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Abstract— Kulkarni and Kiyavash recently introduced a new
method to establish upper bounds on the size of deletion-
correcting codes. This method is based upon tools from
hypergraph theory. The deletion channel is represented by a
hypergraph whose edges are the deletion balls (or spheres),
so that a deletion-correcting code becomes a matching in this
hypergraph. Consequently, a bound on the size of such a code
can be obtained from bounds on the matching number of a
hypergraph. Classical results in hypergraph theory are then
invoked to compute an upper bound on the matching number as a
solution to a linear-programming problem: the problem of finding
fractional transversals. The method by Kulkarni and Kiyavash
can be applied not only for the deletion channel but also for other
error channels. This paper studies this method in its most general
setup. First, it is shown that if the error channel is regular and
symmetric then the upper bound by this method coincides with
the well-known sphere packing bound and thus is called here
the generalized sphere packing bound. Even though this bound
is explicitly given by a linear programming problem, finding its
exact value may still be a challenging task. The art of finding the
exact upper bound (or slightly weaker ones) is the assignment of
weights to the hypergraph’s vertices in a way that they satisfy
the constraints in the linear programming problem. In order to
simplify the complexity of the linear programming, we present a
technique based upon graph automorphisms that in many cases
significantly reduces the number of variables and constraints in
the problem. We then apply this method on specific examples of
error channels. We start with the Z channel and show how to
exactly find the generalized sphere packing bound for this setup.
Next studied is the nonbinary limited magnitude channel both for
symmetric and asymmetric errors, where we focus on the single-
error case. We follow up on the deletion channel, which was the
original motivation of the work by Kulkarni and Kiyavash, and
show how to improve upon their upper bounds for single-deletion-
correcting codes. Since the deletion and grain-error channels
have a similar structure for a single error, we also improve upon
the existing upper bounds on single-grain error-correcting codes.
Finally, we apply this method for projective spaces and find its
generalized sphere packing bound for the single-error case.

Index Terms— Sphere packing bound, linear programming,
asymmetric errors, Z channel, deletion channel, subspace codes,
grain errors, fractional transversals.

I. INTRODUCTION

ONE of the basic and fundamental results in coding theory
asserts that an upper bound on a length-n binary code C
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that can correct r errors is

|C| � 2n

B(r)
,

where B(r) = ∑r
i=0

(n
i

)
. This is known as the classical sphere

packing bound. This bound can be applied for other cases
as well. Let X be a finite set with some distance function
d : X × X → N. Assume that the volume of every ball is
the same, that is, if Br (x) � {y ∈ X | d(x, y) � r} then for
all x ∈ X , |Br (x)| = �r for some fixed value �r . Then, the
resulting sphere packing bound on an r -error-correcting code
C ⊆ X becomes |X |/�r . However, what happens if the size
of all balls is not the same? Clearly, a naive solution is to
use �r as the minimum size of all balls and then to apply the
same bound, but this approach can give a very weak upper
bound. The goal of this paper is to study a generalization of
the sphere packing bound for setups where the size of all balls
is not necessarily the same.

The lower counter bound for the sphere packing one is the
well-known Gilbert-Varshamov bound [11], [24]. This bound
states that if the size of all balls of radius r is the same, �r ,
then a lower bound on a code C ⊆ X with minimum distance
r +1 becomes |X |/�r . In [23], a similar study was carried out
for the Gilbert-Varshamov bound in case that the size of all
balls is not necessarily the same. Using Turán’s theorem, it was
shown that the same expression on a lower bound of a code
still holds, with the modification of using the average size of
the balls. That is, if �r � (

∑
x∈X |Br (x)|)/|X |, then a general-

ized Gilbert-Varshamov bound asserts that there exists a code
with minimum distance r + 1 and of size at least |X |/�r .
Thus, an immediate question to ask is whether the same
analogy holds for the sphere packing bound: Is |X |/�r an
upper bound on the cardinality of an r -error-correcting
code C ⊆ X? Even though in most of the cases we study
in this work this derivation does hold, the answer in general
to this question is negative.

The deletion channel [19] is one of the examples
where the balls can have different sizes. Recently, in [16],
Kulkarni and Kiyavash showed a technique, based upon
tools from hypergraph theory [2], in order to derive explicit
non-asymptotic upper bounds on the cardinalities of
deletion-correcting codes. These upper bounds were given
both for binary and non-binary codes as well as for deletion-
correcting codes for constrained sources. Since the method
in [16] can be applied for other similar setups, more results
were presented shortly after for different channel models.
Upper bounds on the cardinalities of grain-error-correcting
codes were given in [10] and [13] and similar bounds for
multipermutations codes with the Kendall’s τ distance were
derived in [4].

This paper has two main goals. First, we study the method
studied for the deletion channel by Kulkarni and Kiyavash [16]
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and analyze it in its most general setting. We assume that
the error channel is characterized by a directed graph, which
depicts for a given transmitted word, its set of possible
received words. Then, an upper bound will be given on codes
which can correct r errors, for some fixed r . This bound is
established by the solution of a linear programming given from
a hypergraph that is derived from the error channel graph.
In particular, it is shown that the sphere packing bound is a
special case of this bound. We also study properties of this
bound and show a scheme, based upon graph automorphisms,
that in many cases can significantly reduce the complexity
of the linear programming problem. In the second part of
this work, we provide specific examples on the application
of this method to setups where the balls have different sizes.
These examples include the Z channel, non-binary channels
with limited magnitude errors (symmetric and asymmetric),
the deletion channel, the grain-error channel, and finally,
projective spaces. In some of these examples we improve
upon the existing results which use this method to calculate
the upper bound on the code cardinalities. When possible in
these examples, we compare the bounds we obtain with the
state-of-the-art ones.

In order to describe our results, we need to introduce
some notation. Let H = (X, E) be a hypergraph, where
X = {x1, . . . , xn} is its vertex set and E = {E1, . . . , Em} is
its hyperedge set. Let A be the n × m incidence matrix of H,
so A(i, j) = 1 if xi ∈ E j . A transversal in H is a subset
T ⊆ X that intersects every hyperedge in E . The transversal
number of H, denoted by τ (H), is the size of the smallest
transversal. Every transversal can be represented by a binary
vector w ∈ {0, 1}n which needs to satisfy AT ·w � 1. However,
if the vector w can have values over R+ and still satisfies the
last inequality, then it is called a fractional transversal. Under
this setup, it is clear that τ ∗(H) � τ (H), where τ ∗(H) is the
linear programming relaxation of τ (H), defined as

τ ∗(H) = min

{ n∑

i=1

wi : AT · w � 1,w ∈ R
n+
}

. (1)

Let G = (X, E) be a directed graph which describes an error
channel. The vertex set X is the set of all possible transmitted
words, and the edges set E consists of all pairs of vertices at
distance one, which correspond to a single error in the channel.
The distance between x, y ∈ X , is the path metric in G and
is denoted by d(x, y). Note that since the graph is directed,
it is possible to have d(x, y) �= d(y, x). For every x ∈ X ,
its radius-r ball is the set Br (x) which was defined above
and its degree is degr (x) = |Br (x)|. The largest cardinality
of an r -error-correcting code in G of length n is denoted
by AG(n, r). Given some positive integer r , the graph G
is associated with a hypergraph H(G, r) = (Xr , Er ) where
Xr = X and Er = {Br (x) | x ∈ X}. Observing that every
r -error-correcting code C ⊆ X is a matching in H(G, r) (which
is a collection of pairwise disjoint edges), the following upper
bound on AG(n, r) was verified in [16],

AG(n, r) � τ ∗(H(G, r)). (2)

One of the first properties we present asserts that if the
graph G is regular such that degr (x) = �r for all x ∈ X ,

and the distance function d is symmetric, then the bound
τ ∗(H(G, r)) coincides with the sphere packing bound, that
is, τ ∗(H(G, r)) = |X |

�r
. Therefore, in this work the bound

τ ∗(H(G, r)) is called the generalized sphere packing bound.
The expression τ ∗(H(G, r)) provides an explicit upper

bound on AG(n, r). However, it may still be a hard problem
to calculate this value since it requires the solution of a linear
programming problem that can have an exponential number of
variables and constraints. Clearly, one would aspire to find this
exact value, but if this is not possible to accomplish, it is still
valuable to give an upper bound on τ ∗(H(G, r)), which is an
upper bound on AG(n, r) as well. Such an upper bound will
be given by finding any fractional transversal and the goal
will be to find one with small weight, where the weight of
a fractional transversal is the sum of its entries. In fact, all
the upper bound results presented in [4], [10], [13], and [16]
follow this approach and an upper bound on the value
τ ∗(H(G, r)) in each case is given.

