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Abstract—Inter-cell interference (ICI) is a significant cause
of errors in flash memories. In two-level (SLC) flash memory,
ICI arises when 1 0 1 patterns are programmed either in the
horizontal or vertical directions. Since data pages are written
sequentially in horizontal wordlines, one can mitigate the effects
of horizontal ICI by use of conventional constrained codes that
forbid the 1 0 1 pattern. This approach does not address the
problem of vertical ICI, however. In this work, we present a row-
by-row coding technique that eliminates vertical 1 0 1 patterns
while preserving the sequential wordline programming order.
This scheme, though efficient, necessarily suffers a rate loss
of almost 20%. We therefore propose another coding scheme,
combining a relaxed constraint on vertical 1 0 1 patterns with a
systematic error correcting code, that can mitigate vertical ICI
errors while achieving a higher overall code rate, provided that
the vertical ICI error probability is sufficiently small.

I. INTRODUCTION

Flash memories are, by far, the most important type of
non-volatile memory (NVM) in use today. Their low cost
and steadily increasing storage capacity make them attractive
for many NVM applications. As memory cell sizes decrease,
however, inter-cell interference (ICI) can severely degrade the
device performance. In the simplest model of ICI, parasitic
capacitance can cause an undesirable increase in the voltage
level of a victim cell when high voltages are applied to some
of its neighboring cells [10]. This phenomenon occurs in two-
level (SLC) flash memory, and is particularly severe when
programming multi-level cell (MLC) flash memory [3], [10].
It becomes even more pronounced in the recent designs of
3D flash [9], [13], [16].

It is known that ICI-induced errors are data dependent and
correlated with the data patterns in the neighborhood of the
victim cell, in both the horizontal (wordline) and vertical
(bitline) directions [1] [2], [15]. In fact, experimental results
in [15] indicate that bitline ICI can be even more detrimental
than wordline ICI in MLC flash, due in part to the sequential
wordline programming protocol.

A number of approaches have been proposed to combat ICI
effects, including the use of constrained codes that prevent
the appearance of ICI-prone cell-level patterns in both one-
dimensional (1D) and two-dimensional (2D) configurations;
see, for example, [1], [2], [8], [7], [12], [15]. Whereas the
implementation of 1D constrained codes in wordline pages
to address wordline ICI is relatively straightforward, for 2D
constraints it remains a challenge to design efficient, fixed-
rate encoding and decoding algorithms that are compatible
with the conventional sequential programming and reading

of independent wordlines. One notable example of 2D row-
by-row constrained coding for flash memories appears in [2],
but the encoding is variable-rate, and the decoding must be
done in reverse row order.

The main goal of this work is the design of bitline ICI-
mitigating coding techniques for SLC flash memory1 that
are compatible with the sequential programming order of
horizontal wordlines. This is accomplished by allowing the
encoding and decoding algorithms to read the previous two
wordlines when writing or reading a particular wordline. We
present a row-by-row coding scheme which eliminates the
ICI-inducing vertical 1 0 1 patterns along bitlines, while still
asymptotically achieving the capacity of the corresponding
ICI constraint, CICI ≈ 0.8114. Our solution can be seen
as an embodiment of the design method in [4], [14], where
M -track parallel encoding for general 1D constraints is
considered.

The rate loss incurred by eliminating all 1 0 1 patterns in
the vertical direction reduces storage capacity. We therefore
propose an alternative coding approach, in the spirit of
weakly constrained codes [5], that allows a nonzero prob-
ability of occurrence of vertical 1 0 1 patterns along bitlines
and uses a systematic error-correcting code to correct the
resulting ICI errors. The rate of this scheme can be much
higher than the capacity of the 1D ICI constraint, provided
that the probability of bitline ICI-induced errors is not too
large.

The rest of this paper is organized as follows. In Section II
we introduce basic notation and definitions used throughout
the paper. In Section III we present the efficient row-bv-row
coding scheme that forbids the vertical 1 0 1 pattern along
bitlines. Section IV presents the hybrid coding scheme that
allows a fixed proportion of 1 0 1 patterns along bitlines and
uses an error-correcting code to correct the resulting ICI
errors. We conclude in Section V.

