
Construction of Random Input-Output Codes with Moderate
Block Lengths

Ravi Motwani
Non-Volatile Systems Group

Intel Corporation
Santa Clara, California, USA

Email: ravi.h.motwani@intel.com

Eitan Yaakobi
Department of Computer Science

Technion-Israel Institute of Technology
Haifa 32000, Israel

Email: yaakobi@cs.technion.ac.il

Abstract—Random I/O (RIO) Codes, recently introduced by
Sharon and Alrod, is a coding scheme to improve the random
input/output performance of flash memories. Multi-level flash
memories require, on the average, more than a single read
threshold in order to read a single logical page. This number is
important to be optimized since it sets the read latency of flash
memories. An (n, M, t) RIO code assumes that t pages are stored
in n cells with t + 1 levels. The first page is read by applying a
read threshold between levels t and t + 1. Similarly, the second
page is read by applying a read threshold between levels t − 1
and t, and so on. The read binary vectors for consecutive pages
satisfy the property that the set of positions read with value 1 can
only increase. Therefore, Sharon and Alrod showed also that the
design of RIO codes is equivalent to the design of WOM codes. The
latter family of codes attracted a lot of attention in recent years
in order to improve the lifetime of flash memories by allowing
to write multiple messages to the memory without the need for a
physical erase.

In this paper we notice two important distinctions between RIO
codes and WOM codes. While in WOM codes the messages are
received one after the other and thus are not known all in advance,
in RIO codes the information of all logical pages can be known in
advance when programming the cells. Even though this knowledge
does not improve the capacity of RIO codes, it allows the design of
efficient high-rate codes with a moderate block length, which are
hard to be found for WOM codes. We also study another family of
RIO codes, called here partial RIO Codes, that allow to find even
more efficient codes in the tradeoff of reading more than a single
threshold to read a page.

I. INTRODUCTION

Flash memories are the prevalent type of non-volatile mem-
ory (NVM) in use today. They are employed in a wide range
of applications such as mobile, embedded, and enterprise, and
their dominance in these applications continues to grow at a
staggering pace. Compared to other storage memories, one of
the outstanding advantages of flash memories is their signifi-
cantly high random read performance, which places them as an
ideal solution for high throughput applications.

Flash memories are comprised of block of cells. These cells
can have binary values, i.e. they store a single bit, or can have
multiple levels and thus can store multiple bits in a cell. For
example, in MLC flash two bits are stored in a cell and TLC
flash supports three bits in a cell.The storage of more than a
single bit in a cell is accomplished by supporting multiple charge
levels in the cell, which are then distinguished by different read
thresholds. Assume the flash memory cells have 2m different
charge levels and thus can store m bits per cell. If all these bits
belong to the same logical information unit (also called page),
then, in order to read these bits, 2m − 1 read thresholds had to
be applied which will significantly slow down the reading speed
of the memory. The solution to this obstacle is to distribute bits
sharing the same group of cells among different logical pages
such that when a page is read only a single bit is read from
each cell. Then, the number of read thresholds depends on the

bit which is read from the cells and the average number of read
thresholds determines the memory read speed. For example,
consider the three bits stored in a TLC flash memory cell as
shown in Figure 1. Then, a group of multiple TLC flash cells
stores three logical pages, called page 0, page 1, and page 2.
In order to read page 0, one read threshold is required; to read
page 1, two read thresholds are required; and finally to read
page 2, four read thresholds are required. Hence, on the average
2.33 reads are required to read one page of data. Usually, each
read threshold operation consumes 50 µsec and therefore a large
number of average reads reflects directly the read performance
of flash memories. This may prove to be a crucial bottleneck to
the usage of multi-level flash memories in SSDs.

Figure 1. The cell voltage distribution of an 8-level Flash
memory.