The rest of the paper is organized as follows. Section II
establishes the rest of the definitions and tools required in this
paper and demonstrates them on the Z channel. This channel
will be used throughout the paper as a running example and
a case study we rigorously investigate. In Section III, we
start with basic properties of the generalized sphere packing
bound. In particular, we show upper and lower bounds on its
value and prove that if the graph G is regular and symmetric
then the sphere packing bound coincides with the generalized
sphere packing bound. We also show several examples which
establish a dissenting answer to the question brought earlier
about the upper bound validity of an average sphere packing
value. We then proceed to define a special monotonicity
property on the graph G which states that a graph is monotone
if for all r and two vertices x and y, if y ∈ Br (x) then
degr (y) � degr (x). This property is useful in order to give
a general formula for a fractional transversal and a corre-
sponding upper bound. In fact, this property and fractional
transversal were used in the previous works [10], [13], [16].
Lastly in this section, we use tools from automorphisms
on graphs in order to simplify the complexity of the linear
programming problem in (1). Noticing that in many channels
there are groups of vertices with similar behavior motivates
us to treat them as the same vertex and thus significantly
reduce the number of variables and constraints in the linear
programming (1). In Section IV, we study the Z channel. Our
main contribution here is finding a method to calculate the
generalized sphere packing bound for all radii. In Section V
we carry out a similar task for the limited-magnitude channel
with symmetric and asymmetric errors. We focus only the
single error case of radius one in both cases and find fractional
transversals and corresponding upper bounds. Section VI
follows upon the original work of [16], improving the bounds
derived therein for the deletion channel (for the case of
a single deletion). Since the structure of the deletion and
grain-error channel is very similar, especially for a single error,
we continue with the same approach to improve upon the
existing upper bounds from [10] and [13] on the cardinalities
of single-grain error-correcting codes. Section VII studies
bounds on projective spaces and in particular we give an
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optimal solution for the radius-one case under this channel.
Finally, Section VIII concludes the paper and proposes some
problems which remained open.

II. DEFINITIONS AND PRELIMINARIES

In this section we formally define the tools and definitions
used throughout the paper. We mainly follow the same
definitions and properties from [16].

Let H = (X, E) be a hypergraph where X = {x1, . . . , xn},
E = {E1, . . . , Em} and A its n × m incidence matrix.
A matching in H is a collection of pairwise disjoint
hyperedges and the matching number of H, denoted by ν(H),
is the size of the largest matching. The matching number
of H, ν(H), is the solution of the integer linear programming
problem

ν(H) = max

{ m∑

i=1

zi : A · z � 1, z ∈ {0, 1}m
}

.

Note that the transversal number τ (H), defined in the previous
section, is the solution of the integer linear programming
problem

τ (H) = min

{ n∑

i=1

wi : AT · w � 1,w ∈ {0, 1}n
}

.

These two problems satisfy weak duality and thus
ν(H) � τ (H). The relaxation of these integer linear
programmings allows the variables z and w to take values
in R+, which are not necessarily integers. The value of this
linear programming relaxation for the matching number is
denoted by

ν∗(H) = max

{ m∑

i=1

zi : A · z � 1, z ∈ R
m+
}

,

and the corresponding one for the transversal number is the
value τ ∗(H), stated in (1). Note that the real solutions can
be significantly different than the integer solutions and since
ν∗(H) and τ ∗(H) satisfy strong duality, the following property
holds [16]

ν(H) � ν∗(H) = τ ∗(H) � τ (H),

and in particular, for any fractional transversal w,

ν(H) � τ ∗(H) �
n∑

i=1

wi .

Lastly, we mention here that we will usually denote the
fractional transversal by w = (w1, . . . , wn), such that
wi corresponds to the value that is assigned to the vertex xi .
However, when it will be clear from the context, the
notation wx will be used to refer to the value of wi ,
where x = xi .

Every error channel studied in this work will be depicted
by some directed graph G = (X, E), where the set E defines
the set of all pairs of vertices at distance one from each
other. The distance between every two vertices x, y ∈ X ,
denoted by d(x, y), is the length of the shortest path from
x to y in the graph G, and d(x, y) = ∞ if such a path does

not exist. Note that this definition of distance is not necessarily
symmetric and thus it may happen that d(x, y) �= d(y, x).
However if for all x, y ∈ X , d(x, y) = d(y, x), then we
say that G is symmetric, and otherwise it is not symmetric.
For any x ∈ X , we let Bout

r (x), B in
r (x) be the sets

Bout
r (x) = {y ∈ X | d(x, y) � r} and B in

r (x) = {y ∈ X |
d(y, x) � r}. The out-degree of x is degout

r (x) = |Bout
r (x)|

and the in-degree is degin
r (x) = |B in

r (x)|. The definitions
of Bout

r (x) and degout
r (x) coincide with the ones in the

Introduction for Br (x) and degr (x), respectively. To ease
the notation in the paper we will follow the ones from the
Introduction for the “out” case and use the ones defined above
for the “in” case.

If a word x ∈ X is transmitted and at most r errors occurred
then any word in Br (x) can be received. A code C ⊆ X in this
graph is said to be an r -error-correcting code if for all for all
x, y ∈ C, Br (x) ∩ Br (y) = ∅. We let AG(n, r) be the largest
cardinality of an r -error-correcting code in G of length n. If for
every r � 0, there exists some fixed �r such that for every
x ∈ X , degr (x) = �r , then we say that the graph G is regular
and otherwise it is called non-regular.

For any positive integer r , H(G, r) = (Xr , Er ) is a
hypergraph associated with G such that Xr = X and
Er = {Br (x) : x ∈ X}. As was stated in (2), the value
τ ∗(H(G, r)) is an upper bound on AG(n, r) and is called in
this work the generalized sphere packing bound.

The average size of a ball of radius r in G is defined to be

�r = 1

|X |
∑

x∈X

degr (x).

In [23], using Turán’s theorem a generalized
Gilbert-Varshamov bound was shown to hold also for
the cases where the size of all balls is not the same. This
bound asserts that a lower bound on AG(n, r) is given by

|X |
�2r

� AG(n, r).

In the Introduction we asked about the analogy of the
last bound to the sphere packing bound. Namely, does the
following inequality hold

AG(n, r) � |X |
�r

?

We call the value |X |
�r

the average sphere packing value and

denote it by AS PV (G, r). We do not call this value a bound
since, as we shall see later, it is not necessarily a valid upper
bound.

The following example demonstrates the definitions and
concepts introduced in this section for the Z channel.

Example 1: The Z channel is a channel with binary inputs
and outputs where the errors are asymmetric. Here, we assume
that errors can only change a 1 to 0 but not vice versa;
see Fig. 1. The corresponding graph is GZ = (X Z , EZ ), where
X Z = {0, 1}n and

EZ = {(x, y) : x, y ∈ {0, 1}n, x � y, wH (x) = wH (y) + 1},
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Fig. 1. The Z -channel.

and wH (x) denotes the Hamming weight of x. Let r be some
fixed positive integer. For every x ∈ {0, 1}n,

BZ ,r(x) = { y ∈ {0, 1}n : x � y, wH (x) − wH (y) � r},
and degZ ,r (x) = ∑r

i=0

(wH (x)
i

)
.

The corresponding hypergraph is H(GZ , r) = (X Z ,r , EZ ,r ),
such that X Z ,r = {0, 1}n and EZ ,r = {BZ ,r(x) : x ∈ {0, 1}n}.
The generalized sphere packing bound becomes

τ ∗(H(GZ , r))

= min

{ ∑

x∈{0,1}n

wx : ∀x ∈ {0, 1}n,
∑

y∈BZ ,r (x)

wy � 1, wx � 0

}

.

(3)

The average size of a ball with radius r is

�Z ,r = 1

2n

∑

x∈{0,1}n

r∑

i=0

(
wH (x)

i

)

= 1

2n

n∑

w=0

(
n

w

) r∑

i=0

(
w

i

)

= 1

2n

r∑

i=0

n∑

w=0

(
n

w

)(
w

i

)

.

For 0 � i � r ,
∑n

w=0

(n
w

)(w
i

) = (n
i

)
2n−i and thus we get

�Z ,r = 1

2n

r∑

i=0

(
n

i

)

2n−i =
r∑

i=0

(n
i

)

2i
.

Therefore, the average sphere packing value in this case
becomes

AS PV (GZ , r) = 2n

�Z ,r
= 2n

∑r
i=0

(n
i)

2i

.

In particular, for r = 1 we get

AS PV (GZ , 1) = 2n

�Z ,1
= 2n

1 + n/2
= 2n+1

n + 2
.

In the sequel it will be verified that the average sphere packing
value for r = 1 is a valid upper bound for the Z channel. �

Even though the generalized sphere packing bound
τ ∗(H(G, r)) gives an explicit upper bound on the cardinality
of error-correcting codes, it is not necessarily immediate to
calculate it. To accomplish this task, one needs to solve a
linear programming which, in general, does not necessarily
have an efficient solution. Furthermore, note that in many
of the communication channels the number of variables and
constraints can be very large and in particular exponential
with the length of the words. Our main discussion in this
paper will be dedicated towards approaches for deriving the
value τ ∗(H(G, r)) for different graphs G. However, in cases

where it will not be possible to derive this explicit value, we
note that every fractional transversal provides a valid upper
bound and thus we aspire to give the best fractional transversal
we can find.

III. GENERAL RESULTS AND OBSERVATIONS

In this section we start by proving basic properties on the
value of the generalized sphere packing bound τ ∗(H(G, r))
as specified in (1). We then show some approaches for
finding fractional transversals. Finally, we present a scheme,
based upon automorphisms on graphs, that in many cases can
significantly reduce the complexity of the linear programming
problem for calculating the value τ ∗(H(G, r)). As specified in
Section II, we assume throughout this section that the error
channel is depicted by some directed graph G = (X, E) and
for a fixed integer r � 1, H(G, r) = (Xr , Er ) is its associated
hypergraph.

