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Abstract—This paper studies a new model of stuck-at memory
cells which is motivated by the defect model of multi-level cells in
non-volatile memories such as flash memories and phase change
memories. If a cell can store the levels 0, 1, . . . , q − 1, we say
that it is partially stuck-at s if it can only store values which are
at least s, where 1 ≤ s ≤ q − 1. In this paper, we consider the
case s = 1. A lower bound on the redundancy of a code which
masks u partially stuck-at cells is u(1− logq(q − 1)). An upper

bound of min{u, n(1− logq(q − 1)
)} on the redundancy can be

achieved by either codes using only positive levels or codes which
mask stuck-at cells (not partially). Our main contribution in this
paper is the construction of efficient codes which improve upon
this upper bound on the redundancy for all values of q and u.

Index Terms—defect cells, flash memories, (partially) stuck-at
cells, phase change memories

I. INTRODUCTION

Non-volatile memories such as flash memories and phase
change memories (PCMs) have paved their way to be a dom-
inant memory solution for a wide range of applications, from
consumer electronics to solid state drives. The rapid increase in
the capacity of these memories along with the introduction of
multi-level technologies have significantly reduced their cost.
However, at the same time, their radically degraded reliability
demands for advanced signal processing and coding solutions.

PCM consists of cells that can be in distinct physical states.
In the simplest case, a PCM cell has two possible states,
an amorphous state and a crystalline state. Multi-level PCM
cells can be designed by using partially crystalline states [3].
Failures of PCM cells stem from the heating and cooling
processes of the cells. These processes may prevent a PCM
cell to switch between its states and thus the cells become
stuck-at [7], [10], [17], [19]. Similarly, in the multi-level
setup, the cells can get stuck-at one of the two extreme states,
amorphous or crystalline. Or, alternatively, the cells cannot be
programmed only to one of the two states, but can be in all
other ones; for example, if a cell cannot be programmed to the
amorphous state it can still be at the crystalline state as well
as all other intermediate ones. A similar phenomenon might
appear in flash memories. Here, the cells are programmed by
electrically charging them with electrons in order to represent
multiple levels. If charge is trapped in a cell, then its level
can only be increased, or it may happen that due to defects,
the cell can only represent some lower levels. Inspired by this
defect model, the main goal of this paper is the study of codes
which combat cells that are partially stuck-at. In [6], codes for
unreliable cells in flash memories were studied, i.e., the charge
level in certain cells should not exceed a threshold to prevent

these cells from causing many errors. This model can be seen
as the dual of partially stuck-at cells.

In the binary version of stuck-at cells, the memory consists
of n binary cells and at most u of them are stuck-at either in
the zero or one state. The encoder knows the locations and
values of the stuck-at cells, while the decoder does not. The
problem is to find the number of messages that can be encoded
and successfully decoded by the decoder. If u cells are stuck-
at then it is not possible to encode more than n− u bits, and
thus the problem is to design codes with redundancy close
to u. The same problem is relevant for the non-binary setup
of this model, where the cells can be stuck-at any level.

The study of codes for memories with stuck-at cells, also
known as memories with defects, takes a while back to the
1970s. To the best of our knowledge, the problem was first
studied in 1974 by Kuznetsov and Tsybakov [14]. Since then,
several more papers have appeared, e.g. [1], [2], [4], [9],
[12], [13], [18], [21], [22], [23]. The main goal in all these
works was to find constructions of codes which mask a fixed
number of stuck-at cells and correct another fixed number of
additional arbitrary errors. Recently, the connection between
memories with stuck-at cells and the failure models of PCM
cells has attracted a renewed attention to this prior work.
Several more code constructions as well as efficient encoding
and decoding algorithms for the earlier constructions were
studied; see e.g. [5], [11], [15], [16], [20].