The solution to this problem was recently proposed in [9],
where Random I/O (RIO) Codes were proposed in order to
permit reading one page of data from multi-level flash memories
using a single read threshold. They showed that a one-to-one
correspondence exists between RIO codes and the well studied
WOM codes [7]. Namely, a WOM code which permits to write
k bits into n cells in t consecutive writes without erasing also
gives a RIO code which permits to write t pages of k bits per
page into n cells with t+ 1 levels, while ensuring that each page
is read with a single read threshold operation. For example, the
well-known WOM code which stores 2 bits twice into 3 binary
cells without erasure permits to write 2 pages with 2 bits each
into 3 ternary flash memory cells; See Example 1 in Section II.

This paper takes advantage of an important property which
can hold for RIO codes but not for WOM codes. In WOM codes,
the messages are stored sequentially and are not all known in
advance while encoding. Therefore, on each write, the encoder
sets deterministically the cell state values as a function of the
current memory state and the received message. However, in
RIO codes, all the messages can be known in advance and
thus the encoding of a particular page can be a function of the
following pages as well. A code which leverages information
of all messages will be called a parallel RIO code since the
information of all t messages is known in advance and the
encoding can be done in parallel. From the information theory
point of view, parallel RIO codes, RIO codes, and WOM codes
all have the same upper bound on their sum-rate, which is the
total number of bits that is possible to write to the memory,
normalized by the number of cells. However, the design of
parallel RIO codes can be significantly simpler due to this

978-1-4799-5999-0/14/$31.00 ©2014 IEEE 601

property and thus it is possible to find codes with parameters
for which WOM codes do not exist.

RIO codes can have another important property that can
help in their design. Assume it is allowed to read more than
a single read threshold, for example two thresholds, then we
show that this model is equivalent to the case where both the
encoder and decoder of a WOM code are informed with the
previous memory state. In general, there can be four possible
models depending whether the encoder and decoder are or aren’t
informed with the previous state of the memory; see [12] for
a rigorous study of all four models. The traditional setting of
WOM codes assumes the common and practical model, where
the the encoder is informed while the decoder is not. However,
this setup of RIO codes provides a practical example where both
the encoder and decoder are informed. This knowledge allows
to construct even more codes with parameters which did not
exist in the codes we mentioned so far.

The rest of this paper is organized as follows. In Section II,
we formally define WOM codes, RIO codes, and parallel RIO
codes and state the connection established between them in [9].
In Section III, we show parameters for which it is possible to
construct parallel RIO codes but not WOM codes or RIO codes
and state a condition for the existence of parallel RIO codes.
This condition leads in Section IV to an algorithm to construct
parallel RIO codes. In Section V, we define partial RIO codes
and study more code constructions for this family of RIO codes.
Some proofs are omitted due to the lack of space.

II. DEFINITIONS AND BASIC PROPERTIES
In this section, we formally define the codes we study in

the paper. We assume that the cells can have two or more (q)
levels and we denote by [q] the set {0, 1, . . . , q− 1}. Initially,
all cells are in level zero and it is only possible to increase the
level of each cell. For n cells, a vector x = (x1, . . . , xn) ∈
{0, . . . , q− 1}n will be called a cell-state vector. For two cell-
state vectors x and y, we say that x 6 y if xi 6 yi for all
1 6 i 6 n. We will first review the definition of WOM codes. In
general, there are two cases of WOM codes, known as fixed-rate
WOM codes, where the number of messages on each write is the
same, or unrestricted-rate WOM codes, where this constraint is
not invoked [14]. In this work, we care about the implementation
point of view of these codes and thus consider only the fixed-
rate case for binary cells. However, we note that all of these
results can be extended for the unrestricted-rate case as well.

