) | q , then the redundancy of Theorem 10
is r = logq(su + 1), but the lower bound form Theorem 3
approaches only rq (n, u, s) = logq(u+1) for n large enough.

B. Generalization of Construction 4

In order to generalize Construction 4 from Theorem 8,
let us first generalize Theorem 7.

Theorem 11: Let q be a prime power and let a κ×n matrix
H = (

Hi, j
)i∈[κ]

j∈[n] over Fq be given. Let s = maxi∈[u] si .

If the RRE of any κ × u submatrix (denoted by H(u)) has
the following form (up to column permutations:)

RRE(H(u))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 • . . . •︸ ︷︷ ︸
≤�q/s�−1

◦ ◦ . . . ◦ ◦
1 • . . . •︸ ︷︷ ︸
≤�q/s�−1

◦ ◦ . . . ◦ ◦
1 • . . . •︸ ︷︷ ︸
≤�q/s�−1

◦ ◦
. . .

...

0 1 • . . . •︸ ︷︷ ︸
≤�q/s�−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(6)

where • has to be a non-zero element from Fq and ◦ is any
element from Fq , then, there exists a (u, s)-PSMC over [q] of
length n and redundancy r = κ .

Proof: Follows from the proof of Theorem 7 with similar
generalizations as in Theorem 10.
Notice that the largest si restricts the size of the matrix and
it is not clear how to consider the explicit values si in this
generalization and not only the maximum value.

Based on Theorem 11, we can generalize Construction 4 as
follows.

Theorem 12 (Generalized Construction 4): Given s =
(s0, s1, . . . , su−1) ∈ [1, q − 1]u. Let s = maxi∈[u] si , let
u ≤ �q/s� + d − 3, u ≤ n, k < n, and let H be a systematic
(n − k) × n parity-check matrix of an [n, k, d]q code. Then,
there exists a (u, s)-PSMC over Fq of length n and redundancy
r = n − k.

Proof: Similar to the proof of Theorem 8 using
Theorem 11.

Corollary 4: If q ≥ 2 is a prime power, then for all
u ≤ n and s ∈ [1, q − 1], there exists a (u, s)-PSMC with
redundancy r = max{1, ρq (n, u − �q/s� + 3)} and therefore
rq (n, u, s) ≤ max{1, ρq (n, u − �q/s� + 3)}.

C. Generalization of Construction 5

In the first step, we suggest a generalization to the case
where all partially stuck-at cells are stuck at the same level s,
for some 1 ≤ s ≤ q − 1. For this purpose, we use a Q-ary
code, where Q ≥ s + 1 is a prime power, and the principle
consists of the following two steps:

1) Find z ∈ [q] such that the number of the values con-
tained in the set S = {q−Q+1, . . . , q−1, 0, . . . , s−1}
of size Q+s−1 is minimized in (w(z))U = (w+z ·1n)U .
Denote the number of values from S in (w(z))U by ũ.

2) Use a Q-ary ũ-SMC to mask these ũ stuck cells.
This leads to the following theorem.

Theorem 13 (Generalized Construction 5 for si = s): Let
n, q ≥ 4, u be positive integers, let s ∈ [1, q − 1], and let
Q ≥ s + 1 be a prime power. Denote

ũ =
⌊

(Q + s − 1)u

q

⌋
.

Assume that C̃ is an [n, k, d ≥ ũ + 1]Q Q-ary ũ-SMC with
encoder Ẽ and decoder D̃ given by Theorem 1. Then, there
exists a (u, s)-PSMC over [q] of length (n+1) and redundancy

r = (n − k − 1) logq

(
q

�q/Q�
)
+ 2. (7)

Proof: Let S = {q − Q + 1, . . . , q − 1, 0, . . . , s − 1} of
cardinality Q + s − 1. As in the proof of Theorem 9, we first
show that there is some scalar z such that (w(z))U has at most
ũ entries from S. The value ũ is equivalent to the minimum
number of any Q + s − 1 consecutive values in wU . Denote
vi = |{ j : w j = i, j ∈ {φ0, . . . , φu−1}|, for all i ∈ [q].
Hence, we want to minimize

∑Q+s−2
j=0 vi+ j modq , i ∈ [q].