A. Basic Properties of the Generalized Sphere Packing Bound

We start here by proving some basic properties and giving
insights on the value of τ ∗(H(G, r)). The next lemma proves
a lower bound on the generalized sphere packing bound in
case that its in-degree is upper bounded.

Lemma 1: If for all x ∈ X, degin
r (x) � �, then

τ ∗(H(G, r)) � |X |
�

.

Proof: Since degin
r (x) � �, for all x ∈ X , the weight of

every row of the incidence matrix A of H(G, r) is at most �,
that is,

∑n
j=1 ai, j � � for all 1 � i � n, where n = |X |.

Let w be a fractional transversal in H(G, r). Then, for
every 1 � j � n,

∑n
i=1 ai, j wi � 1, and thus

n �
n∑

j=1

n∑

i=1

ai, j wi .

However, note that

n �
n∑

j=1

n∑

i=1

ai, j wi =
n∑

i=1

n∑

j=1

ai, j wi

=
n∑

i=1

wi

n∑

j=1

ai, j � �

n∑

i=1

wi ,

and therefore
n∑

i=1

wi � n

�
.

Hence, we conclude that τ ∗(H(G, r)) � |X |
� .

Next, we show an upper bound on the generalized sphere
packing bound in case that its out-degree is lower bounded.

Lemma 2: If for all x ∈ X, degr (x) � �, then

τ ∗(H(G, r)) � |X |
�

.

Proof: If degr (x) � � for all x ∈ X then the vector
w = 1/� is a fractional transversal and thus
τ ∗(H(G, r)) � |X |/�.

The last two lemmas readily imply the following.
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Fig. 2. The graph G2.

Fig. 3. The graph G3.

Corollary 3: If the graph G is symmetric and regular then
the generalized sphere packing bound and the sphere packing

bound coincide. Furthermore, τ ∗(H(G, r)) = |X |
�r

, where for
all x ∈ X, degr (x) = degin

r (x) = �r .
The next example shows that for a non-symmetric graph G,

the sphere packing bound and the generalized sphere packing
bound need not be equal.

Example 2: In this example the graph G2 = (X2, E2) has
six vertices, so X2 = {x1, x2, x3, x4, x5, x6}. For 2 � i � 6,
there is an edge from xi to x1 and finally there is an edge from
x1 to x2; see Fig. 2. Therefore, deg1(xi ) = 2 for all 1 � i � 6,
so the graph G2 is regular and the sphere packing bound

becomes |X2|
2 = 3. However, the vector w = (1, 0, 0, 0, 0, 0)

is a fractional transversal, which is optimal, and thus the
generalized sphere packing bound of G2 equals 1. �

In the next example, we show a graph for which the
average sphere packing value does not hold as a valid bound.
This provides a negative answer to the question we asked in
the Introduction regarding the validity of the average sphere
packing value as an upper bound.

Example 3: The graph G3 = (X3, E3) in this example has
five vertices, so X3 = {x1, x2, x3, x4, x5}. There is an edge
from the first vertex to all other four vertices; see Fig. 3. The
average size of a radius-one ball is 1·5+4·1

5 = 9/5 and thus the
average sphere packing value becomes 5

9/5 = 25/9. However,
the minimum distance of the code C = {x2, x3, x4, x5} in
G3 is ∞, and in particular, it can be a single-error-correcting
code, which contradicts the average sphere packing value. �

Example 3 depicts a directed, i.e. not symmetric, graph
where the sphere packing value is not an upper bound to the
code size. Next we show an example of a symmetric graph
that does not satisfy the average sphere packing value either.

Example 4: Assume there are n = k2 vertices partitioned
into two groups: the first one consists of k vertices and the
other group of the remaining n−k vertices. Every vertex from
the first group is connected (symmetrically) to a set of exactly
n−k

k = k − 1 vertices from the second group such that there
is no overlap between these k sets. The n − k vertices in the
second group are all connected to each other. Thus, the average
radius-one ball size is

�1 = k · k + (n − k)(n − k + 1)

n

= n − 2
√

n + 3 − 1√
n

> n/2.

Therefore, the average sphere packing value is less than 2.
However, it is possible to construct a single-error correcting
code with the k vertices of the first group. �

Examples 3 and 4 prove that the average sphere packing
value does not hold in all cases. In fact, from Example 4, we
do not only conclude that it does not hold in general, but also
that the ratio between this value and a size of a code can be
arbitrarily small. However, it is still very interesting to find
some minimal conditions such that this bound holds.

B. Monotonicity and Fractional Transversals

Remember that a vector w is a fractional transversal
if w � 0 and for 1 � i � n,

∑

y∈Br(xi )

wy � 1.

A first example for choosing a fractional transversal is stated
in the next lemma.

Lemma 4: The vector w given by

wi = 1

minx∈Bin
r (xi ){degr (x)} ,

for 1 � i � n, is a fractional transversal.
Proof: It is easy to verify that w � 0. For every 1 � i � n,

if y ∈ Br (xi), then xi ∈ B in
r (y) and thus

wy = 1

minx∈B in
r (y){degr (x)} � 1

degr (xi )
.

Therefore, we get
∑

y∈Br (xi )

wy �
∑

y∈Br(xi )

1

degr (xi )
= 1.

A graph G is said to satisfy the monotonicity property,
or G is monotone, if for every r � 1, x ∈ X and y ∈ Br (x),

degr (y) � degr (x).

In this case, the fractional transversal from Lemma 4 can be
stated more explicitly.

Lemma 5: If G is monotone then the vector w given by

wi = 1

degr (xi )
,

for 1 � i � n, is a fractional transversal.
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Proof: If G is monotone then for every x ∈ B in
r (xi),

degr (x) � degr (xi ). Therefore, the fractional transversal w

from Lemma 4 simply becomes

wi = 1

degr (xi )
.

As a result of Lemma 5, if G is monotone, then the following
expression is an upper bound on AG(n, r),

AG(n, r) �
n∑

i=1

wi =
n∑

i=1

1

degr (xi )
. (4)

We call this bound the monotonicity upper bound, which
holds in case that G is monotone, and denote it by M B(G, r).
We will build upon Example 1 to exemplify the monotonicity
upper bound for the Z channel.

Example 5: It is straightforward to verify that the graph GZ

from Example 1 satisfies the monotonicity property since for
every x, y ∈ {0, 1}n, if y ∈ BZ ,r then wH (y) � wH (x). Thus,
according to Lemma 5, the vector w = (wx)x∈{0,1}n given by

wx = 1

degr (x)
= 1

∑r
i=0

(wH (x)
i

) ,

is a fractional transversal. Therefore, the monotonicity upper
bound M B(GZ , r) derived in (4) is calculated to be

M B(GZ , r) =
∑

x∈{0,1}n

wx =
∑

x∈{0,1}n

1
∑r

i=0

(wH (x)
i

)

=
n∑

w=0

(
n

w

)
1

∑r
i=0

(w
i

) .

For example, for r = 1, we get

M B(GZ , 1) =
n∑

w=0

(
n

w

)
1

∑1
i=0

(w
i

)

=
n∑

w=0

(
n

w

)
1

w + 1
= 2n+1 − 1

n + 1
.

Note that the average sphere packing value, calculated in

Example 1, for r = 1 is 2n+1

n+2 , is smaller than the monotonicity
upper bound. In fact, this hints that in some cases, which will
be studied in the sequel, it is possible to improve upon the
monotonicity upper bound. Indeed, it is possible to verify that
in this case the fractional transversal according to Lemma 5
is not optimal by showing that the vector w′ = (w′

x)x∈{0,1}n ,
where

w′
x = 1

wH (x) + 1
· wH (x) + 2

wH (x) + 3
,

for x �= 0 and w′
0 = 1, is a fractional transversal. The

corresponding bound for this fractional transversal becomes

2n+1 · 1

n + 3 − 2n+6
n2+3n+4

� 2n+1

n + 2
,

which verifies the validity of the average sphere packing
value. However, this choice of fractional transversal is still
suboptimal and hence we seek to find a further improvement.

Finding the exact value τ ∗(H(GZ , r)) will be the topic and
problem we solve in Section IV. �

The exact value τ ∗(H(GZ , r)) will be obtained
in Section IV.

C. Automorphisms on Graphs

One of the main obstacles in calculating the value
of τ ∗(H(G, r)) is the large number of variables and constraints
in the linear programming in (1). However, most of the
graphs studied in this work contain symmetries between their
vertices. For example, the linear programming in Example 1
for the Z channel has 2n variables and 2n constraints in
order to find the value of τ ∗(H(GZ , r)), but it is not hard to
notice that vectors of the same weight have identical behavior,
and thus, one would expect to assign the same weight to
these vertices. This will reduce the number of variables and
constraints from 2n to n +1, which significantly simplifies the
linear programming problem in (3). This subsection presents a
scheme, based upon graph automorphisms, that in many cases
can be used in order to significantly reduce the number of
variables and constraints to calculate the bound τ ∗(H(G, r)).
We will show the general scheme along with a demonstra-
tion how it is applied on our continued example of the
Z channel.