II. PRELIMINARIES

In this section we present some of the basic definitions
and notation used throughout the paper. For integers a, b ∈ Z
where a < b, we define [a, b] = {a, a+ 1, . . . , b}. We repre-
sent a block of SLC flash memory as a binary m× n array,
composed of m wordlines of length n. For 1 ≤ i ≤ m, we
define the ith wordline as WLi = wi,1wi,2 . . . wi,n. For 1 ≤
j ≤ n, the jth bitline is defined as BLj = w1,jw2,j . . . wm,j .

1Although the discussion is framed in the context of SLC flash, the
methods are equally applicable to page-oriented coding in MLC flash.
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Given a set of indices J = {j1, j2, . . . , jk}, j1 ≤ j2 ≤ · · · ≤
jk, and a sequence x = x1x2 . . . x`, ` ≥ k we denote the
restriction of x to J by xJ = xj1xj2 . . . xjk . Similarly, for
every 1 ≤ i ≤ m, we denote the restriction of WLi to the
bit indices specified in J by WLi,J = wi,j1wi,j2 . . . wi,jk .
We assume throughout that the wordlines are programmed
sequentially in a monotone increasing order, i.e., for every
1 ≤ i1 < i2 ≤ m, WLi1 is programmed before WLi2 . We
will refer to a coding scheme in which the wordlines are
programmed in such a monotone order as a row-by-row.

Let C be a row-by-row coding scheme. Let
R1, R2, . . . , Rm be nonnegative real numbers, such
that for every 1 ≤ i ≤ m, C programs one of 2Rin possible
messages into WLi, i.e., Ri is the rate of the ith wordline. C
is said to have a fixed rate R if Ri = R, for all 1 ≤ i ≤ m.

A binary sequence b = b1b2 . . . bm is said to satisfy the
ICI constraint if bi−1bibi+1 6= 101, for all 2 ≤ i ≤ m − 1.
Let S be the set of all binary sequences that satisfy the ICI
constraint. By abuse of terminology, the set S is also called
the ICI constraint where the meaning should be clear from
the context. There is a one-to-one correspondence between
S and the sequences produced by reading the labels of paths
in the directed edge-labeled graph G shown in Fig. 1.

1 2 3
0

1
0

1

0

Fig. 1: The graph G representing the ICI constraint.
The capacity, CICI , of the ICI constraint is defined by

CICI = lim
n→∞

log2 |S ∩ {0, 1}n|
n

.

There is a simple expression for the capacity of this constraint
in terms of the largest real eigenvalue of the adjacency
matrix of G (see, for example, [11]), from which it follows
that CICI ≈ 0.8114. Conventional techniques can be used
to construct efficient encoders and practical decoders for
this constraint, and such codes have been proposed for use
in magnetic recording; see [6] for a rate- 45 , sliding-block
decodable, finite-state encoder.

A coding scheme C for an SLC flash memory is called
a bitline ICI constrained code if for every 1 ≤ j ≤ n,
BLj ∈ S. A bitline ICI error is the event where cells wi−1,j ,
wi,j , and wi+1,j are successively programmed to 1, 0, and
1, respectively, and due to the bitline ICI, wi,j gets changed
to 1. We will assume that bitline ICI is the only source of
errors.

Finally, we recall that a length n and weight w, a binary
constant-weight code, denoted by C(n,w), is a subset of
{0, 1}n such that every c = c1c2 . . . cn ∈ C(n,w) has
Hamming weight w, where the Hamming weight of c is
defined as

wH(c) = |{j : cj 6= 0}|.
III. BITLINE ICI CONSTRAINED CODES

The goal of this section is to design row-by-row bitline ICI
coding schemes with fixed rates. The key idea is simply that,

when programming a given wordline, our encoder will take
into account the two previously programmed wordlines. This
approach is consistent with the practical requirement that
wordlines are programmed consecutively, from top to bottom
of the block. It is also compatible with the usual practice of
programming all of the cells in a wordline simultaneously.