Definition. An [n, M, t] WOM code is a coding scheme com-
prising of n binary cells and is defined by t pairs of encoding and
decoding maps (Ei ,Di), for 1 6 i 6 t. The encoding map Ei is
defined by

Ei : [M]× Im(Ei−1)→ {0, 1}n,
where, by definition, Im(E0) = {(0, . . . , 0)}, such that
Ei(m, c) > c for all (m, c) ∈ [M] × Im(Ei−1). Similarly, the
decoding map Di is defined by

Di : Im(Ei)→ [M],
such that for all (m, c) ∈ [M]× Im(Ei−1), Di(Ei(m, c)) = m.
The individual rate on each write is defined by R =

log M
n , and

the sum-rate isRsum = tR.
In [5], [6], the capacity region of a binary t-write WOM was

found and log(t+ 1) was proved to be the maximum sum-rate.
It was also shown that all rate-tuples in the capacity region are
achievable. Since then several code constructions were given
with the intention of reaching high sum-rate, e.g. [?], [2], [3],
[8]. Recently, some capacity achieving constructions were given
both for two writes [1], [11], [13], [14] and multiple writes [1],
[10] as well as for error-correction [4]. However, they all suffer

either a large block length and encoding/decoding complexities
or do not work in the worst case. Thus, the problem of finding
efficient WOM code constructions with moderate block length
still remains an important challenge.

Before we formally define RIO codes let us introduce the
operation of reading a single threshold from a group of cells.
Let c ∈ [q]n be a cell-state vector and r be a threshold level,
1 6 r 6 q− 1, between levels r− 1 and r. The operation of
reading the r-th threshold from the cell-state vector c is denoted
by RTr(c) and returns a binary vector such that RTr(c)i = 1 if
and only if ci > r. The next claim is an immediate property of
the definition of this operation.

Proposition 1 For all 1 6 r < s 6 q− 1, RTr(c) > RTs(c).

The idea behind RIO codes is to use (t + 1)-ary cells in
order to store t messages. Assume c is the cell-state vector. The
information of the first page is stored in the vector which is
generated from the t-th threshold, i.e. RTt(c); the information
of the second page is stored in the vector which is generated
from the (t− 1)-th threshold, i.e. RTt−1(c); and so on, the t-th
page is generated from the vector which is generated from the
first threshold, i.e. RT1(c). In order to program the t messages,
we start with the first message. Since its information is carried
by the vector RTt(c) we only need to use levels 0 or t. Then,
when the second page is programmed, only the cells in level
zero can be programmed and since its information is carried by
the vector RTt−1(c), we only need to use levels 0 or t− 1 over
the non-programmed cells. This process repeats itself until we
reach the t-th message and then only levels 0 and 1 are used
over the non-programmed cells at that stage. Note that according
to this process, in order to program the i-th page 2 6 i 6 t,
the encoder only needs to read one threshold and thus receive
the binary vector RTt+2−i(c). One property which follows from
Proposition 1 is that RTt(c) 6 RTt−1(c) 6 · · · 6 RT1(c) and
thus the binary vectors representing the t messages satisfy a
similar constraint to the cell-state vectors on consecutive writes
of a WOM code. This connection between WOM codes and
RIO codes was established by Sharon and Alrod in [9].

As opposed to WOM codes where on each write only the
current message is known, in RIO codes it may happen that all
t messages are available to the encoder in advance at the time
of programming. This knowledge can simplify the construction
of such codes. We will distinguish between these two families
of RIO codes and show how this knowledge can provide the
construction of RIO codes that do exist if this information is
not known.
Definition. An (n, M, t) RIO code is a coding scheme com-
prising of n (t + 1)-ary cells, t messages, and t encoding and
decoding maps (Ei ,Di), for 1 6 i 6 t, defined as follows:

Ei : [M]× [2]n → [t + 1]n,

such that for all (m, c) ∈ [M] × [t + 1]n if c j > 0 then
Ei(m, RTt+2−i(c)) j = c j. Similarly, the decoding map Di is
defined by

Di : [2]n → [M],

such that for all (m, c) ∈ [M] × [t + 1]n,
Di(RTt+1−i(Ei(m, RTt+2−i(c))) = m.

An (n, M, t) parallel RIO code is a RIO code with an encod-
ing map

E : [M]t → [t + 1]n,

and t decoding maps Di : [2]n → [M], 1 6 i 6 t, such that for
all m = (m1, . . . , mt) ∈ [M]t, Di(RTt+1−i(E(m))) = mi .