Let us first remind some tools derived from properties on
automorphisms of graphs. Let G = (X, E) be a directed graph
with n vertices. An automorphism of G is a permutation of
its vertices that preserves adjacency. That is, an automorphism
of G is a permutation π : X → X such that for all
(x, y) ∈ X × X , (x, y) ∈ E if and only if (π(x), π(y)) ∈ E .
Assume |X | = n, we let Sn be the set of all permutations of
n elements. The set of all automorphisms of G is

Aut (G) = {π ∈ Sn | π is an automorphism of G}.
It is known that Aut (G) is a subgroup of the symmetric
group Sn under the operation of functions composition.

The group Aut (G) induces a relation R on X such that
(x, y) ∈ R if and only if there exists π ∈ Aut (G)
where π(x) = y. It is possible to verify that R is an equiv-
alence order and hence X is partitioned into 1 � n(G) � n
equivalence classes, denoted by X1, . . . , Xn(G). Furthermore,
we denote X (G) = {X1, . . . , Xn(G)}.

For any c > 0, let us define the set

Wc =
{

w : w is a fractional transversal and
n∑

i=1

wi = c

}

.

Given a partition X = {X1, . . . , Xk} of X , we say that a
fractional transversal w is X -regular if for all 1 � j � k and
every x, y ∈ X j , wx = wy .

Given a fractional transversal w and an automorphism
π ∈ Aut (G), the vector wπ is defined by wπ

i = wπ(i). The
next lemma proves that the vector wπ is a fractional transversal
as well.

Lemma 6: Let w be a fractional transversal and π an
automorphism. Then, the vector wπ is a fractional transversal
as well.
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Proof: It is clear to verify that wπ � 0. We need to show
that for all 1 � i � n the following inequality holds

∑

y∈Br(xi )

wπ (y) � 1.

Since π is an automorphism, y ∈ Br (xi ) if and only if
π(y) ∈ Br (π(xi)) and therefore

∑

y∈Br (xi )

wπ (y) =
∑

y∈Br(xi )

wπ(y) =
∑

y∈Br (π(xi))

wy � 1,

where the last inequality holds since w is a fractional
transversal.

Our main result in this part is stated in the next theorem
and corollary.

Theorem 7: For every c > 0, if Wc �= ∅ then Wc contains
an X (G)-regular fractional transversal.

Proof: Let w ∈ Wc be a fractional transversal.
If w is X (G)-regular then the property holds. Otherwise,
let π ∈ Aut (G) and wπ as defined above. Note that

n∑

i=1

wπ
i =

n∑

i=1

wπ(i) =
n∑

i=1

wi = c,

and together with Lemma 6 we get that wπ ∈ Wc. Similarly,
we can show that w+wπ

2 ∈ Wc. Let π1, π2, . . . , πN be some
order of the automorphisms in Aut (G). We can similarly
derive that the vector

w∗ =
∑N

i=1 wπi

N
belongs to Wc as well.

We finally show that w∗ is X (G)-regular. For all
1 � j � n(G) and xn1, xn2 ∈ X j

w∗
n1

=
∑N

i=1 w
πi
n1

N
=

∑N
i=1 wπi (n1)

N
.

Now, let π∗ ∈ Aut (G) be such that π∗(n2) = n1 and note that

{π1, . . . , πn} = {π∗ ◦ π1, . . . , π
∗ ◦ πn}.

Thus, we get

w∗
n2

=
∑N

i=1 w
πi
n2

N
=

∑N
i=1 w

π∗◦πi
n2

N
=

∑N
i=1 w(π∗◦πi )(n2)

N

=
∑N

i=1 wπi (π∗(n2))

N
=

∑N
i=1 wπi (n1)

N
= w∗

n1
.

Lastly, we note that Theorem 7 holds not only for the
automorphism group Aut (G) but also for every subgroup H
of Aut (G). Given a subgroup H of Aut (G), assume it
partitions the vertex set X into nH equivalence classes
XH (G) = {X1, . . . , XnH }. Let AH be an nH × nH adjacency
matrix corresponding to the subgroup H , such that for
1 � i, j � nH ,

AH (i, j) = |{(x, y) : x ∈ Xi , y ∈ Br (x) ∩ X j }|
|Xi | . (5)

The next Corollary summarizes this discussion.
Corollary 8: Let H be a subgroup of Aut (G) and

XH (G) = {X1, . . . , XnH } is its partition of X into nH

equivalence classes. Then, the generalized sphere packing
bound τ ∗(H(G, r)) from (1) becomes

τ ∗(H(G, r)) = min

{ nH∑

i=1

|Xi |wi : AT
H · w � 1,w ∈ R

nH+
}

.

(6)
Proof: According to Theorem 7, it is enough to consider

only fractional transversals which are XH (G)-regular. Such a
fractional transversal can be represented by a vector w ∈ R

nH+
such that for 1 � i � nH , wi is the weight given to all the
vectors in the set Xi .

The condition AT · w � 1 from (1) can be stated as for
all x ∈ X ,

∑
y∈Br(x) wy � 1. However, for all x ∈ Xi the

number of vertices y ∈ Br (x) which belong to some set X j

is fixed and is given by the value AH (i, j). Therefore, for
every x ∈ Xi , this condition can be written as∑nH

j=1 AH (i, j)w j � 1. Finally, since there are |Xi | vectors
which are assigned with weight wi we get that the weight of
this XH (G)-regular fractional transversal is

∑nH
i=1 |Xi |wi and

thus the corollary holds.
The next example shows how to apply the auto-

morphisms scheme presented in this subsection for the
Z channel.

Example 6: In Example 1, we saw that in order to find the
value τ ∗(H(GZ , r)) according to (3), it is required to solve
a linear programming with 2n variables and 2n constraints.
Let us demonstrate how the automorphism scheme studied in
this subsection can reduce both the number of variables and
constraints to be n + 1.

First, we define the following set of automorphisms on GZ .
For every σ ∈ Sn , a permutation πσ : {0, 1}n → {0, 1}n

is defined such that for all x ∈ {0, 1}n , (πσ (x))i = xσ(i).
It is possible to verify that the set H = {πσ : σ ∈ Sn}
is a subgroup of Aut (GZ ). Furthermore, the set {0, 1}n

is partitioned under H into n + 1 equivalence classes
XH (GZ ) = {X0, X1, . . . , Xn}, where Xi = {x ∈ {0, 1}n :
wH (x) = i}, for 0 � i � n. Therefore, according to
equation (6) in Corollary 8, it is enough to limit our search and
find only fractional transversals w which are XH (GZ )-regular.
Hence, the problem in (3) is simplified to be

τ ∗(H(GZ , r)) = min

{ n∑

�=0

(
n

�

)

w� :
min{�,r}∑

i=0

(
�

i

)

w�−i � 1,

w� � 0, 0 � � � n

}

. (7)

�

In the next section we will continue with Example 6
and show exactly how to solve the problem stated
in (7).

IV. THE Z CHANNEL

The Z channel was already discussed before in
Examples 1, 5, and 6. We derived the linear programming
problem to find the value τ ∗(H(GZ , r)) in (3) and calculated
its average sphere packing value. Then, we saw that
GZ is monotone and thus we calculated its monotonicity
upper bound. Finally, we showed how to use the graph
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automorphism approach in order to derive a more compact
linear programming problem to calculate τ ∗(H(GZ , r))
in (7).

The goal of this section is to solve the linear programming
problem in (7) by finding the appropriate fractional transversal
and prove that it gives the value of τ ∗(H(GZ , r)). This result
is proved in the next theorem.

Theorem 9: For all r � 20, the optimal fractional
transversal which solves the linear programming in (7) is given
by the following recursive formula

w∗
n = w∗

n−1 = · · · = w∗
n−r+1 = 0, (8)

w∗
0 = 1,

and for all k: 1 � k � n − r we have

w∗
k =

(

1 −
r∑

i=1

w∗
k+i

(
k + r

r − i

))

/

(
k + r

r

)

.

Soon, we will show the equivalent formula

w∗
0 = 1, and for all k � 1

w∗
k = r !k!

n∑

m=r+k

Dm−k−1

m! . (9)

where Di is given by another recursive relation independent
from n:

D0 = D1 = · · · = Dr−2 = 0,

Dr−1 = 1, and for all i � r

Di

r ! + Di−1

(r − 1)! + · · · + Di−r

0! = 0. (10)

We divide the proof into three parts. First, we show the
equivalence of the two formulas above. Then, we show that
w∗ is in fact a transversal or in other words, it is in the
feasibility region of the linear programming. Next, we dis-
cuss its optimality. Our method shows both feasibility and
optimality for all r � 20 and we conjecture that w∗ is
the optimal transversal weight for all radii r ∈ N. We note
that the weight assignment in Theorem 9 could also be the
optimal weight assignment for r > 20, but one needs to
verify that for each r using the method presented in the
following.

A. Equivalence of the Two Formulas

In order to see the equivalence of two definitions, we
fix r and look at w∗

k as a function of both k and n denoted
by w∗

k (n) in this subsection. Lets define the sequence �k(n) as
�k(n) = w∗

k (n) − w∗
k (n − 1) for all n. So,

�k(n) = 1
(n

r

) if k = n − r,

�k(n) = 0 if k > n − r,

�k(n) = −
r∑

i=1

�k+i (n) .

(k+r
r−i

)

(k+r
r

) if k < n − r.