The main focus of this paper is the study of codes which
mask cells that are partially stuck-at. We assume that cells
can have one of the q levels 0, 1, . . . , q − 1. Then, it is said
that a cell is partially stuck-at level s, where 1 ≤ s ≤ q − 1,
if it can only store values which are at least s. We assume
in this work that cells can only be partially stuck-at at level
s = 1. We first notice that for a code masking u partially
stuck-at level 1 cells, its redundancy has to be at least u(1−
logq(q−1)). On the other hand, codes which mask any number
of partially stuck-at cells can simply be constructed by using
only the positive levels in each cell. This trivial construction
has redundancy n(1− logq(q−1)). Alternatively, codes which
mask u stuck-at cells (not partially) can be used to mask u
partially stuck-at cells. However, the redundancy of such a
code will be at least u symbols. Thus, these two schemes
give an upper bound on the redundancy of codes for masking
partially stuck-at cells, and if one assumes the existence of
optimal codes which mask u stuck-at cells then it is possible
to achieve redundancy min{u, n(1 − logq(q − 1)

)}. In this
work, we design codes which mask partially stuck-at cells
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with smaller redundancy and analyze how far they are from
the lower bound. In particular, for u < q, we show that one
redundancy symbol is sufficient to mask all partially stuck-at
cells. If u = q, we give two constructions. The first one uses
matrices with special properties to construct such codes, and
the second one uses binary codes which mask stuck-at cells
(not partially). Then, it is shown how the latter one can be
extended for all other values where u > q.

The rest of the paper is organized as follows. In Section II,
we introduce notations and formally define the model of
partially stuck-at cells studied in the paper. In Section III, we
propose codes along with encoding and decoding algorithms
for the case u < q. In Section IV, we give a construction for
the setup u = q and in Section V we show a more general
solution for u ≥ q by using codes which mask binary stuck-at
cells. Finally, Section VI concludes this paper.

II. DEFINITIONS AND PRELIMINARIES

In this section, we formally define the models of stuck-at
cells studied in the paper and introduce the notations and tools
we will use in the sequel. The cells are assumed to represent
q-ary symbols having values belonging to the set {0, 1, . . . , q−
1}. In general, for a positive integer n, we denote by [n] the
set {0, 1, . . . , n− 1}.

There are two main models for stuck-at memory cells. In the
first one, it is said that a cell is stuck-at level s ∈ [q] if it can
store only the value s. In the second one, a cell is said to be
partially stuck-at level s ∈ [q] if it can store only values which
are at least s. In this work, when studying partially stuck-at
cells, we only consider s = 1 and thus whenever saying that a
cell is partially stuck-at or mention a partially stuck-at cell,
we assume that it is partially stuck-at level 1.

We use the notation (n,M)q to indicate a code of length
n over the alphabet [q] with M codewords. Its redundancy is
denoted by r = n− logq M . If the code is linear over [q] (in
which case q is a power of a prime and [q] corresponds to
the finite field Fq of order q), then we denote it by [n, k]q ,
where k is its dimension and its redundancy is r = n − k.
Whenever we speak about a linear [n, k, d]q code, then d refers
to the minimum Hamming distance of an [n, k]q code. We also
denote by ρ(n, d, q) the smallest redundancy of any linear code
of length n and minimum Hamming distance d over Fq .

Definition 1 We define the following code properties:
1) An (n,M)q code C, which can mask u stuck-at cells,

is a coding scheme with encoder E and decoder D. The
input to the encoder E is the locations and values of
some u′ ≤ u stuck-at cells and a message m ∈ [M ]. Its
output is a vector ym ∈ [q]n which matches the values
of the u′ stuck-at cells and its decoded value is m, that
is D(ym) = m.

2) An (n,M)q code C, which can mask u partially stuck-
at cells, is a coding scheme with encoder E and decoder
D. The input to the encoder E is the locations of some
u′ ≤ u partially stuck-at cells and a message m ∈ [M ].
Its output is a vector ym ∈ [q]n which its value on these

locations is at least 1 and its decoded value is m, that
is D(ym) = m.

Similar definitions follow if the code C is linear.

In the design of codes which mask (partially) stuck-at cells,
the goal is to optimize the redundancy of such codes, while
providing efficient encoding and decoding algorithms. For
positive integers n, q, u, where u ≤ n, we denote by r(n, q, u)
the minimum redundancy of codes over [q] which mask u
partially stuck-at cells. A trivial lower bound on r(n, q, u) is
given in the next lemma.