Specifically, our code design procedure involves two steps.
In the first step, we conduct a probabilistic analysis, driven
by the choice of a target code rate. In the second step, we
give explicit constructions of bitline ICI constrained codes.
The constructions make use of constant-weight codes whose
parameters are determined by the results of the probabilistic
analysis. This design methodology is closely related to the
approach proposed in [4], [14] for constructing row-by-row
coding schemes for general 1D constraints. It was shown
in [4] that there exist such coding schemes that achieve the
capacity of the 1D constraint, and an explicit construction,
based on constant-weight codes, was given in [14]. We
essentially apply the basic ideas of the construction in [14]
to the ICI constraint, with some simplifications.

Step 1- Probabilistic Analysis: Let P1 : {0, 1}2 → R be a
probability mass function, i.e., P1 satisfies the following two
properties:

(a.1) For all x1, x2 ∈ {0, 1}, P1(x1x2) ≥ 0.
(a.2)

∑
x1,x2∈{0,1} P1(x1x2) = 1.

Let P : {0, 1}3 → R be a conditional probability mass
function, i.e., for every x1, x2 ∈ {0, 1}, 0 ≤ P (0|x1x2) ≤ 1
and P (1|x1x2) = 1−P (0|x1x2). The probabilistic functions
P1 and P define a Markov process [11]. Let b = b1b2 . . . bm
be a random sequence that is generated by the Markov
process. Then the following properties hold:

(b.1) Prob(b1b2 = x1x2) = P1(x1x2).
(b.2) For all i ≥ 3,
Prob(bi = x3|bi−2bi−1 = x1x2) = P (x3|x1x2).

(b.3) For all i ≥ 3, Prob(bi = x) =∑
x1,x2∈{0,1} P (x|x1x2)Prob(bi−2bi−1 = x1x2).

(b.4) Prob(x) = P1(x1x2)
∏m
i=3 P (xi|xi−2xi−1).

Since our goal is to design a fixed rate encoder, we assume
that the Markov process is stationary, i.e., the sequence b
also satisfies the following property:

(b.5) For all i ≥ 3, Prob(bi−2bi−1 = x1x2) = P1(x1x2).
From (b.5) we obtain the following system of equations,

which are linear in P1(x1x2):
P1(00)P (0|00) + P1(10)P (0|10) = P1(00)
P1(00)P (1|00) + P1(10)P (1|10) = P1(01)
P1(01)P (0|01) + P1(11)P (0|11) = P1(10)
P1(01)P (1|01) + P1(11)P (1|11) = P1(11)

. (1)

Combining (1) and property (a.2) of P1 we can express
P1(x1x2) in terms of P (0|x̃1x̃2), namely

P1(00) =
P (0|10)P (0|11)

q

P1(10) = P1(10) =
(1−P (0|00))P (0|11)

q

P1(11) =
(1−P (0|00))(1−P (0|01))

q ,

(2)

where q = P (0|10)P (0|11)+2(1−P (0|00))P (0|11)+(1−
P (0|00))(1− P (0|01)).
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The rate of the set of all sequences of length m that are
formed by the stationary Markov process is defined by

Rm(P ) = − 1
m

∑
x∈{0,1}m π(x) log2 π(x) =

1
m · (H(P1(x1x2)) + (m− 2)H(P (x3|x1x2))).

(3)

The rate of the stationary Markov process is defined by

R(P ) = lim
m→∞

Rm(P ) = H(P (x3|x1x2)).

Substituting (2) in H(P (x3|x1x2)) , we derive an expression
for R(P ) in terms of P (0|x1x2). Since we wish to avoid the
pattern 1 0 1 along bitlines, we set P (0|10) = 1. We then
choose P (0|x1x2) (where x1x2 6= 10) to maximize R(P ).
It is well known (see, for example, [11]) that the conditional
probabilities P (0|x1x2) can be chosen such that R(P ) is
the capacity of the one-dimensional ICI constraint. However,
for the encoder that is presented in step 2 below we require
that P1(x1x2) and P (x3|x1x2) be rational numbers. Since
R(P ) is a continuous function, we can indeed assume that
P1(x1x2) and P (0|x1x2) are rational numbers that will yield
an encoder with rate close to CICI , for sufficiently large n.
(See [14].) Henceforward, we will assume that P1(x1x2)n
and P (0|x1x2)P1(x1x2)n are integers.

