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Abstract—One of the prominent properties of flash memo-
ries is their asymmetry between writing and erasing. When
pages, which are the smallest write unit, are updated, they are
written in a new copy rather than in place. As a result, every
page can have more than one copy in the memory, its current
version as well as some of its old invalid copies. Each invalid
copy can be cleaned only when the block in which it resides
is erased (blocks are the smallest erase unit and are typically
in the order of hundreds of pages). This write property intro-
duces redundancy in the memory, given by the invalid copies of
the pages, and as a result can also affect the memory lifetime.

In this paper we show how this inherent redundancy of
invalid pages can be taken advantage of for the purpose of
improving RAID solutions which are based upon Solid State
Drives (SSDs). Our main contribution in the paper is a con-
struction which shows how to improve the repair bandwidth of
codes which are implemented on SSDs. We first show that with
a single parity it is possible to transmit on the average roughly
half of the data for rebuilding a single drive failure. We then
show how these ideas can be extended for Zigzag codes with
two parities and again improve their repair bandwidth.

I. INTRODUCTION

Solid State Drives (SSDs), built upon NAND flash, have
become a prominent storage medium. They have several ad-
vantages over Hard Disk Drives (HDDs) such as better I/O
performance, lowe energy consumption, and better shock re-
sistance. Furthermore, since the price of flash continues to
drop down, SSDs have become also an attractive solution
for personal computers as well as servers and data centers.

When SSDs are used in servers and data servers, RAID
(redundant array of independent disks) [19] is used in or-
der to provide reliability and support drive failures. There
is an enormous amount of literature on RAID and over the
last three decades several works studied possible solutions
which improve different parameters such fault tolerant ca-
pability, computation complexity, I/O performance, update
complexity, and recently rebuilding complexity.

Existing RAID solutions which were originally designed
for HDDs can be used for SSDs as well. However, there
are several significant differences between SSDs and HDDs.
Mainly, flash suffers a limited life time which depends upon
the number of times it can be erased. Hence, several works
considered this behavior in order to determine whether to
distribute the parities evenly or unevenly across the drives;

see e.g. [2], [14], [15]. Other works study optimization of
other parameters such as how to efficiently rewrite the data
and parities to the drive to reduce the number of block era-
sures [1], [8], [10]–[13], [16], [17].

The works mentioned above take into account the inherent
asymmetry in flash between programming and erasing. The
smallest write unit in flash is a page and pages are organized
into blocks, which are the smallest erase unit. In order to
avoid redundant block erases upon page rewrites, the pages
are rewritten out-of-place and a flash translation layer (FTL)
maps between the physical location of every logical page.
Furthermore, in order to accommodate this write mecha-
nism, SSDs have more physical than logical memory and
the ratio between the additional memory and logical mem-
ory is called over-provisioning (OP) [3], [7].

Recently, several works in the area of distributed storage
studied codes which their main goal is to optimize the re-
building process of a single drive failure [4]. Assume that
a RAID solution uses a code which can support multiple
drive failures, then the goal is to optimize the amount of
data which needs to be read and transmitted in order to re-
build the failed drive. Examples of such codes are regenerat-
ing codes, see e.g. [5], [20], [24]–[26] or locally repairable
codes [18], [21], [23]. In regenerating codes the main fig-
ure of merit, called repair bandwidth, is the amount of data
that needs to be transmitted in order to rebuild a single drive
failure. Zigzag codes are one example of such a code. For
example, if there are two parity drives and a single drive
fails then only half of the data from each of the surviving
drives is transmitted in order to rebuild the failed drive.

In this paper we also aim in improving the repair band-
width for a single drive failure, however we show how to
accomplish this goal using the inherent redundancy due to
the OP in the SDDs. Let us consider a RAID 5 system, that
is a single parity. Traditionally, if one drive fails then the
information from the remaining drivers has to be read in or-
der to rebuild this drive. However, when using SSDs, we
will show how it is possible to read from significantly less
drives in order to rebuild the failed drive.