Lemma 1 (Lower Bound) For any (n,M)q code which
masks u partially stuck-at cells, the redundancy is at least

r(n, q, u) ≥ u(1− logq(q − 1)).

Proof: The n−u cells which are not partially stuck-at can
each carry one q-ary information symbol and the u partially
stuck-at cells can still represent q−1 possible values (all values
except for 0). Hence, we can store at most M ≤ qn−u(q−1)u

q-ary vectors and the code redundancy satisfies

r ≥ n− logq(q
n−u(q − 1)u) = u(1− logq(q − 1)),

which implies that r(n, q, u) ≥ u(1− logq(q − 1)).
A trivial construction to mask any u ≤ n partially stuck-

at cells is to use only the values 1, 2, . . . , q − 1 as possible
symbols in any cell. Any cell therefore stores logq(q−1) q-ary
information symbols. The achieved redundancy is

n− logq
(
(q − 1)n

)
= n

(
1− logq(q − 1)

)
,

and therefore r(n, q, u) ≤ n
(
1− logq(q − 1)

)
.

Furthermore, notice that every code which can mask u
stuck-at cells can also mask u partially stuck-at cells. This
provides another upper bound on the value of r(n, q, u). Codes
for this model were studied before and one such construction
is stated in the following theorem; see e.g. [9].

Theorem 1 (Codes for Stuck-at Cells) Let C be an (n,M)q
code with minimum distance u+1, where q is a prime power.
Then, the code C can be used to mask u stuck-at cells.

It is not completely known whether this construction is op-
timal with respect to its achieved redundancy. The redundancy
of such a code is at least u since there are u stuck-at cells that
cannot store information. However, we assume that optimal
codes masking stuck-at cells with redundancy u exist. We
carry this assumption since our goal is to construct codes for
partially stuck-at cells with redundancy smaller than u.

To summarize, we conclude with the following bounds on
the value of r(n, q, u) for all positive integers n, q, u where
u ≤ n:

u(1−logq(q−1))≤ r(n, q, u)≤min{u, n(1−logq(q−1))}. (1)

These bounds will serve as a reference for our constructions in
the paper, as we should ensure to construct codes with better
redundancy than the upper bound and then study how far their
redundancy is from the lower bound.
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III. CONSTRUCTION FOR u < q PARTIALLY STUCK CELLS

A. Code Construction

In this section, we show a simple construction for masking
any u < q partially stuck-at cells, which works for any q (not
necessarily a prime power). Let us illustrate the idea of this
construction with an example.

Example 1 Let u = 2, q = 3, n = 5, and H = (1 1 1 1 1).
We will show how to construct a (5, 34 = 81)3 code which
masks any u′ ≤ u partially stuck-at cells.

Let m = (m0 m1 m2 m3) = (2 0 1 0) be the information
we want to store and assume that the two cells at positions
φ0 = 1 and φ1 = 2 are partially stuck-at. Further, define w =
(0 m0 m1 m2 m3) = (0 2 0 1 0). Given w, φ0 and φ1, our
goal is to find a vector x such that y ≡ (w+x) mod 3 masks
the partially stuck-at cells and yet the information stored in m
can be reconstructed from y.

We use x = z · H, for some z ∈ F3. Since w1 = 2, we
can choose any value from {0, 1, 2} for z except for 1, and
since w2 = 0, we can choose any value but 0. Thus, we choose
z = 2 and encode the vector y to be y = w+2 ·(1 1 1 1 1) =
(2 1 2 0 2), which masks the two partially stuck-at cells.

To reconstruct w, given y, we notice that y0 = z = 2 and
we can simply calculate y−y0·H to obtain w and therefore m.

Thus, the required redundancy for masking u = 2 partially
stuck-at cells is r = 1 (the first symbol). The lower bound
from (1) is 2 · (1− log3 2) = 0.738, while the upper bound is
min{2, 5 · (1− log3 2)} = 1.845.