Since
∑q−1

i=0

∑Q+s−2
j=0 vi+ j modq = (Q + s − 1)u, there exists

an integer i such that
∑Q+s−2

j=0 vi+ j modq ≤ � (Q+s−1)u
q � and

therefore, there is a z such that (w(z))U contains at most
ũ = � (Q+s−1)u

q � values from S.
Second, we treat those ũ cells of (w(z))U , which have values

in S, like usual Q-ary stuck cells. Note that adding any value

650 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

from the set [Q] to the other u−ũ cells still masks the partially
stuck-at-s cells. Therefore, we can use an [n, k, d ≥ ũ + 1]Q
code to mask these cells (see Theorem 1).

As a generalization of Theorem 9, we choose m ∈ [q]k and
m′ ∈ [�q/Q�]n−k−1

and the statement on the redundancy
follows.

Note that if Q + s − 1 ≥ q , then ũ ≥ u and instead of
using Theorem 13, we should use a q-ary u-SMC or another
construction.

Let us now describe a method to generalize Construction 5
to the case where the cells are partially stuck-at different levels,
given by s = (s0, s1, . . . , su−1). We want to use a Q-ary SMC,
where Q ≥ maxi {si }+1, to obtain an (u, s)-PSMC. Of course,
one way is to define s = maxi {si } and to consider the cells
as partially stuck-at-s cells and use Theorem 13. However, we
can do better by refining the “minimization step” as done in
the following theorem.

Theorem 14 (Generalized Construction 5): Let n, q ≥ 4
and u be positive integers. Let s = (s0, s1, . . . , su−1) ∈
[1, q − 1]u be given and denote ui = |{s j = i,∀ j ∈ [u]}|,
∀i ∈ [q]. Then, u =∑q−1

i=1 ui and let Q ≥ maxi {si } + 1 be a
prime power. Denote σi = min{q, Q + i − 1}, ∀i ∈ [q], and

ũ =
⌊∑q−1

i=1 ui · σi

q

⌋

.

Assume that C̃ is an [n, k, d ≥ ũ + 1]Q Q-ary ũ-SMC with
encoder Ẽ and decoder D̃ given by Theorem 1. Then, there
exists a (u, s)-PSMC over [q] of length (n+1) and redundancy

r = (n − k − 1) logq

(
q

�q/Q�
)
+ 2. (8)

Proof: If a cell in Ui has a cell level in [i, q − Q], then
this partially stuck-at cell is still masked after adding any value
from [Q]. Thus, we want to find z ∈ [q] such that the partially
stuck-at positions in the vector (w(z))Ui = (w + z · 1n+1)Ui

contain as many values in [i, q − Q], ∀i ∈ [1, q − 1], as
possible. Equivalently, we want to minimize the number of
values from [q] \ [i, q − Q] in (w(z))Ui , for all i ∈ [1, q − 1].

In the sequel, we describe a way how accomplish this.
We have

σi
def= ∣

∣[q] \ [i, q − Q]∣∣ = min{q, Q + i − 1}, ∀i ∈ [q],
and generalizing Theorems 9 and 13, we define:

v
(i)
� = |{ j : w j = �, j ∈ Ui }|, ∀� ∈ [q], i ∈ [1, q − 1].

(9)

We want to minimize (subject to � ∈ [q])
q−1∑

i=1

σi−1∑

j=0

v
(i)
�+ j mod q .

We know that

q−1∑

�=0

q−1∑

i=1

σi−1∑

j=0

v
(i)
�+ j mod q =

q−1∑

i=1

ui · σi .

Thus, by the pigeonhole principle, there exists an integer
� ∈ [q] such that

q−1∑

i=1

σi−1∑

j=0

v
(i)
�+ j mod q ≤

⌊∑q−1
i=1 ui · σi

q

⌋
def= ũ.

Similar to Theorems 9 and 13, we can treat these ũ partially
stuck-at cells as Q-ary cells which are usually stuck-at. With
a similar proof as in Theorems 9 and 13, this leads to the
statement.

Example 9: Let n = 31, q = 8, and s = (1 1 1 1 2 2 3).
Hence, u1 = 4, u2 = 2, u3 = 1 and u = 7. We choose Q = 4
and we want to use a 4-ary SMC to construct a (u, s)-PSMC
of length 32.

The first approach is to consider all cells as partially stuck-
at level s = maxi {si } = 3. Then, with Theorem 13 and
Q = 4, we have ũ = 5 and we need a code over F22 of
length 31 and distance at least 6. The largest known such
code is a [31, 23, 6]4 code (see [10]) and therefore, with (7),
the required redundancy is 6.66.