The rest of this paper is organized as follows. In Sec-
tion II, we set the model, assumptions, and problems we
study in the paper. In Section III we give our first code
construction. We show that even with a single parity it is



possible to improve the repair bandwidth such that approx-
imately only half of the data is transmitted for rebuilding.
In Section IV, we show how it is possible to accomplish
the same task with two redundancy drives. Here we build
upon Zigzag codes which achieve the optimal repair band-
width and show how their repair bandwidth can be improved
when using SSDs. Finally, Section V concludes the paper
and suggests problems for future research.

II. BACKGROUND DEFINITIONS AND PRELIMINARIES

In this section we formally define the setup, assumption,
and problems studied in the paper. For a positive integer n
we denote by [n] the set {1, . . . , n}.

The smallest write unit in flash memories is a page which
its size ranges between 2KB and 16KB [3], [7]. The small-
est erase unit is a block which consists of a group of pages,
usually in the order of hundreds of pages. Hence, when a
page is updated it is not written in its current physical loca-
tion but rather in a new available location. This out-of-place
write procedure requires a specific design of the memory.
First, there is more physical than logical memory, and the
ratio between the amounts of additional storage and logical
storage is called over-provisioning (OP). A Flash Trans-
lation Layer (FTL) maps between the physical location of
every logical page. Finally, since pages are always rewritten
in a new location, it is required to free space when there is
no more available space, in a process called Garbage Col-
lection (GC) [3], [7].

Since pages are rewritten out-of-place, a logical page may
have more than one copy in the memory, its new updated
data as well as some old versions of it. The number of copies
of the page depends upon the amount of OP, GC algorithm,
and the write workload to the memory. Typical OP ratios for
enterprise storage are in the order of 25-30% [22]. Hence,
it is not common that every logical page has more than one
copy in the memory since that will require an OP ratio of at
least 100%. However, it is very likely to assume that there
exists a time window after the page in rewritten in which
its old copy still exists in the memory.

To simplify our notation, we assume that every logical
page can have at most two physical copies in the memory,
the updated version and its version right before that update.
We will later explain when and how we use the previous
copies of the pages in the memory. Furthermore, in order
to use previous copies of the pages in the memory, we will
also need to know how to track their locations. This can be
done either by the FTL or by the metadata of the current
valid copy of the page.

Let us now describe the RAID structure using multiple
SSDs. Assume that there are n SSDs. Every SSD has its
own GC algorithm and FTL which we will not change. A
linear [n, k] linear code will be called a RAID code if there
are k information drives, r = n− k redundancy drives, and

it can tolerate r drive failures. A codeword will be called
also a stripe and it will consist of one page from each drive.
We will denote a stripe by

(a1, . . . , ak, p1, . . . , pr),

where ai for i ∈ [k] denotes an information page and for
j ∈ [r], p j is a redundancy page. We assume also that on
each write at most a single page in a stripe is updated. We
will also assume that the redundancy pages are distributed
evenly among the drives.

The repair bandwidth is defined to be the amount of data
that needs to be transmitted in order to rebuild a failed drive
[4], [26], and the repair bandwidth ratio is the ratio between
the amount of transmitted data and the available data (i.e.
the data that didn’t fail). While in most works the repair
bandwidth and ratio are studied in the worst case we study
here the average case in which we will calculate the average
amount of data which is transmitted to rebuild a single drive
failure, where every drive fails with the same probability.

III. AVERAGE REPAIR BANDWITH WITH A SINGLE
PARITY

In this section we study [n, n− 1] RAID codes, so each
stripe has n− 1 information pages and one more redundancy
page. Under the conventional setup, if one drive fails then
for each stripe, all the remaining pages have to be transmit-
ted to rebuild the failed page. In this case we will say that
the repair bandwidth is n − 1 pages and the repair band-
width ratio is 1. The main goal of this section is to show
that when using SSDs, it is possible to have better average
repair bandwidth.