602

TABLE I. A [3,4,2] WOM CODE

Data bits First write Second write (if data changes)
00 000 111
10 100 011
01 010 101
11 001 110

TABLE II. A (3,4,2) RIO CODE

Second set of First set of information bits
information bits

00 01 10 11
00 000 112 121 211
01 110 002 120 210
10 101 102 020 201
11 011 012 021 200

The following theorem was proved in [9] but is stated here
for the completeness of the results.

Theorem 2. [9] There exists an [n, M, t] WOM code if and only
if there exists an (n, M, t) RIO code.

Next, we show an example for the construction of RIO codes
from WOM codes.
Example 1. In this example we first review the famous [3, 4, 2]
WOM codes given by Rivest and Shamir [7]. This code is
described in Table I. The construction of RIO code with the
same parameters (3, 4, 2) is described in Table II. For example,
assume that the information bits of the first page are (1, 1) then
the first encoder programs the cells to state (2, 0, 0). Then, if
the information bits of the second page are (1, 0), then the
second encoder programs the cells to state (2, 0, 1). Note that
the binary vector that the first decoder extracts from the cells
is (1, 0, 0) since the threshold is between levels 1 and 2 and
thus the two bits are decoded to (1, 1). In the same manner, the
binary vector that the second decoder extracts from the cells is
(1, 0, 1) since the the threshold is between levels 0 and 1.

Similarly to WOM codes, an upper bound on the sum-rate
of the two families of RIO codes is log(t + 1).

Theorem 3. log(t+ 1) is an upper bound on the sum-rate of RIO
codes and parallel RIO codes with t messages.

The existence of RIO codes or WOM codes necessarily
guarantees the existence of parallel RIO codes with the same
parameters. However, the converse does not necessarily hold.
In general, in the design of a WOM code or RIO code, when
encoding the i-th message the output to be written into the cells
does not depend on the following messages to come. However,
for parallel RIO codes, it is possible to program a different
cell-state vector for a given message based on the following
messages that will be written to the memory. The information
of all the messages in advance cannot improve the capacity
results, however it can simplify the constructions of codes with
high sum-rate and moderate block lengths.

III. WOM CODES AND RIO CODES
We start this section by showing an example of parameters

where WOM codes and RIO codes do not exist, however parallel
RIO codes do exist. Assume one wishes to construct a (4, 7, 2)
RIO code. Such a code does not exist, which will be proved
next.

Lemma 4. There does not exist a (4, 7, 2) RIO code.

Proof: Since RIO codes and WOM codes are equivalent,
we will simply show that a [4, 7, 2] WOM code does not exist.
Assume in the contrary that such a code exist. Let E1 be its

TABLE III. A (4,7,2) PARALLEL RIO CODE

0 1 2 3 4 5 6
0 0000 1112 1121 1211 2111 1122 2211
1 0001 0002 1120 1210 2110 2120 2210
2 0010 1102 0020 1201 2101 2202 2201
3 0100 1012 1021 0200 2011 1022 2012
4 1000 0112 0121 0211 2000 0122 0222
5 0011 0012 0021 1200 2100 0022 2200
6 1010 0102 1020 0201 2010 2020 0202

encoding map. Let us denote by a = maxm∈[7]{wH(E1(m))},
that is, a is the maximum Hamming weight of all possible
cell-state vectors after the first write. We claim that a > 2.
Otherwise, since the number of length-4 binary vectors of
weight at most 1 is 5 and thus it is not possible to encode
7 different messages. If c is an achievable cell-state vector of
weight two (or more) then on the next write it will be possible
to encode at most 4 messages since the number of zeros in c
is at most 2. Therefore, we conclude that there does not exist a
[4, 7, 2] WOM code or (4, 7, 2) RIO code.