Let us now compare this to Theorem 14. We denote σ1 = 4,
σ2 = 5 and σ3 = 6 and therefore,

ũ =
⌊

4u1 + 5u2 + 6u3

q

⌋
= 4.

We need a code over F22 of length 31 and distance at least
ũ+1 = 5. The largest such known code is a [31, 24, 5]4 code
(see [10]) and with (8), the required redundancy is r = 6, i.e.,
compared to the approach of Theorem 13, we have decreased
the redundancy.

The generalized Construction 4 from Theorem 12 needs
redundancy ρ8 (32, 7) = 10. Further, the upper bound from
Theorem 2, gives 7.01 and we also improve upon this bound.

VIII. CODES FOR CELLS WITH UNREACHABLE LEVELS

In flash memories, it might happen that certain levels cannot
be reached or should not be programmed anymore since they
are highly unreliable, see e.g. [8]. Finding codes that mask
these cells can be seen as the dual problem to finding PSMCs.
Namely, we want to find a code as follows.

Definition 2 (Codes for Unreachable Levels): An (n, M)q

(u, s)-unreachable-masking code ((u, s)-UMC) C is a coding
scheme with encoder E and decoder D. The input to the
encoder E is the set of locations {φ0, . . . , φu−1} ⊆ [n], the
unreachable levels s = (s0, s1, . . . , su−1) ∈ [q − 1]u of some
u ≤ n cells and a message m ∈ [M]. Its output is a vector
y(m) ∈ [q]n which masks the values of the u cells with
unreachable levels, i.e.,

y(m)
φi
≤ si , ∀i ∈ [0, u − 1],

and its decoded value is m, that is D(y(m)) = m.
The following theorem establishes a connection between

PSMCs and UMCs.
Theorem 15: Given a (u, s)-PSMC with s = (q−1−s0, q−

1− s1, . . . , q − 1− su−1) and redundancy r . Then, this code
can be used as a (u, s̃)-UMC with s̃ = (s0, s1, . . . , su−1) and
redundancy r .

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 651

Proof: Assume we want to write a message into n memory
cells where the levels at positions φ0, φ1, . . . , φu−1 can be
at most s0, s1, . . . , su−1. We construct a (u, s)-PSMC with
redundancy r for the levels s = (q−1−s0, q−1−s1, . . . , q−
1 − su−1). The output of this encoder is a vector y(m) such
that y(m)

φi
≥ q − 1− si , ∀i ∈ [0, u − 1].

Therefore, the vector y(m) def= (q − 1 − y(m)
0 , q − 1 −

y(m)
1 , . . . , q − 1− y(m)

n−1) has the property that

y(m)
φi
≤ q − 1− (q − 1− si) = si , ∀i ∈ [0, u − 1],

and therefore, we write y(m) into the cells and have
constructed a (u, s̃)-UMC with s̃ = (s0, s1, . . . , su−1) and
redundancy r .

Notice that the converse statement also holds,
i.e., a (u, s̃)-UMC with s̃ = (s0, s1, . . . , su−1) and
redundancy r can be used as a (u, s)-PSMC with
s = (q − 1 − s0, q − 1 − s1, . . . , q − 1 − su−1) and
redundancy r .

The construction by Gabrys et al. from [8] is based on
tensor product codes and can mask unreliable cells and correct
additional random errors. To compare their construction to
our results, we assume that no random errors occur (i.e., in
their notation t1 = t2 = 0). Then, their matrix H3 defines
an [n, n, 0]4 code (in their notation, meaning it does not
correct any error), H4 defines an [n, k4, 0, �]2 code (mean-
ing it is a �-SMC which cannot correct additional random
errors). Therefore, d4 ≥ � + 1, see e.g., [11] and due to the
Singleton bound k4 ≤ n − d4 + 1 = n − �. The construction
from [8, p. 1492] yields a code for masking the unreliable
cells of length 3n and dimension 2k3 + k4 ≤ 3n − �. Thus,
their required redundancy is r ≥ �, which is the same as the
one for a �-SMC and thus, their construction does not give
any improvement compared to [11]. As shown in the previ-
ous sections and in Theorem 15, our constructions therefore
improve on both, [8] and [11], when masking memory cells
with unreachable levels.