We first describe the code construction with a single re-
dundancy page. To simplify some of the analysis here, we
assume that n is odd in the rest of this section. A crucial
part of the the construction is the update policy in which
we rewrite the redundancy page upon a rewrite of an in-
formation page. Let us denote the n pages in a stripe as a
codeword

(a1, a2, . . . , an−1, p),

so for i ∈ [n − 1], ai is an information page and p is a
redundancy page. The redundancy page will be calculated
according to two possible options. It can be either a simple
parity page, in which case we will say that it is a redundancy
page of type I,

p =
n−1

∑
i=1

ai ,

or, it can be calculated according

p′ =
(n−1)/2

∑
i=1

ai +α ·

 n−1

∑
i=(n+1)/2

ai

 ,

where α is a primitive element in GF(4), and then we will



say that the redundancy page is of type II1.
At the beginning, the redundancy page is calculated to be

of type I, on the next page update the redundancy page is
calculated to be of type II, on the next update of type I and
so on. This code construction with the update policy will
be called an [n, n− 1] SSD-RAID code. In the next theorem
we will analyze the repair bandwidth of this code.

Theorem 1. Assume that the failed page in the [n, n − 1]
SSD-RAID code is neither the redundancy page nor the
last updated information page, then the repair bandwidth to
recover the failed page is at most (n− 1)/2 + 3 pages.

Proof: Assume the codeword written in the stripe is

(a1, a2, . . . , an−1, p),

and the first page was rewritten so the codeword is updated
to be

(a′1, a2, . . . , an−1, p′).

Assume also without loss of generality that p is of type I
and p′ is of type II. We have the following two equations:

p =
n−1

∑
i=1

ai ,

p′ = a′1 +
(n−1)/2

∑
i=2

ai +α ·

 n−1

∑
i=(n+1)/2

ai

 .

Let us denote A = ∑
(n−1)/2
i=2 ai and B = ∑

n−1
i=(n+1)/2 ai.

Thus, we get the following two equations

p + a1 = A + B,
p′ + a′1 = A +αB.

Since α is a primitive element in GF(4) these two equations
are linearly independent and we can recover the value of
both A and B, while reading 4 pages so far a1, a′1, p, p′.
The variable A is a summation of (n− 1)/2− 1 pages and
B is a summation of (n− 1)/2 pages. Let i be the index
of the failed drive. If 2 6 i 6 (n− 1)/2, then it is enough
to read (n− 1)/2− 2 pages to recover the failed page and
if (n + 1)/2 6 i 6 (n− 1) then it is enough to read (n−
1)/2 − 1 pages to recover the failed page. In either case,
we read at most

4 + (n− 1)/2− 1 = (n− 1)/2 + 3

pages to rebuild the failed page.
We can deduce the following corollary on the average

repair bandwidth ratio.

1For that we will perform the operations on every pair of bits together
from each page.

Corollary 2. The average repair bandwidth ratio of the
[n, n− 1] SSD-RAID code is

1
2
+

7n− 11
2n(n− 1)

.

Proof: If the failed page is the last updated page or the
parity page then n− 1 pages are read for rebuilding and the
repair bandwidth ratio is 1. Otherwise, we saw from The-
orem 1 that for (n− 1)/2− 1 pages the repair bandwidth
is (n − 1)/2 + 2 pages and for the remaining (n − 1)/2
pages the repair bandwidth is (n− 1)/2 + 3 pages. Thus,
we conclude that the average repair bandwidth ratio is

2
n
· 1 +

(n− 1)/2− 1
n

· (n− 1)/2 + 2
n− 1

+
(n− 1)/2

n
· (n− 1)/2 + 3

n− 1

=
n2 + 6n− 11

2n(n− 1)
=

1
2
+

7n− 11
2n(n− 1)

.

Note that the number of stripes is very large and we also
assume that the redundancy pages are distributed evenly
among the drives. Thus, if pages are also rewritten evenly
among the drives then the worst case repair bandwidth ra-
tio for each SSD will be very close to the average value
we calculated here. We also note that in case the previous
copy of the redundancy page or the last updated informa-
tion page in the stripe were cleaned by the GC, then we
can simply invoke the conventional recovery procedure
with repair bandwidth ratio 1. Furthermore, even with this
modification we can always support a single drive failure.
The same claims will hold also in the next section where
we give a similar construction with two redundancy pages.