The following theorem shows that with the 1 × n matrix
H = (1 1 . . . 1) from Example 1, we can always mask any
u′ ≤ u partially stuck-at cells as long as u < q.

Theorem 2 (Construction for u < q) If u < q and u ≤ n,
then for all n, there exists an (n,M = qn−1)q code which
masks u partially stuck-at cells and has redundancy one.

Proof: Let φ0, φ1, . . . , φu−1 be the positions of some u
partially stuck-at cells and let m = (m0,m1, . . . ,mn−2) ∈
[q]n−1 be the message to be written to the memory w of
length n. We first set w = (0 m0 m1 . . . mn−2). Let H =
(1 1 . . . 1) be a 1×n matrix and we perform all calculations
modulo q. Since u < q, there exists at least one value v ∈ [q]
such that wφ0

, wφ1
, . . . , wφu−1

�= v. Choose z = q − v ≡
−v and therefore, (wφi

+ z) �= 0 ≡ q, ∀i ∈ [u]. Therefore,
w + (q − v) ·H masks all u partially stuck-at cells.

Such a matrix H exists for any length n, and since we need
only one symbol to store z = −v, the redundancy is one.

This principle works for any n since H always exists.
Further, q does not have to be a prime power and we can
use this strategy even if [q] does not constitute a finite field.

Theorem 2 provides a significant improvement compared to
codes for the (stronger) model of usual stuck-at cells, where
the required redundancy is at least u. In order to compare
this to the second term in the upper bound, we will use the

approximation ln(q)− ln(q−1) ≈ 1/q for q large enough and
thus,

(1− logq(q − 1)) ≈ 1

q ln q
.

Hence, for n ≥ q ln q, the construction from Theorem 2
achieves better (i.e., smaller) redundancy than the upper bound
from (1). Similarly, for q large enough, the lower bound on the
redundancy is approximately u/(q ln q) and since u < q this
value approaches zero. This suggests that codes with better
redundancy might exist. A similar analysis can be made for
smaller values of q, however we omit the details due to the
lack of space.

B. Encoding and Decoding Algorithm

Algorithms 1 and 2 show the encoding and decoding
procedures for partially stuck-at cells with the construction
from Theorem 2 and u < q.

Algorithm 1. ENCODING
(
m; {φ0, . . . , φu−1}

)
Input: • message: m = (m0 m1 . . .mn−2) ∈ [q]n−1

• positions of stuck-at cells: {φ0, . . . , φu−1} ⊆ [n]

1 w = (w0 w1 . . . wn−1)← (0 m0 m1 . . .mn−2)

2 Set v such that v /∈ {wφ0 , wφ1 , . . . , wφu−1}
3 z ← q − v

4 y← w + z · (1 1 . . . 1)

Output: vector y with yφi ∈ {1, . . . , q − 1}, ∀i ∈ [u]

The encoder proceeds as in the proof of Theorem 2 and the
decoder simply uses the fact that the first position is used to
store the value of z.

Algorithm 2. DECODING
(
y)

Input: • stored vector: y = (y0 y1 . . . yn−1) ∈ [q]n

1 ẑ ← y0

2 m̂← (y1 . . . yn−1)− ẑ · (1 1 . . . 1)

Output: message vector m̂ ∈ [q]n−1

IV. CONSTRUCTIONS FOR u = q PARTIALLY STUCK CELLS

The next example shows that we cannot use the strategy
from Theorem 2 (and Algorithms 1, 2) if u ≥ q in order to
mask the partially stuck-at cells.

Example 2 Let u = q = 3, n = 5, and let H = (1 1 1 1 1).
Let m = (1 2 2 0) be the message vector we want to store and
assume that the cells at positions 0, 1, 3 are partially stuck. As
in Algorithm 1, let w = (0 1 2 2 0).

For z = 0, we obtain y = w, which does not mask the
partially stuck-at cell at position 0; for z = 1, we obtain
y = w+(1 1 1 1 1) = (1 2 0 0 1), which does not mask the cell
at position 3 and for z = 2, we have y = w+2 ·(1 1 1 1 1) =
(2 0 1 1 2), where the stuck-at cell at position 1 is not masked.