IX. THE CAPACITY OF THE PARTIALLY

STUCK-AT CELL CHANNEL

In this section, we study the setup of partially stuck-at cells
from the capacity point of view. For fixed integers q > 1
and 0 < s < q , we consider the storage channel in which
a cell can be partially stuck-at level s with probability p.
This channel model is an example of a discrete memoryless
memory cell which was studied by Heegard and El Gamal
in [12]. In the partially stuck-at cell model, we assume that
a cell is partially stuck-at level s with some probability p.
If a letter x ∈ X = {0, 1, . . . , q − 1} is stored in a cell,
then the letter y ∈ Y = {0, 1, . . . , q − 1} is retrieved where
y = max{x, s} with probability p.

If both, the encoder and decoder, know the state of the
memory, i.e. the locations and levels of the partially stuck-at
cells, then the capacity of this channel is

Cq(p, s) = 1− p + p logq (q − s) = 1− p logq

(
q

q − s

)
.

(10)

To see this, notice that the lower bound on the redundancy
from Theorem 2 holds also in this case as this is the number
of all different memory states that can be programmed. The
capacity is achievable since both the encoder and decoder
know the locations of the partially stuck-at memory cells and
thus can use all programmable memory states. Furthermore,
according to [12], the capacity of any discrete memoryless
memory cell channel in the case where only the encoder
knows the memory state is the same as the one where both
the encoder and decoder know the memory state. Thus, we
conclude that (10) is the capacity of the model studied in this
work.

In the following, we want to analyze how close our
constructions are to the capacity. Let us first consider the
case s = 1. The construction based on binary codes from
Section VI can mask u = pn partially stuck-at-1 memory
cells if there exists an [n, k, d]2 binary code that can mask
ũ = �2u/q� = �2 pn/q� binary usual stuck-at cells (which is
the case if d ≥ ũ + 1, see Theorem 1). Assume there exists
a family of capacity-achieving linear binary codes with these
properties, then we can use this family of codes in order to
construct a family of PSMCs. Asymptotically, for large n and
any q , the maximum achievable code rate of the construction
from Theorem 9 approaches the value

Rq(p, 1) = n − r

n
= 1− 2 p

q
logq

(
q

�q/2�
)

.

Similarly, for arbitrary s (for simplicity assume that Q =
s + 1 is a power of a prime), we obtain a family of PSMCs
whose maximum achievable rate approaches the value

Rq(p, s) = 1− 2sp

q
logq

(
q

�q/(s + 1)�
)

.

Finally, we conclude that the difference between the capac-
ity and the rate of this construction is given by

Cq (p, s)− Rq(p, s)

= p ·
(

2s

q
logq

(
q

�q/(s + 1)�
)
− logq

(
q

q − s

))

︸ ︷︷ ︸
def=�(q,s)

, (11)

where we call �(q, s) the difference coefficient.
Table I shows the values of the difference coefficient �(q, s)

for different values of q and s.
In the same way, Figure 1 illustrates the difference coeffi-

cient for some values of q and s. We see that the difference
coefficient tends to zero for q large enough. The “plateaus”
in the plots occur due to the floor operation in (11). A similar
analysis can be done for the (u, s)-PSMC construction from
Theorem 14.

For the special case s = 1 and when q is large enough,
we neglect the floor operation and we can use the approxima-
tion ln(q)− ln(q − 1) ≈ 1/q and obtain

Cq(p, 1)− Rq(p, 1) =
≈ p

(
2 logq(2)

q
− logq

(
q

q − 1

))

≈ p

(
2 ln(2)

q ln(q)
− 1

q ln(q)

)
≈ 0.38

p

q ln(q)
. (12)

652 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

TABLE I

THE DIFFERENCE COEFFICIENT �(q, s) FOR DIFFERENT VALUES
OF q AND s , WHERE 0 < s < q WHERE s + 1 IS A PRIME POWER

Fig. 1. The difference coefficient �(q, s) for different values of q and s.

Thus, we can evaluate how close the code rate from
Theorems 9 and 13 come to the capacity from (10).
Further, (12) shows that asymptotically, the coefficient �(q, 1)
approaches zero when q increases. In the same way, for fixed
s, the coefficient �(q, s) approaches 0 with increasing q .