IV. AVERAGE REPAIR BANDWITH WITH TWO PARITIES

The idea we presented in Section III can be extended for
multiple drive failures. We will consider here codes which
tolerate two drive failures while the extension for multiple
drive failures will be left for future work.

In general, if one uses Reed Solomon (RS) codes as an
[n, n− 2] RAID code, then the repair bandwidth for a single
drive failure is n− 2 pages, so the rebuilding bandwidth ra-
tio is (n− 2)/(n− 1). We could improve the average ratio
so it will be roughly the same value we derived in Corol-
lary 2. However we seek to have a better result.

Our point of departure in this section is the recent con-
struction of Zigzag codes by Tamo et al. [24]. Zigzag codes
are a family of codes which optimize the repair bandwidth.
In particular, they can be used to construct [n, n− 2] array
codes with optimal repair bandwidth ratio 1/2. Specifically,
if one drive fails then it is enough to read and transmit half
of the remaining data from each drive in order to rebuild the
failed drive. We will show how, using SSDs, it is possible



to improve this repair bandwidth ratio. Let us first explain
the main ideas of the construction of Zigzag codes.

Zigzag codes are another family of array codes. If there
are two parity drives, then every entry in the array has to be-
long to a field of size at least 3. Thus, we will assume that
every entry is a pair of bits and thus the column can be con-
sidered to be a page. One of the constraints of Zigzag codes
is that the number of rows in the array has to be exponen-
tial in the number of drives. If a page is of size 16KB then,
this allows having 216 rows and thus 16 drives. Clearly, this
number can be improved if the size of each page is greater
than 16KB or if we combine several pages together. For the
purpose of the analysis, we will assume that the number of
drives is moderate and thus is not a concern to the con-
struction of Zigzag codes. Furthermore, we note that there
are other similar constructions to Zigzag codes with opti-
mal repair bandwidth such as [5], or other codes with repair
bandwidth ratio less than 1, such as EVENODD codes with
repair bandwidth ratio 3/4 [25], that can also be used in our
constructions. We choose here Zigzag codes so illustrate our
ideas.

Since we treat every column as a page, we can consider
the Zigzag code as an [n, n− 2] RAID code which its repair
bandwidth ratio is 1/2. We denote the codewords in this
code as a stripe

(a1, . . . , an−2, p1, p2).

The redundancy page p1 is a simple parity of the infor-
mation pages so p1 = ∑

n−2
i=1 ai. To understand the rule in

which the second redundancy page is updated, denote p2 =
(p2,1, . . . , p2,m), where m is the number of pair of bits in p2,
and we write similarly for i ∈ [n− 2] ai = (ai,1, . . . , ai,m).
Then the construction of Zigzag codes determines for each
j ∈ [m] a linear function

p2, j =
n−2

∑
i=1

γi, jai,σ(i, j). (1)

where the values of γi, j and σ(i, j) ∈ [m] are set by the
code construction and the coefficients γi, j need to belong to
a field of size at least 3 (in our case we simply use the field
GF(4)).

We will follow the same ideas as in the construction of
the [n, n− 1] SSD-RAID code from Section III to update
the redundancy pages. For simplicity, in this section we will
assume that n is even. The redundancy pages p1, p2 are up-
dated in the same way to be either of type I or type II. For
the redundancy page p1 we use exactly the same rule as in
the [n, n− 1] SSD-RAID code. For the second redundancy
page, if it is calculated to be of type I then it is calculated
according to equation (1) and if it is of type II then it is

calculated according to the rule

p2, j =
n/2−1

∑
i=1

γi, jai,σ(i, j) +α ·

 n−2

∑
i=n/2

γi, jai,σ(i, j)

 ,

where α is again a primitive element in GF(4).
We call this code construction an [n, n− 2] SSD-RAID

code, and in the next theorem we will analyze its repair
bandwidth.