Thus, for any z ∈ F3, there is always one value in y that
does not match the partially stuck-at cells (i.e., it has value 0).
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Additionally, the lower bound from Lemma 1 shows that
r(5, 3, 3) ≥ 1.107 and therefore we need more than one re-
dundancy symbol. The upper bound gives r ≤ min{3, 1.845}.

The following theorem shows a construction based on the
parity-check matrix of linear codes for u = q partially stuck-at
memory cells. The proof uses Theorem 5 from the appendix.

Theorem 3 (Construction for u = q) Let q be a prime
power, u = q, and let H be the (n − k) × n parity-check
matrix of an [n, k, d]q code, where d ≥ u.

Then, we can mask any u′ ≤ u partially stuck-at cells with
redundancy r = n− k ≥ u− 1 over Fq .

Proof: Since H is the parity-check matrix of an [n, k, d]q
code, any (n−k)×u submatrix of H has rank at least d−1 ≥
u− 1 and contains no all-zero column.

The reduced row echelon (RRE) of any (n− k)× u matrix
of rank u− 1 consists of u− 1 rows as follows (up to column
permutations): ⎛

⎜⎜⎜⎜⎜⎝

1 ◦ . . . . . . . . . ◦
1 ◦ . . . . . . ◦

1 ◦ . . . ◦
. . .

. . . ◦
0 1 ◦

⎞
⎟⎟⎟⎟⎟⎠ , (2)

where ◦ is any element from Fq . The matrix H contains no all-
zero columns, and thus its RRE contains no all-zero columns.
This holds since RRE(H) = T ·H for some full-rank matrix
T and therefore, for some column vector bT (which denotes
an arbitrary column of H), the column vector aT = T · bT

(the corresponding column of RRE(H)) is all-zero if and only
if b = 0.

Hence, the rightmost column in (2) has at least one non-
zero element and its lowermost non-zero symbol determines
which of the first u − 1 columns is considered to be in one
“block” (compare Theorem 5) with the last column. Hence,
there is one “block” of length two and u− 2 blocks of length
one and (2) is a special case of (3). According to Theorem 5
from the appendix, it follows that we can mask any u partially
stuck-at cells with this matrix.

The redundancy is therefore r = n− k ≥ u− 1.
With Theorem 3 we obtain the following corollary.

Corollary 1 If u = q and q is a prime power, then for all
n ≥ q, there exists a code which masks q partially stuck-at
cells with redundancy r = ρ(n, q, q) and therefore r(n, q, q) ≤
ρ(n, q, q).

Theorem 3 shows that in many cases, we can decrease the
redundancy by several q-ary symbols compared to codes for
usual stuck-at cells. More specifically, according to Theorem 1,
in order to construct codes which correct u = q stuck-at cells,
one needs to use a linear code with minimum distance u+ 1,
while according to Theorem 3, it is enough to use a linear code
with minimum distance u. The next example demonstrates

that in many cases, this improvement can be greater than one
redundancy symbol.

Example 3 Let u = q = 5 and n = 127. In order to mask
u partially stuck-at cells, we use the parity-check matrix of
a [127, 118, 5]5 code, which is the largest code over F5 for
n = 127 and d = 5 and thus its redundancy is r = 9 (see [8]).

In order to compare this result to u = 5 usual stuck-at
cells, we need a code with minimum distance d = 6. The best
known one according to [8] has parameters [127, 115, 6]5 so
its redundancy is r = 12. The second term in the upper bound
has value 127 · (1− log5 4) = 17.6. Therefore, we get a better
code construction. However, note that it is still far from the
lower bound, which has value 5 · (1− log5 4) = 0.69.