Next we seek to show the existence of a (4, 7, 2) parallel
RIO code. The construction of such a code is described by in
Table III which describes the encoding and decoding maps. The
columns correspond to the symbol value of the first page and
the rows correspond to the symbol value of the second page.
We note again that the encoder knows at the time of encoding
the two messages. Thus, for example the binary vectors which
can be extracted from the cells in case the first page stores the
symbol 5 are 0011, 1010, or 1101, and if the symbol 6 is stored
then these binary vectors can be 1100, 1001, 0111, or 0101. In
any event the different set of binary vectors corresponding to
different symbols are mutually disjoint. We will show that this
construction is optimal by proving that a (4, 8, 2) parallel RIO
code does not exist.

Lemma 5. There does not exist a (4, 8, 2) parallel RIO code.

Proof: Assume in the contrary that such a code exists. For
every message m ∈ [8] let Am be the set of all binary states it
can achieve after the first write. There exists at least three sets
which do not have any vectors of weight one. Since there are six
vectors of weight two, there exist at least one set which have at
most two vectors of weight two. However, the set of achievable
vectors in that case is at most seven which gets a contradiction
to writing 8 more different messages on the second write.

We conclude with the following condition on the existence
of parallel RIO codes.

Theorem 6. An (n, M, 2) parallel RIO exists if and only if it
is possible to divide the 2n binary vectors into two sets of non-
empty subsets A = {A1, . . . , AM} and B = {B1, . . . , BM}
which satisfy the following conditions:

1) For all 1 6 i < j 6 M, Ai ∩ A j = ∅ and Bi ∩ B j = ∅,
2) For all 1 6 i, j 6 M, there exists ai ∈ Ai and b j ∈ B j such

that ai 6 b j.

IV. CONSTRUCTION OF PARALLEL RIO CODES
In this section, an algorithm to construct an (n, M, t) parallel

RIO code is outlined. The upper bound on M is 2
n log2(t+1)

t .
Consider reading message i by applying a threshold between
levels t− i and t + 1− i, 1 6 i 6 t. Let c ∈ [t + 1]n be the
cell-state vector and RTt+1−i(c) ∈ [2]n is the message i read
vector. Let I(r) denote the function which converts binary n-
tuple r to its integer representation. Let Ai

I(r) ⊆ [t + 1]n be
the subset of cell-state vectors c such that RTt+1−i(c) = r. The

603

sum of the cardinality of the sets Ai
I(r), over all r ∈ [2]n is

(t + 1)n, 1 6 i 6 t.

A hypercube of dimension t with length M per dimension
consists of Mt entries with each entry c ∈ [t+ 1]n. The parallel
RIO code is represented by this hypercube with each entry of the
hypercube representing the cell-state vector for that t-message
vector. For 1 6 i 6 t, m ∈ [M], a hyperplane Hi

m of this
hypercube with Mt−1 entries corresponds to message i taking
the value m ∈ M. The Mt−1 entries of Hi

m will have all other
messages j, 1 6 j 6 t, j 6= i span all possible values in [M].
The idea of parallel RIO code is to be able to decode the i-
th message by applying a threshold between levels t − i and
t + 1− i for any entry in the hyperplane Hi

m. The parallel RIO
code constraint can be mathematically expressed as
RTt+1−i(Hi

m) ∩ RTt+1−i(Hi
m′
) = ∅, ∀m, m

′ ∈ M, m 6=
m
′
, 1 6 i 6 t.

This constraint is equivalent to the condition that elements from
Ai
I(r) can be used to populate a hyperplane Hi

m for only one

possible m ∈ M and no other hyperplane Hi
m′

, m
′ 6= m for all

1 6 i 6 t. The cardinality of Ai
I(r) plays an important role in

the code construction. It can be shown that for 1 6 i 6 t, r ∈
[2]n, |Ai

I(r)| = i j(t + 1− i)n− j, where j = wH(r).

Define Bi = {Ai
j, 0 6 j < 2n}, 1 6 i 6 t. For each

i, a set of M disjoint subsets C i
k ⊂ Bi , 1 6 k 6 M, C i

k =⋃ jk
m=1Ai

km
is defined as permissible if ∑

jk
m=1 |Ai

km
| > Mt−1

and ∑
M
k=1((∑

jk
m=1 |Ai

km
|)−Mt−1) 6 (t + 1)n −Mt.