We note that the trivial construction from Theorem 2,
in which only the levels s, . . . , q − 1 are used, can also be
used to mask any number of cells which are partially stuck-
at-s. The rate of this construction is logq(q − s), and it is
greater than the value of Rq(p, s), when q is a multiple of
s + 1, if

logq(q − s) ≥ 1− 2sp

q
logq (s + 1),

or

p ≥ q

2s
logs+1

(
q

q − s

)
.

For example, for s = 1 we get that this threshold equals

q

2
log

(
q

q − 1

)

and for q large enough, this value approaches
1/(2 ln 2) ≈ 0.7213.

Fig. 2. Capacity Cq (p, s) and maximum achievable rate Rmax
q (p, s)

for q = 8.

Fig. 3. Capacity Cq (p, s) and maximum achievable rate Rmax
q (p, s)

for q = 12.

We conclude that the maximum achievable rates, denoted by
Rmax

q (p, s), according to the constructions from Theorems 2, 9
and 13, when q is a multiple of s + 1, is given by

Rmax
q (p, s) =

{
1− 2sp

q logq(s + 1) if p ≤ q
2s logs+1

(
q

q−s

)

logq(q − s) else

In Figures 2 and 3, we plot the graphs of the capacity C(p, s)
and the maximum achievable rates Rmax

q (p, s) for q = 8,
s = 1, 3 and q = 12, s = 1, 3, 5.

Notice that asymptotically, both an SMC and Construc-
tion 4 have rate R = 1 − p and are therefore worse
than Rmax

q (p, s).
Lastly, we mention that there is a strong connection

between codes for stuck-at cells and two-write write-once
memory (WOM) codes. WOM codes are used to write infor-
mation in memories whose cells can only increase their

WACHTER-ZEH AND YAAKOBI: CODES FOR PARTIALLY STUCK-AT MEMORY CELLS 653

levels [24]. In general, a binary u-SMC can be used to
construct a two-write WOM code simply by treating the
stuck-at cells as the ones which were programmed on the
first write. Furthermore, a capacity achieving code for binary
stuck-at cells will generate a capacity achieving two-write
WOM codes. However, the converse does not necessarily hold.
Even though constructions of WOM codes usually restrict
the maximum number of cells that can be programmed on
the first write, not necessarily all patterns with at most this
maximum number of programmed cells are allowed. However,
still several constructions of such WOM codes can be used to
construct u-SMC, see e.g. [26], [27], [31].

The generalization to the non-binary case is very similar
in the sense that PSMCs can be used to construct non-binary
two-write WOM codes. We simply let the partially stuck-at
cells be the ones which are programmed on the first write and
then use the PSMC to be the encoder and decoder for the
second write of the WOM code.

In [5], Burshtein and Strugatski presented a con-
struction of polar WOM codes both for the binary
and non-binary cases. Recently, Burshtein extended these
results in [4] to an arbitrary side information channel.
In [22], Mahdavifar and Vardy showed another construction
of codes for stuck-at cells which are based on polar codes
and LDPC codes. We believe that these constructions can be
adapted to derive capacity achieving PSMCs in our model.
However, note that these constructions are not zero-error codes
as the ones we propose in this paper. The extension of these
families of codes to PSMCs is an interesting problem for future
research.

X. CONCLUSION

In this paper, we have considered codes for masking par-
tially stuck-at memory cells. After defining the defect model,
we have derived lower and upper bounds on the minimum
redundancy which is required to mask partially stuck-at cells
in multilevel memories. We have presented three constructions
of partially stuck-at masking codes (PSMCs). The first one
masks any u < q partially stuck-at cells, where q is the
number of cell levels, and requires less than one redun-
dancy symbol. When the cells are partially stuck-at level 1
(i.e., s = 1) and u+1 divides q , this construction is asymptot-
ically optimal. The second construction is based on the parity-
check matrix of an error-correcting code and works well for
u ≥ q (where q is a prime power). The last construction
is based on using a binary error-correcting code and can be
applied for any u and q . The three constructions were first
derived for s = 1 and then generalized to arbitrary stuck levels.
We have further shown how these PSMCs can be applied for
cells with unreachable levels (which can be seen as the dual
problem to partially stuck-at cells) and that they outperform
known code constructions for this model. Further, we have
considered the capacity of the partially stuck-at channel and
have analyzed the gap between the capacity and the achieved
code rate. For s = 1, we achieve the capacity asymptotically.