Another application of Theorem 3 uses the parity-check
matrix of the ternary Hamming code with parameters [n =
3r−1

2 , n − r, 3]3 in order to mask u = 3 partially stuck-at
cells. The redundancy of this construction is r = log3(2n+1).
For the case r = 2, we obtain a code of length four with two
redundancy symbols, while the trivial construction in the upper
bound achieves a better redundancy of 1.47. The following
example shows how to use the same Hamming code, but we
double the code length and thus reduce the redundancy.

Example 4 Let u = q = 3, and n = 8. We will show how to
encode six ternary symbols using the matrix

H =

(
1 1 0 0 1 1 1 1
0 0 1 1 1 1 2 2

)
.

Any two columns of ( 1 0 1 1
0 1 1 2 ) are linearly independent (it is

the parity-check matrix of the [4, 2, 3]3 Hamming code), and
therefore, any submatrix of H, which consists of three columns,
has rank two and its RRE is of the form stated in (3).

Let m = (m0 m1 m2 m3 m4 m5) = (1 0 2 0 1 2) be the
message vector and assume that the cells at positions 0, 2, 4
are partially stuck. We first set the memory state be w =
(0 0 m0 m1 m2 m3 m4 m5) = (0 0 1 0 2 0 1 2). Similar
to the construction in Theorem 2, we seek to find a length-2
ternary vector z = (z0 z1) such that the vector y = w+z ·H
masks the three partially stuck-at cells. Hence, we can choose
z = (1 1) and thus, y = (1 1 2 1 1 2 1 2) masks the three
partially stuck-at cells. It is possible to show that this property
holds for any three partially stuck-at cells and any message
vector of length six.

This provides a code of length n = 8 and redundancy r = 2
for masking any u = 3 partially stuck-at cells. The upper
bound using the trivial construction is inferior as its value is
2.95, and this construction has a smaller redundancy even if
one had an optimal code for stuck-at cells with 3 redundancy
symbols. The lower bound on the redundancy is 1.107.

Note that Example 4 is not a special case of Theorem 3.
The principle from Example 4 works for u = 3 and arbitrary q
with the corresponding q-ary Hamming code. Unfortunately, it
is not clear how to generalize it to arbitrary values of u or how
to find other non-trivial matrices which fulfill the requirements
of Theorem 5 (see appendix).
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V. CONSTRUCTION USING BINARY CODES

In this section, we describe a construction for masking u
partially stuck-at cells by means of a binary code. This
construction works for any u; however, for u ≤ q, the con-
structions from the previous sections are better. To illustrate
this and our construction, we start with an example for u = q.

Example 5 Let u = q = 3, and n = 8 as in Example 4. We
show how to construct an (8, 27)3 code that can mask three
partially stuck-at cells. Let the cells at positions {0, 5, 6} be
partially stuck, the message is m = (1 2 2), and let w =
(0 0 0 0 0 1 2 2). We want to add a codeword of a binary
code to mask the partially stuck-at cells. We do not have to
care about w5 = 1 since adding 0 or 1 is unequal to 0. Thus,
we can use a binary code which masks ũ = 2 usual stuck-
at cells. We use the parity-check matrix of an [8, 4, 4]2 code,
which is the largest binary code of length n = 8 and minimum
distance d ≥ ũ+ 1 = 3 (see [8]), and therefore we obtain

y = w + (0 0 1 0) ·
(

1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1

)
= (1 0 0 1 1 1 2 0),

which masks the three partially stuck-at cells. We can easily
reconstruct z = (0 0 1 0) from (y0 y1 y2 y3) = (1 0 0 1).

Assume now, the stuck-at positions are {0, 5, 6}, m =
(0 0 2 2), and w = (0 0 0 0 0 2 2). To minimize the number of
positions which we need to mask with the binary code, we use
z̃ = 1 to define w̃ = w+ z̃ · (1 1 . . . 1) = (1 1 1 1 1 1 0 0)
and we proceed as before by finding a vector y which masks
the partially stuck-at cells. However, we need one additional
redundancy symbol to store z̃ (e.g. we can add z̃ to y4).

Thus, for these parameters, we need redundancy r = 5.

Compared to Example 4, we need higher redundancy when
using the binary code, but this construction works also for
any u ≥ q and improves in this case significantly compared
to codes for usual stuck-at cells (see Example 6).