Now, we define another sequence Di (n) as
Di (n) = �n−i−1(n). n!

r !(n−i−1)! to normalize and reverse
the direction of the recursion:

D0(n) = D1(n) = · · · = Dr−2(n) = 0,

Dr−1(n) = 1, and for all i � r

Di (n)

r ! + Di−1(n)

(r − 1)! + · · · + Di−r (n)

0! = 0.

Note that the initialization and the recursion for sequence
Di (n) are independent of n. So the sequence Di (n) is also
independent of n and we drop n to write w∗

k (n) as

w∗
k (n) = �k(n) + �k(n − 1) + · · · + �k(k + r)

= r !k!
n! Dn−k−1+ r !k!

(n − 1)! Dn−k−2+· · · + r !k!
(k + r)! Dr−1

= r !k!
n∑

m=r+k

Dm−k−1

m! .

B. Transversal Property for w∗

The definition of w∗ in (8) ensures that the inequality
constraints in (7) are satisfied. So, the non-negativity of w∗
is enough to show that the w∗ is a valid transversal.

First, we study the case r = 1. A simple induction on i ,
shows that Di = (−1)i . Therefore,

w∗
k =

n∑

m=k+1

(−1)m−k−1k!
m!

=
(

1

k + 1
− 1

(k + 1)(k + 2)

)

+
(

1

(k + 1)(k + 2)(k + 3)

− 1

(k + 1)(k + 2)(k + 3)(k + 4)

)

+ · · · > 0.

In general, it is not easy to derive an explicit formula
for w∗ for r � 2. However, we show that Dm is bounded
by an exponential function of 2r (see Appendix A) and
hence, the first few terms in (9) are dominant compared to
the rest and w∗

k � 0 is always the case. We divide the
proof into two parts. First, we claim the positivity of w∗

k for
k � 3r − 1.

Theorem 10: Let w∗ be the transversal weight assignment
defined in (8). For all k � 3r − 1 we have

w∗
k � r !k!

(r + k)!2−(n−k−r) > 0.

We refer to the Appendix A for the complete proof of
the Theorem 10. The proof of the case k < 3r−1 is incomplete
for arbitrary radius r . However, we introduce a method to
verify the feasibility (transversal property) of w∗ for any fixed
r in the following fashion:

Given k < 3r − 1, we look for a number nk such that
nk∑

m=r+k

Dm−k−1

m! � 1

(2r)r+k

(

e2r −
nk∑

m=0

(2r)m

m!
)

, (11)
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which implies the following for all n > nk :

w∗
k = r !k!

n∑

m=r+k

Dm−k−1

m!

= r !k!
( nk∑

m=r+k

Dm−k−1

m! +
n∑

m=nk+1

Dm−k−1

m!
)

(a)
� r !k!

( nk∑

m=r+k

Dm−k−1

m! −
n∑

m=nk+1

(2r)m−k−r

m!
)

> r !k!
( nk∑

m=r+k

Dm−k−1

m! − 1

(2r)k+r

∞∑

m=nk+1

(2r)m

m!
)

= r !k!
( nk∑

m=r+k

Dm−k−1

m! − e2r − ∑nk
m=0

(2r)m

m!
(2r)r+k

)

� 0,

where (a) is verified by Lemma 25 in Appendix A.
Now, we are left with checking only the values of w∗

k for
the finite set of k < 3r − 1 and n � nk . Note that,

lim
nk→∞

[

e2r −
nk∑

m=0

(2r)m

m!
]

= 0.

Also, Di is bounded by an exponential function
(see Lemma 25) and hence the following limit exists

�k := lim
nk→∞

nk∑

m=r+k

Dm−k−1

m! .

Finally, if w∗
k > εk > 0 for all n > k + r , then

�k � εk
r !k! > 0. So, the number nk should exists.

As an example, when r = 2 we have n1 = n2 = 6,
and n3 = n4 = 7. Using the above approach, we have verified
the feasibility for all r � 20. Numerical calculations also show
that nk � 4r −1 for all r � 20. In Appendix A, we prove that
w∗ defined in (8), is also the optimal transversal assignment
and gives us the best bound using this approach.

In order to evaluate the results, we compared between the
different upper bounds for the Z channel. The first bound is
the monotonicity bound (MB in short), which was calculated
in Example 5; the second one is the average sphere packing
value (ASPV in short), which was calculated in Example 1;
and the third bound is the generalized sphere packing bound
(GSPB in short). The best known (to us) upper bound for the
Z channel, due to Weber et al. [26], appears in the last column
of Table I. We see from Table I that this bound is better than
the GSPB even under optimal weight assignment. However,
the bound of [26] involves solving an integer programming
problem, and the authors of [26] have computed this bound
only for n � 23. In contrast, our bound in Theorem 9 is easy
to compute for all n, and we give its values for r = 1, 2, 3, 4
up to n � 32 in Tables I, II, III, and IV.

In the next section, we will extend the study of the
Z channel for non-binary symbols.

V. LIMITED MAGNITUDE CHANNELS

We turn in this section to generalize the Z channel for
the non-binary case. In this setup, every symbol can have q

TABLE I

Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 1

TABLE II

Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 2

values, 0, 1, . . . , q − 1 and we denote [q] = {0, 1, . . . , q − 1}.
We study the limited magnitude model and focus solely on the
single error setup which is carried for two cases. Namely, the
error can be asymmetric (Fig. 4(a)) or symmetric (Fig. 4(b)).
This error-channel is motivated by the feature of the errors in
non-binary flash memories. The cells in flash memories
are charged with electrons and due to the inaccuracy in
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TABLE III

Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 3

TABLE IV

Z CHANNEL: UPPER BOUNDS COMPARISON FOR r = 4

cell-programming and electrons leakage, the charge level of
a cell can either increase or decrease by limited magnitude.
For more details see for example [5], [6], [14], [18], [30].

A. Asymmetric Errors

In the asymmetric non-binary channel, the value of every
symbol can only decrease, and in this study we only consider

Fig. 4. Two cases of the non-binary channel: (a) asymmetric errors,
(b) symmetric errors.

the case where the value of each symbol can decrease by
one. The corresponding graph is GA,q = (X A,q , E A,q ), where
X A,q = [q]n and

E A,q =
{

(x, y) : x, y ∈ [q]n, x � y,
n∑

i=1

xi =
n∑

i=1

yi + 1

}

.

Given some x ∈ [q]n, its ball of radius one is described by the
set BA,q,1(x) = { y ∈ [q]n : x � y,

∑n
i=1 xi �

∑n
i=1 yi + 1},

and degA,q,1(x) = wH (x) + 1. The hypergraph in this case
is H(GA,q , 1) = (X A,q,1, EA,q,1), where X A,q,1 = [q]n and
EA,q,1 = {BA,q,1(x) : x ∈ [q]n}.

According to the above definitions it is immediate to verify
that for all y ∈ BA,q,1(x), wH (y) � wH (x) and thus the
graph GA,q is monotone. In the next two lemmas we calculate
the monotonicity upper bound and the average sphere packing
value under this setup.

Lemma 11: The monotonicity upper bound of the graph GA,q

for r = 1 is

M B(GA,q , 1) = qn+1 − 1

(q − 1)(n + 1)
.

Proof: Since the graph GA,q is monotone, according to
Lemma 5 the following vector w = (wx)x∈[q]n is a fractional
transversal,

wx = 1

degA,q,1(x)
= 1

wH (x) + 1
.

Thus, the monotonicity upper bound from Equation (4)
becomes

M B(GA,q , 1)

=
∑

x∈[q]n

wx =
∑

x∈[q]n

1

wH (x) + 1

=
∑

i0+i1+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)
1

i1 + · · · + iq−1 + 1

= qn+1 − 1

(q − 1)(n + 1)
. (12)
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The last equality follows from the identity

(1 + (q − 1)x)n =
∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

xi1+···+iq−1,

and thus

qn+1 − 1

(q − 1)(n + 1)

=
∫ 1

0
(1 + (q − 1)x)ndx

=
∫ 1

0

∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

xi1+···+iq−1 dx

=
∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)
1

i1 + · · · + iq−1 + 1
.

Lemma 12: The average sphere packing value of the graph
GA,q for r = 1 is

AS PV (GA,q , 1) = qn+1

(q − 1)(n + 1) + 1
.

Proof: The value of the average ball size is

1

qn
·

∑

x∈[q]n

(wH (x) + 1)

= 1

qn
·

∑

i0+i1+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

(i1 + · · · + iq−1+1)

= 1

qn
· (nqn−1(q − 1) + qn) = n + 1 − n/q.

Here, the second equality is a result of the identity

x(1 + (q − 1)x)n =
∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

xi1+···+iq−1+1,

and hence

(1 + (q − 1)x)n + xn(q − 1)(1 + (q − 1)x)n−1

=
∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

× (i1 + · · · + iq−1 + 1)xi1+···+iq−1 ,

and thus by assigning x = 1 we get the required result.
The linear programming problem from (1) becomes

τ ∗(H(GA,q,1)) = min

{ ∑

x∈[q]n

wx :
∑

y∈BA,q,1(x)

wy � 1

}

.