The following table for s = 1 provides an overview
of our constructions and their required redundancies. Recall
that ρq (n, d) denotes the smallest redundancy of a linear

error-correcting code of length n and minimum Hamming
distance d over Fq .

Upper bound on rq (n, u, 1)

u < q 1− logq

⌊
q

u+1

⌋
(Theorem 4)

u ≥ q ρq (n, u − q + 3) (Corollary 1)

any u, q
(
ρ2

(
n − 1, � 2u

q � + 1
)
− 1

)
· logq

(
q
�q/2�

)
+ 2

(Theorem 9)

Similarly, the following table gives an overview of the
constructions for arbitrary partially stuck-at levels, given by
a vector s = (s0, s1, . . . , su−1) ∈ [1, q − 1]u .

Upper bound on rq (n, u, s)

u−1∑

i=0
si < q r = 1− logq

⌊
q

∑u−1
i=0 si+1

⌋
(Theorem 10)

u ≥ ⌈ q
maxi si

⌉
ρq

(
n, u −

⌈
q

maxi si

⌉
+ 3

)
(Corollary 4)

any u, q

(
ρQ

(
n − 1,

⌊∑q−1
i=1 ui ·σi

2

⌋
+ 1

)
− 1

)

· logq

(
q

�q/Q�
)
+ 2,

where Q ≥ maxi {si }+1 is a prime power
and σi = min{q, Q + i − 1}, ∀i ∈ [q].
(Theorem 14)

Thus, we have provided codes for masking partially stuck-
at cells for any set of parameters and have shown that
the required redundancy significantly decreases compared to
SMCs and to a trivial construction.

ACKNOWLEDGEMENT

The authors would like to thank the associate editor
Moshe Schwartz and the anonymous reviewers for their very
helpful comments.

REFERENCES

[1] I. Belov and A. M. Shashin, “Codes that correct triple defects in
memory,” (in Russian) Problems Inf. Transmiss., vol. 13, no. 4,
pp. 62–65, 1977.

[2] J. Borden and A. J. Vinck, “On coding for ‘stuck-at’ defects (Corresp.),”
IEEE Trans. Inf. Theory, vol. 33, no. 5, pp. 729–735, Sep. 1987.

[3] G. W. Burr et al., “Phase change memory technology,” J. Vac. Sci.
Technol. B, vol. 28, no. 2, pp. 223–262, 2010.

[4] D. Burshtein, “Coding for asymmetric side information channels with
applications to polar codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2015, pp. 1527–1531.

[5] D. Burshtein and A. Strugatski, “Polar write once memory codes,” IEEE
Trans. Inf. Theory, vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

[6] C. L. Chen, “Linear codes for masking memory defects (Corresp.),”
IEEE Trans. Inf. Theory, vol. 31, no. 1, pp. 105–106, Jan. 1985.

[7] J. Fridrich, M. Goljan, and D. Soukal, “Steganography via codes for
memory with defective cells,” in Proc. Allerton Conf. Commun., Control
Comput., Sep. 2005, pp. 1–17.

[8] R. Gabrys, F. Sala, and L. Dolecek, “Coding for unreliable flash memory
cells,” IEEE Commun. Lett., vol. 18, no. 9, pp. 1491–1494, Sep. 2014.

654 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

[9] B. Gleixner, F. Pellizzer, and R. Bez, “Reliability characterization of
phase change memory,” in Proc. 10th Annu. Non-Volatile Memory
Technol. Symp. (NVMTS), Oct. 2009, pp. 7–11.

[10] M. Grassl. (2007). “Bounds on the minimum distance of linear codes
and quantum codes.” [Online]. Available: http://www.codetables.de

[11] C. Heegard, “Partitioned linear block codes for computer memory with
‘stuck-at’ defects,” IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 831–842,
Nov. 1983.

[12] C. Heegard and A. El Gamal, “On the capacity of computer memory
with defects,” IEEE Trans. Inf. Theory, vol. 29, no. 5, pp. 731–739,
Sep. 1983.

[13] K. Kim and S. Ahn, “Reliability investigations for manufacturable
high density PRAM,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2005,
pp. 157–162.

[14] Y. Kim and B. V. K. V. Kumar, “Coding for memory with stuck-at
defects,” in Proc. IEEE Int. Conf. Commun., Jun. 2013, pp. 4347–4352.