Denote by w(u) the subvector of w of length u consisting
only of the intended information values at the partially stuck-at
positions. The principle of our construction has two steps:

1) Choose z ∈ Fq such that the number of zeros and (q −
1)s is minimized in w̃(u) = w(u) + z · (1 1 . . . 1).
Denote the number of zeros and (q− 1)s in w̃(u) by ũ.

2) Use a binary code to mask these ũ usual stuck-at cells.
This idea provides the following theorem.
Theorem 4 Let n, u, q be given (where q is not necessarily
a prime power) and let ũ = � 2uq . Assume there exists an
[n, k, d]2 binary code that can mask any ũ binary stuck-at
cells. Then, there exists a length-n code which can mask any
u′ ≤ u partially stuck-at cells with redundancy

r = (n− k) logq

(
q

�q/2
)
+ 1.

Proof: Let m ∈ [q]k−1 and let w = (0 . . . 0 m) ∈ [q]n.
First, we show that there exists some z ∈ [q] such that w̃(u)

contains at most ũ zeros and (q−1)s after adding z·(1 1 . . . 1).
Since we add the value z to all the cells, the value ũ is
equivalent to the minimum sum of any two consecutive values

in w(u). Denote vi = |{j : wj = i, j ∈ {φ0, . . . , φu−1}|,
for all i ∈ [q]. Hence, we want to minimize vi + vi+1 mod q ,
i ∈ [q]. Since

∑q−1
i=0 (vi + vi+1 mod q) = 2u, according to

the pigeonhole principle, there exists an integer i such that
vi + vi+1 mod q ≤ � 2uq  and therefore, we can find z such that
w̃(u) contains at most ũ = � 2uq  zeros and (q − 1)s.

Second, we treat the ũ cells of w̃(u) which have value 0 or
q − 1 like usual binary stuck-at cells since adding 0 or 1 to
the other u− ũ cells still masks those partially stuck-at cells.
Therefore, according to Theorem 1, we can use an [n, k, d]2
code with d ≥ ũ + 1 to mask these cells, which requires
redundancy n−k. However, since in those n−k cells we only
need to encode binary information, it is possible to encode
�q/2 symbols per cell, so the redundancy in these cells
becomes (n−k) logq

(
q

�q/2�
)
. Finally, we need one additional

redundancy symbol to store the value of z.
The factor logq

(
q

�q/2�
)

in Theorem 4 originates from the
fact that the n − k redundancy symbols which stem from
the binary code are binary, but each cell is q-ary. Thus, it is
possible to store additional information in these cells. The next
corollary summarizes this upper bound on the redundancy.
Corollary 2 For all q ≤ u ≤ n we have that

r(n, q, u) ≤ ρ

(
n,

⌊2u
q

⌋
+ 1, 2

)
· logq

(
q

�q/2
)
+ 1.

Therefore, when we use a binary [n = 2rH − 1, n− rH , 3]2
Hamming code, for q = 3, we can mask up to u = 4
partially stuck-at cells (since d = 3 ≥ � 2uq  + 1 = 3) with
redundancy r = log2(n+1)+1. Recall that with the principle
of Theorem 3, for q = 3, with a ternary Hamming code, we
can mask up to u = 3 partially stuck-at cells with redundancy
r = log3(2n+ 1).
Example 6 Let q = 3, u = 4, and n = 17. With Theorem 4,
we have ũ = � 2uq  = 2 and we need a binary code of length
17 and distance d̃ ≥ 3. The largest such code is a [17, 13, 3]2
code. Therefore, the construction from Theorem 4 requires
redundancy r = 4 + 1 = 5.

To mask u = 4 usual stuck-at cells, we need a ternary code
of length n = 17 and distance d ≥ u + 1 = 5. The largest
such code is a [17, 10, 5]3 code with 7 redundancy symbols.

The trivial construction from Section II needs redundancy
6.27 and thus, we have decreased the redundancy compared
to the trivial construction and to usual stuck-at cells.