For example, for the (4,7,2) parallel RIO code of Table III,
the sets C1

1 = A1
0, C1

2 = A1
1, C1

3 = A1
2, C1

4 = A1
4, C1

5 =
A1

8, C1
6 = A1

3
⋃A1

10
⋃A1

13, C1
7 = A1

5
⋃A1

7
⋃A1

9
⋃A1

12, and
C2

1 = A2
0
⋃A2

15, C2
2 = A2

1
⋃A2

14, C2
3 = A2

2
⋃A2

13, C2
4 =

A2
4
⋃A2

11, C2
5 = A2

7
⋃A2

8, C2
6 = A2

3
⋃A2

12, C2
7 = A2

5
⋃A2

10
are permissible.

A super-permissible set is a collection of exactly one per-
missible set for each i, 1 6 i 6 t.

Lemma 7. For every (n, M, t) parallel RIO code, there exists a
super-permissible set configuration.

With this background, we propose an algorithm to construct
(n, M, t) parallel RIO codes which attempts to populate the
hypercube to construct the code. We then simulated our algo-
rithm to obtain parallel RIO codes for (n, M, 2), n 6 6. The
maximum values of M for which codes could be obtained are
listed in Table IV.

Lemma 8. If an (n, M, t) parallel RIO code exists, Algorithm 1
will be successful in constructing it if all the sets

⋂
k C

ik
lk

corre-
sponding to the existing parallel RIO codes have a single unique
element.

Proof: Since every (n, M, t) parallel RIO code has a
super-permissible set configuration and Algorithm 1 spans all
the super-permissible set configurations, it includes the super-
permissible set configuration of the existing parallel RIO code.
Since the entries in

⋂
k C

ik
lk

are unique, there is a unique way to
populate these and hence algorithm 1 will always be successful
in generating that parallel RIO code.

Algorithm 1: (n, M, t) Parallel RIO code construction

input : the code parameters (n, M, t), t-dimensional
hypercube of length M per dimension with
all-zero entries, sets Bi , 1 6 i 6 t.

output: populated t-dimensional hypercube (if parallel
RIO code exists).

1 Generate all possible permissible sets C i
k, 1 6 k 6 M, for

each 1 6 i 6 t.
2 Enlist all possible unique super-permissible set

configurations using the ensemble of permissible sets
generated in step 1, denote the total number of such
configurations by S;

3 j = 1;
4 Populate hyperplanes Hi

m for each m ∈ M, for
1 6 i 6 t, by selecting elements from C i

m from the
j− th super-permissible set configuration. The hypercube
element at the intersection of

⋂
k C

ik
lk

for different

messages ik can be assgined if
⋂

k C
ik
lk
6= ∅. If

⋂
k C

ik
lk

has

a single element, that entry is populated. If
⋂

k C
ik
lk

has
more than one element, any entry can be used. For eg. of
the (4,7,2) parallel RIO code, the element at the
intersection of the hyperplanes H1

6 and H2
2 is populated

with the element 2120 which belongs to the intersection
of C1

6 and C2
2 .

5 If
⋂

k C
ik
lk
= ∅, a parallel RIO code does not exist for this

super-permissible set, increment j by 1, go to step 4.
6 If all hyperplanes are populated, then the populated

hypercube which is the parallel RIO code is constructed,
EXIT.

7 If j > S, the algorithm could not construct a parallel
RIO code, EXIT.

TABLE IV. (n, M, 2) PARALLEL RIO CODES FOR n 6 6
n M sum-rate
4 7 1.4037
5 11 1.3838
6 19 1.4160