However, it can be significantly simplified according to the
tools developed in Section III-C. Similarly to the set of
automorphisms from Example 6, for every permutation σ ∈ Sn

we define a permutation πσ = [q]n → [q]n such that for
all x ∈ [q]n, (πσ (x))i = xσ(i). Hence, also here the set
HA = {πσ : σ ∈ Sn} is a subgroup of Aut (GA,q). However,
now the subgroup HA partitions the set [q]n into the following
n A = (n+q−1

q−1

)
equivalence classes

X =
{

X i : i = (i0, . . . , iq−1) � 0,

q−1∑

j=0

i j = n

}

,

where X i is characterized as follows

X i = {x ∈ [q]n : x−1( j) = i j , 0 � j � q − 1},
and x−1( j) = |{1 � k � n : xk = j}|. We denote the set
IA to be IA = {i : i = (i0, . . . , iq−1) � 0,

∑q−1
j=0 i j = n}

and define an n A × n A matrix AH such that its entries are
indexed by the vectors (i, j) ∈ IA × IA. We assign the values
AH (i, i) = 1 and AH (i, j) = ik if there exists 1 � k � q − 1
such that jk = ik − 1 and jk−1 = ik−1 + 1 and for all
� ∈ [q] \ {k, k − 1}, j� = i�. All other values in the
matrix AH are assigned with the value 0. Finally, according
to Corollary 8 we proved the following theorem.

Theorem 13: The generalized sphere packing bound for
H(GA,q,1) is given by

τ ∗(H(GA,q,1))

= min

{ ∑

i∈IA

|X i |wi : AT
H · w � 1,w = (wi )i∈IA ∈ R

n A+
}

.

We finish this section by showing an improvement upon
the monotonicity upper bound from Lemma 11. In the
fractional transversal notation of Theorem 13, if one applied
the monotonicity upper bound, then the fractional transversal
assignment would be wi = 1/(n−i0+1) for i ∈ IA. However,
under this assignment almost all of the constraints hold with
strict inequality. We show that it is possible to reduce the
weights in this assignment without violating the constraints
and thus obtain a stronger upper bound.

Theorem 14: The vector w = (wi )i∈IA given by

wi = 1

n − i0 + 1 + i1−1
2(n−i0)

,

if i0 �= n and otherwise wi = 1 is a fractional transversal for
τ ∗(H(GA,q,1)) as stated in Theorem 13.

Proof: It is straightforward to verify that wi � 0 for all
i ∈ IA. According to the conditions for τ ∗(H(GA,q,1))
from Theorem 13, we need to show that for all
i = (i0, i1, . . . , iq−1) ∈ IA the following inequality holds

w(i0,i1,...,iq−1) + i1w(i0+1,i1−1,...,iq−1) + i2w(i0,i1+1,i2−1...,iq−1)

+ · · · + iq−1w(i0,i1,...,iq−2+1,iq−1−1) � 1.

If i0 = n then this inequality holds with equality and it is
possible to verify that it holds for i0 = n − 1 as well. Thus,
we can assume that i0 < n −1. After placing the values of wi
stated in the theorem, we need to show the following

1

n − i0 + 1 + i1−1
2(n−i0)

+ i1

n − i0 + i1−2
2(n−i0−1)

+ i2

n − i0 + 1 + i1
2(n−i0)

+ i3 + · · · + iq−1

n − i0 + 1 + i1−1
2(n−i0)

� 1.

Note that
1

n − i0 + 1 + i1−1
2(n−i0)

� 1

n − i0 + 1 + i1
2(n−i0)

,

and thus it is enough to show that

i2 + i3 + · · · + iq−1 + 1

n − i0 + 1 + i1
2(n−i0)

+ i1

n − i0 + i1−2
2(n−i0−1)

� 1,
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TABLE V
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UPPER BOUNDS COMPARISON FOR q = 3

or, since i0 + i1 + · · · + iq−1 = n,

n − i0 − i1 + 1

n − i0 + 1 + i1
2(n−i0)

+ i1

n − i0 + i1−2
2(n−i0−1)

� 1

and

i1

n − i0 + i1−2
2(n−i0−1)

� 1 − n − i0 − i1 + 1

n − i0 + 1 + i1
2(n−i0)

which is

i1

n − i0 + i1−2
2(n−i0−1)

�
i1 + i1

2(n−i0)

n − i0 + 1 + i1
2(n−i0)

.

Let us denote n − i0 = M and we need to show that

1

M + i1−2
2(M−1)

�
1 + 1

2M

M + 1 + i1
2M

,

and equivalently

2(M − 1)

2M2 − 2M + i1 − 2
� 2M + 1

2M2 + 2M + i1
,

or

2M2 + 2M + 2 � 3i1,

which holds since M = n − i0 � i1.
Table V summarizes the upper bounds results we derived in

this section for q = 3. The first column is the monotonicity
upper bound we found in Lemma 11. The second column
is the average sphere packing value from Lemma 12. The
third column is the improvement in Theorem 14 over the
monotonicity upper bound. Lastly, the last column is the value
of the generalized sphere packing bound from Theorem 13,
which we solved numerically. Note that there is no upper
bound we know of in the literature for this error channel.

B. Symmetric Errors

Since this model and graph are very similar to the
asymmetric case, they are briefly presented. The graph is given
by GS,q = (X S,q, ES,q), where X S,q = [q]n and

ES,q = {(x, y) : (x, y) ∈ E A,q or (y, x) ∈ E A,q }.
Similarly, for every x ∈ [q]n , its corresponding ball of radius
one is the set BS,q,1(x) = { y ∈ [q]n : y ∈ BA,q,1(x)
or x ∈ BA,q,1(y)}. The hypergraph is H(GS,q, 1) =
(X S,q,1, ES,q,1), where X S,q,1 = [q]n and ES,q,1 =
{BS,q,1(x) : x ∈ [q]n}.

This setup is different than all other error channels studied
so far in the sense that it does not satisfy the monotonicity
property. Thus, we cannot conclude the corresponding
fractional transversal of the monotonicity upper bound.
However, we can still calculate the average sphere packing
value.

Lemma 15: The average sphere packing value of the graph
GS,q for r = 1 is

AS PV (GS,q, 1) = qn

2n + 1 − 2n/q
.

Proof: First we calculate the value of the expected ball
size, which is given by

1

qn
·

∑

x∈[q]n

(2n + 1 − x−1(0) − x−1(q − 1))

= 1

qn
·

∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

(n+1+(i1 + · · · + iq−2))

= 1

qn
· ((n + 1)qn + n(q − 2)qn−1) = 2n + 1 − 2n/q.

The second equality is derived in a similar manner to the
one in Lemma 12 using the identity

xn+1(2 + (q − 2)x)n

=
∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

xi1+···+iq−2+n+1,

so

(n + 1)xn(2 + (q − 2)x)n + xn+1n(q − 2)(2 + (q − 2)x)n−1

=
∑

i0+···+iq−1=n

(
n

i0, i1, . . . , iq−1

)

· · · (i1 + · · · + iq−2 + n + 1)xi1+···+iq−2,

and we get the required equality by assigning x = 1.
Next, we define the set of automorphisms to be used here.

One can verify that every permutation in HA is an automor-
phism in GS,q . However, in this case we can expand and use
more automorphisms. For every binary vector b ∈ {0, 1}n , we
define the permutation

πb : [q]n → [q]n,

as follows. For every x ∈ [q]n, πb(x) is the vector defined as

πb(x)i =
{

q − 1 − xi if bi = 1,
xi if bi = 0.
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Then, the set HS = HA ∪ {πb : b ∈ {0, 1}n} is a subgroup
of Aut (GS,q). The subgroup HS partitions the set [q]n into
nS = (n+�q/2�−1

�q/2�−1

)
equivalence classes

X =
{

X i : i = (i0, . . . , i�q/2�−1) � 0,

�q/2�−1∑

j=0

i j = n

}

,

and X i is the set

X i = {x ∈ [q]n : x−1( j) + x−1(q − 1 − j)

= i j , 0 � j � �q/2� − 1}.
We define

IS =
{

i : i = (i0, . . . , i�q/2�−1) � 0,

�q/2�−1∑

j=0

i j = n

}

and the nS × nS matrix AS with the following entries
(i, j) ∈ IS × IS .

1) For all i ∈ IS , AS(i , i) = 1,
2) AS(i , j) = k if there exists 1 � k � �q/2� − 1 such

that jk = ik − 1 and jk−1 = ik−1 + 1 and for all
� ∈ [�q/2�] \ {k, k − 1}, j� = i�.

To conclude, according to Corollary 8, the generalized sphere
packing for H(GS,q,1) becomes

τ ∗(H(GS,q,1))

= min

{ ∑

i∈IS

|X i |wi : AT
S · w � 1,w = (wi )i∈IS ∈ R

nS+
}

.

We can derive a bound similar to Theorem 14.
Theorem 16: The vector w = (wx)x∈[q]n given by

wx = 1

degS,q,1(x) − 1

is a fractional transversal.
Proof: Let x ∈ [q]n and let i j = x−1( j) for j ∈ [q].