Theorem 3. Assume that the failed page in the [n, n − 2]
SSD-RAID code is neither the redundancy page nor the last
updated page, then the total amount of transmitted data to
recover the failed page equals to at most n/4 + 3 pages.

Proof: Assume the following stripe is a codeword writ-
ten in the drives

(a1, a2, . . . , an−2, p1, p2),

where p1 and p2 are of type I. Assume without loss of gen-
erality that the first page was rewritten so the codeword is
updated to be

(a′1, a2, . . . , an−2, p′1, p′2),

and p′1 and p′2 are of type II. As before we denote A =

∑
n/2−1
i=2 ai and B = ∑

n−2
i=n/2 ai, so we can recover both A

and B by reading 4 pages, namely a1, a′1, p1, p′1. According
to the Zigzag construction we can write for j ∈ [m], p2, j =

∑
n−2
j=1 γi, ja j,σ(i, j) and for p′2 we similarly have for j ∈ [m]

p′2, j = γ1, ja′1,σ(i, j)+
n/2−1

∑
i=2

γi, jai,σ(i, j)+α ·

 n−2

∑
i=n/2

γi, jai,σ(i, j)

 .

Next, for j ∈ [m] we denote c j = ∑
n/2−1
i=2 γi, ja j,σ(i, j) and

d j = ∑
n−2
i=n/2 γi, ja j,σ(i, j) then again as before we can re-

cover the values of c j and d j since we get two linearly in-
dependent equations. Finally we construct the vectors C =
(c1, . . . , cm) and D = (d1, . . . , dm).

Let i be the index of the failed page. If 2 6 i 6
(n− 2)/2, then we consider the following codeword in the
[n, n− 2] Zigzag code

(0, a2, . . . , an/2−1, 0, . . . , 0, p∗1 , p∗2).

We can verify that for this codeword p∗1 = A and p∗2 = C.
Hence, we can apply the decoding procedure of the Zigzag
code in order to rebuild the page ai, while from each drive
we need to transmit only half of the page. However, we need
to do so only for n/2− 3 drives (the values of A and C are
already known). Therefore, the total amount of transmitted
data in pages is

4 + (n/2− 3)/2 = n/4 + 5/2.



Similarly, we can derive that for n/2 6 i 6 n− 2 the total
amount of transmitted data in pages is

4 + (n/2− 2)/2 = n/4 + 3.

As a consequence of the last theorem we conclude the
following corollary on the average repair bandwidth.

Corollary 4. The average repair bandwidth ratio of the
[n, n− 2] SSD-RAID code is

1
4
+

15n− 38
4n(n− 1)

.

Proof: If the failed page is the last updated page or
one of the two redundancy pages then half of each of the
remaining n− 1 pages is transmitted for rebuilding and the
repair bandwidth ratio is 1/2 in this case. Otherwise, from
Theorem 3, for n/2− 2 pages the repair bandwidth ratio is
n/4+5/2

n−1 and for n/2− 1 pages the repair bandwidth ratio

is n/4+3
n−1 . Together we get that the average repair bandwidth

ratio is
3
n
· 1

2
+

n/2− 2
n

· n/4 + 5/2
n− 1

+
n/2− 1

n
· n/4 + 3

n− 1

=
1
4
+

15n− 38
4n(n− 1)

.

We finally note that the modifications we introduced in
the construction of Zigzag do not affect their erasure cor-
rection capability of two drive failures.

V. CONCLUSION

The main goal of this work is to show how the inher-
ent redundancy in SSDs due to over-provisioning can be
used in order to improve the performance of RAID sys-
tems. The main feature which we focused on here is the
repair bandwidth, where we showed that even with a sin-
gle parity it is possible to significantly improve the repair
bandwidth by a factor of almost 2. We believe that the ex-
amples and constructions we gave in the paper are only first
ideas for more codes which use similar ideas and properties
from flash memories to improve the performance of codes
for distributed storage. In particular, these ideas can be used
in other regenerating codes as well as other families of codes
such as locally repairable codes [6], [23] in order to further
improve their locality.
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