V. PARTIAL RIO CODES

In Lemma 4, we proved that a (4, 8, 2) parallel RIO code
does not exist. Note that the existence of such a code could
have been possible according to the upper bound of Theorem 3,
since for the 3-level flash memory, it is theoretically possible to
store log2(3) = 1.585 bits per cell. While MLC and TLC
flash memories attain their storage limits of 2 bits per cell
and 3 bits per cell, 3-level flash memory is also expected
to reach its storage limit, else its costs cannot be justified.
Therefore, a desirable solution is to store 1.5 bits per cell or
higher while 2 read thresholds are not permitted in order to read
the two messages. An alternative solution then is to relax the
RIO constraint of a single read threshold per page and permit
some messages to be read with more a single read threshold.
This motivates us to define a new family of RIO codes, called
here partial RIO codes, which have relaxed constraints but
inferior reading performance than RIO codes. The idea is that
in order to decode some of the messages, the decoder will read
two read thresholds instead of one. If for RIO codes, the i-
th decoder reads the (t + 1 − i)-th read threshold then now
the (t + 2− i)-th threshold will be read as well. We note that
this setup could be extended such that more and different read
thresholds will be read, however we leave this generalization
for an extended version of this paper. This model of two read

604

TABLE V. A (4,8,2;1) PARTIAL RIO CODE

0 1 2 3 4 5 6 7
0 1111 1112 1121 1211 2111 1122 2121 1221
1 1110 0002 1120 1210 2110 2210 2120 1220
2 1101 1102 0020 1201 2101 2201 1202 2102
3 1011 1012 1021 0200 2011 1022 2021 2012
4 0111 0112 0121 0211 2000 0122 0212 0221
5 1100 0012 0021 1200 2100 0022 2020 2002
6 1010 0102 1020 0201 2010 2200 0202 2112
7 0110 1002 0120 0210 2001 2211 1212 0220

thresholds corresponds in the WOM model to the case where
both the encoder and decoder are informed with the previous
state of the memory. In general there are four possible models
which are extensively studied in [12]. Let us now formally
define partial RIO codes.

Definition. An (n, M, t; t1) partial RIO code for 1 6 t1 6 t is a
coding scheme comprising of n (t + 1)-ary cells, t messages, an
encoding map E , and t decoding maps Di, for 1 6 i 6 t, defined
as follows: E : [M]t → [t + 1]n,
and the decoding map Di is defined by

Di : [2]n → [M], 1 6 i 6 t1,
Di : [2]n × [2]n → [M], t1 + 1 6 i 6 t,

such that for all m = (m1, . . . , mt) ∈ [M]t, if 1 6 i 6 t1,
then Di(RTt+1−i(E(m))) = mi, and if t1 + 1 6 i 6 t, then
Di(RTt+1−i(E(m)), RTt+2−i(E(m))) = mi

According to the last definition, parallel RIO codes are a
special case of partial RIO codes in case t1 = t. We could also
define the nonparallel version of partial RIO codes, that is, the
set of all t messages is not known in advance, however we omit
this part due to the lack of space.

Example 2. The construction of a (4, 8, 2; 1) partial RIO code is
given in the Table V. Notice that now we only need to guarantee
that the binary vectors which are read for different symbols on
the first page are different from each other. For the second page,
it is enough to have the cell-state vectors to be different since
both read thresholds are read. For example, if on the first page
the read binary vector is 1010 or 0101 then the decoded symbol
is 6 and for 0110, 1001, the decoded symbol is 7. For the second
page, all cell-state vectors for different message symbols are
different and thus it is possible to determine the stored message
for each case.

In order to prove the optimality of the code construction in
Example 2, we show that a (4,9,2;1) partial RIO code does not
exist.

Theorem 9. There does not exist a (4,9,2;1) partial RIO code.

Proof: Assume in the contrary that such a code exist.
Since there are 81 possible cell-state vectors, then in the
encoding/decoding table, each of the 81 cell-state vectors will
appear. In particular, there is a message m ∈ [9] such that
D1(0000) = m. However, there are 16 cell-state vectors
c ∈ [3]4 such that RT2(c) = 0000 and thus only 9 of them
could be used in the table. Therefore, there will be at least 7
cell-state vectors that can not appear in the table which results
with a contradiction.

We conclude with the following condition on the existence
of partial RIO codes.