[15] A. V. Kuznetsov, T. Kasami, and S. Yamamura, “An error correcting
scheme for defective memory,” IEEE Trans. Inf. Theory, vol. 24, no. 6,
pp. 712–718, Nov. 1978.

[16] A. Kuznetsov, “Coding in a channel with generalized defects and random
errors,” (in Russian) Problems Inf. Transmiss., vol. 21, no. 1, pp. 28–34,
1985.

[17] A. Kuznetsov and B. Tsybakov, “Coding for memories with defective
cells,” (in Russian) Problems Inf. Transmiss., vol. 10, no. 2, pp. 52–60,
1974.

[18] L. A. Lastras-Montaño, A. Jagmohan, and M. M. Franceschini, “Algo-
rithms for memories with stuck cells,” in Proc. IEEE Int. Symb. Inf.
Theory, Jun. 2010, pp. 968–972.

[19] L. Lastras-Montaño, A. Jagmohan, and M. M. Franceschini, “An area
and latency assessment for coding for memories with stuck cells,”
in Proc. IEEE GLOBECOM Workshops (GC Wkshps), Dec. 2010,
pp. 1851–1855.

[20] S. Lee, J.-H. Jeong, T. S. Lee, W. M. Kim, and B.-K. Cheong, “A study
on the failure mechanism of a phase-change memory in write/erase
cycling,” IEEE Electron. Device Lett., vol. 30, no. 5, pp. 448–450,
May 2009.

[21] V. V. Losev, V. K. Konopel’ko, and Y. D. Daryakin, “Double-and-triple-
defect-correcting codes,” (in Russian) Problems Inf. Transmiss., vol. 14,
no. 4, pp. 98–101, 1978.

[22] H. Mahdavifar and A. Vardy, “Explicit capacity achieving codes for
defective memories,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 641–645.

[23] A. Pirovano et al., “Reliability study of phase-change nonvolatile
memories,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 422–427,
Sep. 2004.

[24] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inf.
Control, vol. 55, nos. 1–3, pp. 1–19, Dec. 1982.

[25] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“SAFER: Stuck-at-fault error recovery for memories,” in Proc. MICRO,
Dec. 2010, pp. 115–124.

[26] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4520–4529,
Jul. 2013.

[27] A. Shpilka, “Capacity-achieving multiwrite WOM codes,” IEEE Trans.
Inf. Theory, vol. 60, no. 3, pp. 1481–1487, Mar. 2014.

[28] B. S. Tsybakov, S. I. Gelfand, A. V. Kuznetsov, and S. I. Ortyukov,
“Reliable computation and reliable storage of information,” in Proc.
IEEE-USSR Workshop, Dec. 1975.

[29] B. S. Tsybakov, “Defects and error correction,” (in Russian) Problems
Inf. Transmiss., vol. 11, no. 1, pp. 21–30, 1975.

[30] B. S. Tsybakov, “Group additive defect-correcting codes,” (in Russian)
Problems Inf. Transmiss., vol. 11, no. 1, pp. 111–113, 1975.

[31] Y. Wu, “Low complexity codes for writing a write-once memory twice,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2010, pp. 1928–1932.

Antonia Wachter-Zeh (S’10–M’14) received a B.S. degree in electrical
engineering in 2007 from the University of Applied Science Ravensburg,
Germany, and the M.S. degree in communications technology in 2009 from
Ulm University, Germany. She obtained her Ph.D. degree in 2013 at the
Institute of Communications Engineering, University of Ulm, Germany and
at the Institut de recherche mathématique de Rennes (IRMAR), Université de
Rennes 1, Rennes, France. Currently, she is a postdoctoral researcher at the
Technion- Israel Institute of Technology, Haifa, Israel. Her research interests
are coding and information theory and their applications.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer Sci-
ence Department at the Technion - Israel Institute of Technology. He received
the B.A. degrees in computer science and mathematics, and the M.Sc. degree
in computer science from the Technion - Israel Institute of Technology,
Haifa, Israel, in 2005 and 2007, respectively, and the Ph.D. degree in
electrical engineering from the University of California, San Diego, in 2011.
Between 2011-2013, he was a postdoctoral researcher in the department of
Electrical Engineering at the California Institute of Technology. His research
interests include information and coding theory with applications to non-
volatile memories, associative memories, data storage and retrieval, and voting
theory. He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