Step 2- Encoding and Decoding: For x1, x2 ∈ {0, 1}, let
px1

= Prob(b1 = x1) = P1(x10)+P1(x11), and let px1x2
=

Prob(b1b2b3 = x1x21) = P (1|x1x2)P1(x1x2). Recall, that
the constant-weight code that consists of all binary sequences
of length n and weight w is denoted by C(n,w). For the
encoding process, we will need the following three codes,
defined in terms of constant-weight codes:

C1 = C(n, p1n)
C2 = C(p0n, P1(01)n)× C(p1n, P1(11)n)

C3 = C(P1(00)n, p00n)× C(P1(01)n, p01n)×
C(P1(10)n, p10n)× C(P1(11)n, p11n).

(4)

Note that, since P (1|10) = 0, it follows that
C(P1(10)n, p10n) = {0}. The codes C1 and C2 will be
used to program the first two wordlines of the memory. The
remaining wordlines will be programmed using the code C3.
For every 1 ≤ i ≤ 3, let E i : Z|Ci| → Ci, Di : Ci → Z|Ci|
be the encoder and decoder for Ci, respectively.

Construction 1. The encoding process is defined as follows:
• Initialize: Given a message M1 ∈ Z|C1|, write
E1(M1) into WL1. Given a message M2 ∈ Z|C2|, set
(c0, c1) = E2(M2). For all x ∈ {0, 1}, set Jx =
{j : (E1(M1))j = x}. Write cx into WL2,Jx . Set
i← 3.

• Given a message M ∈ Z|C3|, read WLi−2,WLi−1
and for every x1x2 ∈ {0, 1}, set Jx1x2

=
{j : wi−2,jwi−1,j = x1x2}. Set (c00, c01, c10, c11) =
E3(M). Write cx1x2 into WLi,Jx1x2

. Set i← i+ 1.
Decoding of WLi is defined as follows;
• If i = 1, M1 = D1(WLi). If i = 2, read the first

line and find the sets of indices Jx, x ∈ {0, 1}. M2 =
D2(WL2,J0 ,WL2,J1).

• For i ≥ 3, read WLi−2,WLi−1 and find
Jx1x2 , for all x1, x2 ∈ {0, 1}. M =
D3(WLi,J00 ,WLi,J01 ,WLi,J10 ,WLi,J11).

WL1 0 1 0 1 0 0 0 1 1 0
WL2 0 0 1 0 0 1 0 1 1 0
WL3 0 0 0 0 1 1 1 0 1 0

C1 C(p0n, P1(01)n) C(p1n, P1(11)n) C(P1(00)n, p00n)

C(P1(01)n, p01n) C(P1(10)n, p10n) C(P1(11)n, p11n)

Fig. 2: Programming the first three wordlines with probabilities
P (0|x1x2) = 0.5, for all x1x2 ∈ {0, 1}2, x1x2 6= 10, and
asymptotic rate 0.8. The color of a cell indicates to which constant-
weight code it belongs. The gray cells must be programmed to 0.

Fig. 2 illustrates, for n = 10, the first three programmed
wordlines obtained by encoding according to Construction 1,
with probabilities P (0|x1x2) = 0.5, for all x1, x2 ∈ {0, 1},
x1x2 6= 10. The asymptotic code rate is 0.8.

Corollary 1. For every ε > 0 and sufficiently large m,n,
there exist probability mass functions P1 and P such that
the coding scheme described in Construction 1 produces a
row-by-row bitline ICI constrained coding scheme of rate
greater than CICI − ε.