Theorem 10. An (n, M, 2; 1) parallel RIO exists if and only if it
is possible to divide the 2n binary vectors into two sets of non-
empty subsets A = {A1, . . . , AM} and B = {B1, . . . , BM}
which satisfy the following conditions:

TABLE VI. (n, M, 2; 1) PARTIAL RIO CODES FOR n 6 10
n M sum-rate upper bound
4 8 1.5 1.5
5 14 1.5229 1.5229
6 24 1.5283 1.5480
7 43 1.5504 1.5598
8 76 1.5620 1.5620
9 132 1.5654 1.5702

10 230 1.5691 1.5753

1) For all 1 6 i < j 6 M, Ai ∩ A j = ∅,
2) For all 1 6 i, j 6 M, there exists ai ∈ Ai and b j ∈ B j such

that ai 6 b j.
Note that as apposed to Theorem 6, we did not need to add

the constraint that Bi ∩ B j = ∅ since the vector of the first
page is also read from the memory. We ran a computer search
according to Theorem 10 in order to find more partial RIO codes
for t = 2 and n 6 10. The results are summarized in Table VI.
The upper bound for each case on the sum-rate was derived in
a similar way to the proof of Theorem 9.

Lastly in this section we discuss weather for MLC flash
it is possible to construct meaningful partial RIO codes. The
conventional read setup for this case is to read the lower page
with a single read threshold and the upper page with 2 reads
so the average number of read thresholds is 1.5. A meaningful
RIO code for this case would be a (n, M, 3; 2) code since a
(n, M, 3; 1) partial RIO code will have an average of 5/3 read
thresholds. We state here that a (3, 3, 3; 2) partial RIO code
does not exist, however a (3, 3, 3; 1) partial RIO code and a
(4, 3, 3; 2) partial RIO code do exist.

REFERENCES

[1] D. Burshtein and O. Strugatski, “Polar write once memory codes,” IEEE
Trans. Inform. Theory, vol. 59, no. 8, pp. 5088–5101, August 2013.

[2] Y. Cassuto and E. Yaakobi, “Short Q-ary fixed-rate WOM codes for
guaranteed re-writes and with hot/cold write differentiation,” IEEE Trans.
Inform. Theory, vol. 60, no. 7, pp. 3942–3958, July 2014.

[3] G.D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inform. Theory, vol. 32, no. 5, pp. 697–700,
October 1986.

[4] A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, “Joint rewriting
and error correction in write-once memories”, Proc. IEEE Int. Symp. on
Inform. Theory, pp. 1067–1071, Istanbul, Turkey, July 2013.

[5] F. Fu and A.J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 308–313, Septem-
ber 1999.

[6] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inform.
Theory, vol. 31, no. 1, pp. 34–42, January 1985.

[7] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inform.
and Contr., vol. 55, no. 1–3, pp. 1–19, December 1982.

[8] F. Merkx, “WOM codes constructed with projective geometries,” Traite-
ment du signal, vol. 1, no. 2-2, pp. 227–231, 1984.

[9] E. Sharon and L. Alrod, “Coding scheme for optimizing random I/O
performance,” in Non-Volatile Memories Workshop, San Diego, April
2013.

[10] A. Shpilka, “Capacity achieving multiwrite WOM codes,” IEEE Trans.
Inform. Theory, vol. 60, no. 3, pp. 1481–1487, March 2014.

[11] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” IEEE Trans. Inform. Theory, vol. 59, no. 7, pp. 4520–4529,
July 2013.

[12] J.K. Wolf, A.D. Wyner, J. Ziv, and J. Korner, “Coding for a write-once
memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112, 1984.

[13] Y. Wu, “Low complexity codes for writing a write-once memory twice”,
Proc. IEEE Int. Symp. on Inform. Theory, pp. 1928–1932, Austin, Texas,
June 2010.

[14] E. Yaakobi, S. Kayser, P.H. Siegel, A. Vardy, and J.K. Wolf, “Codes for
write-once memories,” IEEE Trans. on Inform. Theory, vol. 58, no. 9,
pp. 5985–5999, September 2012.

605