Then, degS,q,1(x) = 2n − i0 − iq−1 + 1. We need to show that

1

2n − i0 − iq−1
+ i0

2n − (i0 − 1) − iq−1

+ i1

2n − (i0 + 1) − iq−1
+ i1 + 2i2 + · · · + 2iq−3 + iq−2

2n − i0 − iq−1

+ iq−2

2n − i0 − (iq−1 + 1)
+ iq−1

2n − i0 − (iq−1 − 1)
� 1,

or
1 + i1 + 2i2 + · · · + 2iq−3 + iq−2

2n − i0 − iq−1
+ i0 + iq−1

2n − i0 − iq−1 + 1

+ i1 + iq−2

2n − i0 − iq−1 − 1
� 1.

Since 1/(2n − i0 − iq−1) � 1/(2n − i0 − iq−1 + 1) and
1/(2n − i0 − iq−1 − 1) � 1/(2n − i0 − iq−1 + 1), it is enough
to show that
1 + i1 + 2i2 + · · · + 2iq−3 + iq−2

2n − i0 − iq−1 + 1
+ i0 + iq−1

2n − i0 − iq−1 + 1

+ i1 + iq−2

2n − i0 − iq−1 + 1
� 1,

which holds with equality.

TABLE VI

NON-BINARY CHANNEL, SYMMETRIC ERRORS:

UPPER BOUNDS COMPARISON FOR q = 3

TABLE VII

NON-BINARY CHANNEL, SYMMETRIC ERRORS:

UPPER BOUNDS COMPARISON FOR q = 4

Comparison results for q = 3 and q = 4 are summarized
in Tables VI and VII. The first column is the average sphere
packing value which was calculated in Lemma 15. The second
column is the upper bound we found in Theorem 16. The last
column is the value of the generalized sphere packing bound
that we solved numerically. Note that in this example the value
of the average sphere packing value is less than the one of the
generalized sphere packing value, however, that doesn’t mean
that it is not a valid upper bound.

VI. DELETION AND GRAIN-ERROR CHANNELS

In this section we shift our attention to the deletion channel,
which was the original usage of the generalized sphere packing
bound in [16]. We will only focus on the single-deletion case.
First, we revisit the fractional transversal given in [16] to
verify that the graph in the deletion channel satisfies a similar
property to the monotonicity property from Section III-B.
Then we present our main result in this section, namely, an
explicit expression of a fractional transversal which improves
upon the one from [16]. Since the structure of the deletion
and grain-error channels is very similar, especially for a single
error, in the second part of this section we show also how to
improve upon the upper bound from [10] and [13] on the
cardinality of single grain-error-correcting codes.

A. Deletions

As in the previous examples, we first introduce the graph for
the deletion channel. However, note that the graph in this setup
is different than the previous ones. Specifically, a length n



2326 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015

vector which suffers a single deletion will result in a vector of
length n−1. To accommodate this structure, the vertices in the
graph are defined to be both vectors of length n and n − 1, so
the graph is GD = (X D, ED), where X D = {0, 1}n ∪{0, 1}n−1

and

ED = {(x, y) ∈ {0, 1}n × {0, 1}n−1 :
y = (x1, . . . , xi , xi+2, . . . , xn) for some 1 � i � n}.

For any x ∈ {0, 1}n , its radius one ball is the set
BD,1(x) = { y ∈ {0, 1}n−1 : (x, y) ∈ ED}, and for
x ∈ {0, 1}n−1, BD,1(x) = ∅. Therefore, 1 � degD,1(x) � n
for x ∈ {0, 1}n , and degD,1(x) = 0 for x ∈ {0, 1}n−1.

At this point, we could basically construct the hypergraph
for the deletion channel as was done in the previous examples
such that its set of vertices is X D = {0, 1}n ∪ {0, 1}n−1.
However, since the length-n vectors do not participate in
the balls we can eliminate them in the hypergraph con-
struction, which coincides with the hypergraph construction
in [16]. Thus the hypergraph for the single deletion channel
is H(GD, 1) = (X D,1, ED,1), where X D,1 = {0, 1}n−1 and
ED,1 = {BD,1(x) : x ∈ {0, 1}n}. This definition does not
change the analysis of the upper bounds studied in this paper.
Thus, the generalized sphere packing bound in this setup
becomes

τ ∗(H(GD, 1))

= min

{ ∑

z∈{0,1}n−1

wz :
∑

y∈BD,1(x)

wy � 1,∀x ∈ {0, 1}n
}

.

(13)

For a vector x ∈ {0, 1}n , we denote by ρ(x) the number of
runs in x. For example, if x = 001010010, then ρ(x) = 7. It
is easily verified that for x ∈ {0, 1}n , degD,1(x) = ρ(x), [16].
It is also known that the number of length-n vectors with
1 � ρ � n runs is 2

(n−1
ρ−1

)
. Let us first calculate the average

sphere packing value for the hypergraph H(GD, 1). This will
be done in the next lemma.

Lemma 17: The average sphere packing value of the graph
GD for r = 1 is

AS PV (GD, 1) = 2n

n + 1
.

Proof: Every vector x ∈ {0, 1}n generates a ball, i.e. a
hyperedge, in H(GD, 1). Thus, the average size of a ball is
given by

1

2n

∑

x∈{0,1}n

degD,1(x) = 1

2n

n∑

ρ=1

2

(
n − 1

ρ − 1

)

ρ

= 1

2n−1

n−1∑

ρ=0

(
n − 1

ρ

)

(ρ + 1) = 1

2n−1 (2n−1 + (n − 1)2n−2)

= n + 1

2
.

Thus, the average sphere packing value becomes

2n−1

(n + 1)/2
= 2n

n + 1
.

Note that if one chose the hypergraph to contain all binary
vectors of length n − 1 and n, the resulting average sphere
packing value would have been weaker. We specifically chose
the hypergraph this way as it is the smallest one where any
single-deletion code can be studied and analyzed.

In the setup and structure of the graph GD , it is not possible
to indicate whether the graph GD satisfies the monotonicity
property. The vectors in the ball centered at some x ∈ {0, 1}n

are of length n − 1 and thus do not have corresponding
balls. However, there is still a very similar property to
the monotonicity one. Namely, for every y ∈ BD,1(x),
where x ∈ {0, 1}n ,

ρ(y) � ρ(x) = degD,1(x).

This property was established in [16] and thus a choice of a
fractional transversal (wx)x∈{0,1}n−1 , was given by

wx = 1

ρ(x)
.

The corresponding upper bound, which we call here the
monotonicity upper bound, was calculated in [16] to be

∑

x∈{0,1}n−1

1

ρ(x)
=

n−1∑

ρ=1

2

(
n − 2

ρ − 1

)

· 1

ρ
= 2n − 2

n − 1
.

However, it is possible to verify that for this fractional
transversal many of the constraints in the linear programming
in (13) hold with strict inequality, which implies that a better
one could be found. This will be the focus in the rest of this
subsection, that is, an improvement upon the last upper bound
by the equivalent of the monotonicity property.

For a vector x, let μ(x) be the number of middle runs
(i.e., not on the edges) of length 1 in x. We call these runs
middle-1-runs. For example, for x = 001010010, μ(x) = 4.
First notice that if ρ(x) � 2 then 0 � μ(x) � ρ(x) − 2.
Let Nn(ρ, μ) denote the number of vectors of length n with
ρ runs and μ middle-1-runs. For ρ = 1 and μ = 0, we have
Nn(1, 0) = 2. For 2 � ρ � n and 0 � μ � ρ −2, the value of
Nn(ρ, μ) is calculated in the next lemma. For all other values
of ρ and μ the value of Nn(ρ, μ) is zero.

Lemma 18: For 2 � ρ � n and 0 � μ � ρ − 2,

Nn(ρ, μ) = 2

(
ρ − 2

μ

)(
n − ρ + 1

ρ − μ − 1

)

.

Proof: For every x = (x1, . . . , xn) ∈ {0, 1}n , let
x′ = (x ′

1, . . . , x ′
n−1) ∈ {0, 1}n−1 be a vector of length n − 1

such that for 1 � i � n − 1, x ′
i = xi + xi+1. Note that

wH (x′) = ρ(x)−1. Let c(x′) denote the number of times that
two consecutive ones appear in x′, so we have c(x′) = μ(x).

Let x be a vector of length n such that ρ(x) = ρ and
μ(x) = μ, where 1 � ρ � n and 0 � μ � ρ − 2. Assume the
vector x′ has p runs of ones of length h1, . . . , h p . Then, first
we have that

p∑

i=1

hi = wH (x′) = ρ − 1. (14)
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Every run of ones of length hi in x′ contributes hi − 1 pairs
of two consecutive ones. Therefore,

p∑

i=1

(hi − 1) = μ. (15)

Together, from (14) and (15), we conclude that p = ρ−μ−1.
Furthermore, the number of solutions to (14) (or (15)) is(μ+p−1

μ

) = (ρ−2
μ

)
. For every solution h1, . . . , hρ−μ−1, let

k0, k1, . . . , kρ−μ−1 be the number of zeros between the
blocks of ones in x′, where k0 � 0, k1, . . . , kρ−μ−2 � 1,
and kρ−μ−1 � 0. Note that their sum is n−1−(ρ−1) = n−ρ,
and thus, under the above constraints, the number of
solutions to

ρ−μ−1∑

j=0

k j = n − ρ

is
(n−ρ+1
ρ−μ−1

)
.