IV. BITLINE ICI ERROR CORRECTING CODES

By preventing all bitline ICI errors, the coding scheme
suggested in Section III may impose a too severe rate penalty
if the probability of ICI-induced errors is not very large. If
we instead consider conditional probability mass functions
P that allow P (1|10) to be positive, we can program into
the memory an m × n array such that for every i, the
pattern 1 0 1 appears vertically in rows i− 2, i− 1, i exactly
P (1|10)P1(10)n times. Note that for such P , the rate R(P )
can exceed CICI . Let α be the probability that a bitline
pattern 1 0 1 changes to 1 1 1 due to an ICI error (we assume
α is a known parameter of the flash memory device.) Our
coding technique will guarantee a fixed probability of a
bitline ICI error in a cell. By combining it with a systematic
error correcting code, we get a coding scheme that mitigates
bitline ICI and attains a fixed rate that exceeds the capacity
of the one-dimensional ICI constraint.

Let C1,C2,C3 be as defined in (4) and let C be a
systematic error-correcting code of length n + r that can
correct up to P1(10)P (1|10)αn errors. Let E : {0, 1}n → C
and D : C → {0, 1}n be an encoder and decoder for C,
respectively. As before, we denote the first n cells of the
ith row by WLi. We denote the r parity check bits of
the ith row by PBi = pbi,1pbi,2... . . . pbi,r, i.e., PBi =
(E(WLi))[n+1,n+r]. For simplicity, we neglect the bitline
ICI errors in PBi. In practice, PBi could be encoded as
in Section III to avoid the pattern 1 0 1 along bitlines. In
that case the number of redundancy symbols (the length
of PBi) will be r̃ ≈ d r

0.8114e. As before, we program
WLi according to the sequences that are programmed into
WLi−2 and WLi−1. However, upon programming WLi, the
wordline WLi−2 may suffer from bitline ICI errors (when
WLi−1 was programmed). To overcome these errors we can
use the error-correcting code on the (i − 2)-nd wordline to
correct the errors. Alternatively, to improve the encoding
speed we use an n-bit side memory (for example DRAM
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memory) which stores the information that was written on the
wordline WLi−2 and thus has no ICI errors. The sequence
stored in the side memory is denoted by s = s1s2 . . . sn.
Upon programming WLi, s stores the sequence that was
programmed into WLi−2, before bitline ICI errors had occur.

Construction 2. Define the encoder EICI as follows.
• Initialize: Given a message M1 ∈ Z|C1|, write
E1(M1) into WL1. Given a message M2 ∈ Z|C2|, set
(c0, c1) = E2(M2). For all x ∈ {0, 1}, set Jx =
{j : (E1(M1))j = x}. Write cx into WL2,Jx and write
(E(WL2))[n+1,n+r] into PB2. Set s = WL2. Given
a message M3 ∈ Z|C3|, read WL1, s, and for every
x1x2 ∈ {0, 1}, set Jx1x2

= {j : w1,jsj = x1x2}.
Set (c00, c01, c10, c11) = E3(M). Program cx1x2 into
WL3,Jx1x2

and (E(WL3))[n+1,n+r] into PB3. Set i←
4.

• Given M ∈ Z|C3|, read s,WLi−1 and for every
x1x2 ∈ {0, 1}, set Jx1x2

= {j : sjwi−1,j = x1x2}.
Set (c00, c01, c10, c11) = E3(M). Set s = WLi−1
and then write cx1x2 into WLi,Jx1x2

. Program PBi =
(E(WLi))[n+1,n+r]. Set i← i+ 1.

Define the decoder DICI as follows.
• If i = 1, return M̃1 = D1(WLi). If i = 2, set

u2 = D(WL2PL2) and then read the first line and
find the sets of indices Jx, x ∈ {0, 1}. Return M̃2 =
D2(u2,J0 ,u2,J1). If i = 3, set u2 = D(WL2PB2),
u3 = D(WL3PB3) and for all x1, x2 ∈ {0, 1}, set
Jx1x2 = {j : w1,ju2,j = x1x2}. Return M̃3 =
D3(u3,J00 ,u3,J01 ,u3,J10 ,u3,J11)

• For i ≥ 4, set uk = D(WLkPBk), k = i− 2, i− 1, i.
For all x1, x2 ∈ {0, 1} set Jx1x2

= {j : ui−2,jui−1,j =
x1x2}. Return M̃ = D3(ui,J00 ,ui,J01 ,ui,J10 ,ui,J11).