Note that for u → n and for large q, the trivial construction
from Section II is quite good. The construction of this section
outperforms the trivial construction if u > q and n� u.

VI. CONCLUSION

In this paper, we have presented three constructions of codes
which mask partially stuck-at cells: the first one requires one
redundancy symbol and masks any u < q partially stuck-at
cells; the second one is based on linear codes and works for
u = q (where q is a prime power); and the last one is based
on binary linear codes and can be used for any u and q. The
following table provides an overview of these constructions
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and their required redundancies. Recall that ρ(n, d, q) denotes
the smallest redundancy of a linear code of length n and
minimum Hamming distance d over Fq .

u Upper bound on r(n, q, u)

u < q 1 (Theorem 2)

u = q ρ(n, q, q) (Theorem 3)

any u, q ρ
(
n, � 2uq + 1, 2

)
·logq

(
q

�q/2�
)
+1 (Theorem 4)

Thus, we have provided codes for masking partially stuck-
at cells for any set of parameters and have shown that the re-
quired redundancy significantly decreases compared to known
approaches for stuck-at cells and to a trivial construction.
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APPENDIX

Theorem 5 Let q be a prime power and let a κ × n matrix
H =

(
Hi,j

)i=0,...,κ−1

j=0,...,n−1
over Fq be given. Then, this matrix can

match any u ≤ κ · (q − 1) partially stuck-at cells if the RRE
of any κ × u submatrix (denoted by H(u)) has the following
form (up to column permutations):

RRE(H(u)) = (3)⎛
⎜⎜⎜⎜⎜⎝

1 • . . . •︸ ︷︷ ︸
≤q−1

◦ ◦ . . . ◦ . . . . . . . . . ◦
1 • . . . •︸ ︷︷ ︸
≤q−1

◦ ◦ . . . ◦ . . . . . . ◦
1 • . . . •︸ ︷︷ ︸
≤q−1

◦ . . . . . . ◦
. . .

...
0 1 • . . . •︸ ︷︷ ︸

≤q−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where • has to be a non-zero element from Fq and ◦ is any
element from Fq .

Proof: Assume w.l.o.g. that the stuck-at positions are [u].
Further, if q is a prime power, we fix any mapping from the
elements of the extension field Fq to the set of integers [q].

First, assume that RRE(H) can mask any u partially stuck-
at cells and let us show that then also H can mask any u
partially stuck-at cells. By assumption, there is a vector z =
(z0 z1 . . . zκ−1) such that y = w + z · RRE(H) masks all
the cells. Since H = T · RRE(H), for some κ × κ full-rank
matrix T, the vector z̃ = z·T−1 masks the same stuck-at cells
when multiplied by H since z̃ ·H = z ·T−1H = z ·RRE(H).

Second, we prove that RRE(H) can mask any u partially
stuck-at cells. To simplify notations, assume w.l.o.g. that each
“block” of RRE(H(u)) has length exactly q − 1, if is shorter
it is clear that the principle also works. Similar to the proof
of Theorem 2, there is (at least) one value z0 ∈ Fq such that

z0 ·H0,i �= −wi, ∀i = 0, . . . , q − 2, (4)

since (4) consists of (at most) q−1 constraints and there are q
possible values for z0. Hence, (z0 z1 . . . zκ−1) ·RRE(H(u))

will mask the first q − 1 partially stuck-at cells for any
z1, . . . , zκ−1 since wi+ z0 ·H0,i �= 0, for all i = 0, . . . , q− 2.

Similarly, there is (at least) one value z1 ∈ Fq such that

z1 ·H1,i �= −(wi + z0 ·H0,i), ∀i = q − 1, . . . , 2q − 3,

and (z0 z1 . . . zκ−1) · RRE(H(u)) masks the second q −
1 partially stuck-at cells for any z2, . . . , zκ−1. This principle
can be continued for each block of q − 1 cells and column
permutations of RRE(H(u)) do not change this strategy.
In contrast to Theorem 2, it is not clear if a similar statement
as Theorem 5 also holds if q is not a prime power.
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