Fig. 2 illustrates, for n = 8, the first four wordlines
obtained by programming according to Construction 2, with
probabilities P (0|x1x2) = 0.5, for all x1, x2 ∈ {0, 1}. The
rate of the code is n

n+r = 8
8+r .

For every i ≥ 2, let c̃i = c̃i,1, c̃i,2, . . . , c̃i,n be the binary
sequence that was programmed to WLi (before bitline ICI
errors may have occurred) using the encoder defined in
Construction 2 and let

Ni = |{j : c̃i−1,j c̃i,j c̃i+1,j = 101}|.
Lemma 1. For every 2 ≤ i ≤ m,

Ni = P1(10)P (1|10)n.

Proof. Since c̃i is formed by the constant-weight codes
defined in (4) according to the stationary Markov process
defined by P1 and P , the claim follows.

Lemma 2. For every i, j, 2 ≤ i ≤ m and 1 ≤ j ≤ n,

Prob(wi,j 6= c̃i,j) = P1(10)P (1|10)α.

Proof. Since we program the wordlines according to the
stationary Markov process defined by the probability mass
functions P1 and P , it follows that for every 2 ≤ i ≤ m,
1 ≤ j ≤ n, Prob(c̃i−1,j c̃i,j c̃i+1,j = 101) = P1(10)P (1|10).
We also have that

Prob(wi,j 6= c̃i,j) = Prob(wi,j = 1, wi−1,j c̃i,j c̃i+1,j = 101).

If c̃i,j = 0 then wi−1,j = c̃i−1,j and therefore,

Prob(wi,j 6= c̃i,j) =

Prob(wi,j = 1, c̃i−1,j c̃i,j c̃i+1,j = 101) =

P1(10)P (1|10)α.

Lemma 3. For every i, j, 2 ≤ i ≤ m and 1 ≤ j ≤ n,

Prob(wi,j = 1|c̃i,j = 0) =
P1(10)P (1|10)α
P1(00) + P1(10)

.

Proof. Since we program the wordlines according to the
stationary Markov process defined by the probability mass
functions P1 and P , it follows that for every 2 ≤ i ≤ m and
1 ≤ j ≤ n, Prob(c̃i,j = 0) = P1(00) + P1(10). We also
have that

Prob(wi,j = 1|c̃i,j = 0) =
Prob(wi,j = 1, c̃i,j = 0)

Prob(c̃i,j = 0)
.

By Lemma 2 the claim follows.

Theorem 1. For every 2 ≤ i ≤ m, let M be the message
that was stored in WLi by EICI of Construction 2. If a
fraction of at most α of the P1(10)P (1|10)n appearances
of the pattern 1 0 1 along bitlines of c̃i−1, c̃i, and c̃i+1 were
changed to 1 1 1, then DICI(WLi) =M . Moreover, the rate
of the code that is defined in Construction 2 is

Rm(P )n

n+ r
,

where Rm(P ) is as defined in (3).

Proof. For i = 1, since no bitline ICI error can occur in
WL1 it follows that WL1 = E1(M) and DICI(WL1) =
D1(WL1) =M . For every i ≥ 2, since we assume no more
than αP1(10)P (1|10)n errors occur in WLi and since C
can correct up to αP1(10)P (1|10)n errors it follows that
ui = D(WLiPLi) stores the original sequence that was
programmed to WLi. Hence, for i = 2, (u2,J0 ,u2,J1) =
E2(M), and DICI(WL2) = D2(u2,J0 ,u2,J1) = M . For
every 3 ≤ i ≤ m, (ui,J00 ,ui,J01 ,ui,J10 ,ui,J11) = E3(M),
and DICI(WLi) = D3(ui,J00 ,ui,J01 ,ui,J10 ,ui,J11) =M .

The rate of the code can be readily verified.

Let ε(P, α) = P1(10)P (1|10)α
P1(00)+P1(10)

. From Lemma 3, ε(P, α) =
Prob(wi,j = 1|c̃i,j = 0), for all 2 ≤ i ≤ m, 1 ≤ j ≤ n.
Let {Cn}∞n=1 be a collection of binary systematic error cor-
recting codes, where Cn is of length n, which asymptotically
achieves the capacity of the binary symmetric channel (BSC).
If we use Cn in Construction 2, then, as m and n tend to
infinity, the rate of our coding scheme tends to

Rsymm(P, α) = limm→∞,n→∞
Rm(P )n
n+r =

R(P )(1−H(ε(P, α)))
(5)

and we conjecture that the average error probability goes to
zero.

Since the bitline ICI errors are asymmetric errors, we can
use a binary systematic code of length n for the Z-channel
in Construction 2. The symmetric information rate (SIR) of
the Z-channel, where P (Y = 1|X = 0) = p, is given by
H( 1−p2 ) − 1

2H(p), which is achievable with random linear
1739



WL1 1 1 0 1 0 0 0 1 PB1

WL2 1 0 1 1 0 1 0 1 PB2

WL3 1 0 0 0 1 1 0 1 PB3

WL4 0 1 0 1 1 1 0 0 PB4

Fig. 3: Programming the first four wordlines with probabilities
P (0|x1x2) = 0.5, for all x1x2 ∈ {0, 1}2. The color of a cell
indicates to which constant-weight code it belongs. Note, that the
gray color of w3,1 indicates that w2,1 was changed to 1 by a bitline
ICI error.

codes. Assuming that we have an infinite collection of SIR-
achieving binary systematic codes, the rate of our coding
scheme tends to

Rasymm(P, α) = limm→∞,n→
Rm(P )n
n+r =

R(P )
(
H( 1−ε(P,α)2 )− 1

2H(ε(P, α))
) (6)

and we again conjecture that the average error probability
goes to zero.

Using (2) we can derive expressions for Rsymm(P, α) and
Rasymm(P, α) in terms of P (0|x1x2) and α. We then define

Rsymm(α) = max
P (0|x1x2): x1,x2∈{0,1}

{Rsymm(P, α)}

and
Rasymm(α) = max

P (0|x1x2): x1,x2∈{0,1}
{Rasymm(P, α)}.

Figure 4 shows the graphs of Rsymm(α) and Rasymm(α).
Note that both rates usually exceed CICI . Although
Rasymm(α) exceeds Rsymm(α), less is known about con-
struction of good codes for the Z-channel than for the BSC.
For the case in which we don’t neglect the bitline ICI errors
in PBi, we assumed that the number of redundancy bits is
r̃ ≈ d r

0.8114e and similarly calculated the corresponding rates
R̃symm(α) for symmetric codes and R̃asymm(α) asymmetric
codes. Their plots are also depicted in Figure 4.
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Fig. 4: The graphs of Rsymm(α), Rasymm(α), R̃symm(α), and
R̃asymm(α).

V. CONCLUSION

In this paper, two row-by-row coding schemes were sug-
gested to handle bitline ICI errors in flash memories. The first
coding scheme uses ideas from [14] to eliminate the pattern
1 0 1 along bitlines, and the resulting code rate asymptotically
attains the 1D ICI capacity. The second coding scheme
maintains a nonzero probability of occurrence of the vertical

pattern 1 0 1 along bitlines and uses a systematic error-
correcting code on wordlines, allowing an overall coding
rate that exceeds the ICI capacity. Although not discussed
here, the proposed methods have been use to handle bitline
as well as wordline ICI errors in MLC flash memory.
Designing efficient, practical row-by-row coding schemes
for 2D constraints in flash memory remains a challenging
problem. Practical issues such as throughput, latency, and
cache lifetime also require careful study.
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