Finally, the number of options to choose the vector x′ is the
number of solutions to choose the runs of ones h1, . . . , hρ−μ−1
and runs of zeros k0, . . . , kρ−μ−1. Every choice of the vector
x′ determines the vector x up to choosing whether it starts
with zero or one. Therefore, we get

Nn(ρ, μ) = 2

(
ρ − 2

μ

)(
n − ρ + 1

ρ − μ − 1

)

.

Next, the main result in this section is proved.
Theorem 19: The vector w = (wx)x∈{0,1}n−1 defined by

wx =
{ 1

ρ(x) if μ(x) � 1
1

ρ(x)

(
1 − μ(x)

ρ(x)2

)
otherwise

is a fractional transversal.
Proof: Let x be a length-n binary vector with ρ runs and

μ middle-1-runs. We need to show that
∑

y∈BD,1(x) wy � 1.
It can be verified that this claim holds for ρ = 1, 2, 3 or
μ = 0, 1 and thus we assume for the rest of the proof that
ρ � 4 and μ � 2. Note that for a fixed ρ, wx decreases when
μ increases.

If a vector y ∈ BD,1(x) is received by deleting a middle-
1-run bit then ρ(y) = ρ − 2 and μ − 3 � μ(y) � μ − 1.
Otherwise, ρ(y) = ρ and μ(y) � μ + 1 or, if it is the first or
last bit which is a single-bit run, ρ(y) = ρ −1 and μ(y) � μ,
however, the worst case in terms of the value of wy is achieved
for ρ(y) = ρ and μ(y) = μ + 1. Therefore,

∑

y∈BD,1(x)

wy � μ

ρ − 2

(

1 − μ − 1

(ρ − 2)2

)

+ (ρ − μ)

ρ

(

1− μ + 1

ρ2

)

= 1 + 2μ

ρ(ρ − 2)
− μ(μ − 1)

(ρ − 2)3 − μ + 1

ρ2 + μ(μ + 1)

ρ3 ,

and thus it is enough to show that for ρ � 4, 2 � μ � ρ − 2,

2μ

ρ(ρ − 2)
− μ(μ − 1)

(ρ − 2)3 − μ + 1

ρ2 + μ(μ + 1)

ρ3 � 0,

or
2

ρ(ρ − 2)
− 1

ρ2 � μ − 1

(ρ − 2)3 + 1

μρ2 − μ + 1

ρ3 .

TABLE VIII

DELETION CHANNEL COMPARISON

The function

f (μ) = μ − 1

(ρ − 2)3 + 1

μρ2 − μ + 1

ρ3

in the range 2 � μ � ρ − 2 is maximized either when μ = 2
or μ = ρ − 2 and thus we need to show that

2

ρ(ρ − 2)
− 1

ρ2 � 1

(ρ − 2)3 + 1

2ρ2 − 3

ρ3 ,

and
2

ρ(ρ − 2)
− 1

ρ2 � ρ − 3

(ρ − 2)3 + 1

(ρ − 2)ρ2 − ρ − 1

ρ3 ,

which holds for all ρ � 4.
For a vector x with ρ runs and μ middle-1-runs, we denote

its weight by w(ρ,μ), as specified in Theorem 19. From
Lemma 18 and Theorem 19 we conclude with the following
upper bound on τ ∗(H(GD, 1)).

Theorem 20: The value τ ∗(H(GD, 1)) satisfies

τ ∗(H(GD, 1)) � 2 +
n−1∑

ρ=2

ρ−2∑

μ=0

Nn−1(ρ, μ)w(ρ,μ).

Proof: We calculate the upper bound on τ ∗(H(GD, 1))
according to the fractional transversal from Theorem 19,
w = (wx)x∈{0,1}n−1 . Every vector x is assigned with a weight
wx = w(ρ,μ) according to its number of runs ρ and number
of middle-1-runs μ. Thus, we get this upper bound to be

∑

x∈{0,1}n−1

wx = 2 +
n−1∑

ρ=2

ρ−2∑

μ=0

Nn−1(ρ, μ)w(ρ,μ).

Table VIII summarizes the results of the different bounds
discussed in this subsection. MB corresponds to the equivalent
of the monotonicity upper bound, which is the value 2n−2

n−1
from [16]. ASPV corresponds to the average sphere packing
value 2n

n+1 from Lemma 17. The third column is our upper
bound results from Theorem 20. The column titled GSPB [16]
is the exact value of τ ∗(H(GD, 1)) from (13), which this
linear programming problem was numerically solved in [16]
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for n � 14. Since this linear programming has a large number
of constraints and variables it is numerically hard to solve
it for larger values of n. The last column LB corresponds
to the lower bound, which is the best known construction of
single-deletion codes from [25]. We notice here that the single-
deletion codes from [25] show that the ASPV is not a valid
upper bound in case n is not of the form 2m − 1. However,
we also note that it depends on the choice of the hypergraph.
As mentioned earlier, if the hypergraph consists of all binary
vectors of length n −1 and n then the ASPV would have been
a valid upper bound.

B. Grain Errors

The grain-error channel is a recent model which was studied
mainly for granular media with applications to magnetic
recording technologies [28], [29]. In this medium, the infor-
mation is stored in individual grains and every grain can
store a single information bit according to the polarity of
the grain. However, it may happen that a single grain holds
more than a single information bit (we assume here two),
in which case the polarity of the cell is determined by the
last bit that was written to it. Thus, if the value of the two
information bits sharing the same grain is not the same then
one of them will be in error, called grain-error. We will follow
the model studied by previous works which assume that the
first bit smears its adjacent one to the right. There are several
recent studies of this model which analyzed its information
theory behavior [12], proposed code constructions, and upper
bounds [10], [13], [17], [20], [21].

The grain-error channel for a single grain-error is very
similar to the single deletion setup in the sense that in both
case the size of the radius one ball depends only on the number
of runs in the center of the ball. However in this case the length
of the received words remains the same. The graph describing
this channel model is GG = (XG , EG), where XG = {0, 1}n

and

EG = {(x, y) : x, y ∈ {0, 1}n, and there exists 2 � i � n

such that y = x + ei and xi �= xi−1},
where ‘+’ denotes modulo 2 addition. The radius one ball
for some x ∈ {0, 1}n is the set BG,1(x) = { y ∈ {0, 1}n :
(x, y) ∈ EG}. The hypergraph for the single grain-error
channel becomes H(GG , 1) = (XG,1, EG,1), where
XG,1 = {0, 1}n and EG,1 = {BG,1(x) : x ∈ {0, 1}n}.
Finally, the generalized sphere packing bound for the single
grain-error channel is

τ ∗(H(GG , 1))

= min

{ ∑

x∈{0,1}n

wx :
∑

y∈BG,1(x)

wy � 1,∀x ∈ {0, 1}n
}

.

The size of the ball BG,1(x) can be given by
degG,1(x) = ρ(x), where, as before, ρ(x) is the number
of runs in x. It is also verified that if y ∈ BG,1(x) then
ρ(y) � ρ(x) and thus the graph GG satisfies the monotonicity
property. These results were verified both in [10] and [13] and
showed that the vector w = (wx)x∈{0,1}n given by wx = 1

ρ(x) ,

is a fractional transversal. Accordingly, the corresponding
upper bound, called here the monotonicity upper bound, on
τ ∗(H(GG , 1)) becomes

M B(GG , 1) = 2n+1 − 2

n
.

This bound is slightly improved in [10] by noticing that if
there is a code with odd number of codewords, then there
exists a code with one more codeword, and thus this upper
bound becomes 2� 2n+1−2

2n �.
The average sphere packing value in this case is calculated

in the next lemma. The proof is omitted since it is identical
to the one of Lemma 17.

Lemma 21: The average sphere packing value of the graph
GG for r = 1 is

AS PV (GG , 1) = 2n+1

n + 1
.

Note that very similarly to the deletion channel, the
fractional transversal given by the monotonicity property
is suboptimal. We carry similar steps as in the previous
subsection in order to give a better fractional transversal, stated
in the next theorem.

Theorem 22: The vector w = (wx)x∈{0,1}n defined by

wx =
{ 1

ρ(x) if μ(x) � 1,
1

ρ(x)

(
1 − μ(x)

ρ(x)2

)
otherwise,

is a fractional transversal.
Proof: Let x be a binary vector of length n with ρ runs

and μ middle-1-runs. We will show that
∑

y∈BG,1(x) wy � 1.
As in the proof of Theorem 19, it is possible to verify that this
property holds for ρ = 1, 2, 3 and μ = 0, 1, so we assume
that ρ � 4 and μ � 2.

If a vector y ∈ BG,1(x) is received by a single grain-error
of a middle-1-run bit then ρ(y) = ρ − 2 and μ(y) � μ − 1.
Otherwise, ρ(y) = ρ and μ(y) � μ + 1 or, in case the last
bit errs, ρ(y) = ρ −1 and μ(y) � μ, however, the worst case
is achieved for ρ(y) = ρ and μ(y) = μ + 1. Hence, we get

∑

y∈BG,1(x)

wy � 1

ρ

(

1 − μ

ρ2

)

+ μ

ρ − 2

(

1 − μ − 1

(ρ − 2)2

)

+ (ρ − μ − 1)

ρ

(

1 − μ + 1

ρ2

)

� 1+ 2μ

ρ(ρ − 2)
− μ(μ − 1)

(ρ − 2)3 − μ + 1

ρ2 + μ(μ+1)

ρ3 .

The rest of the proof is identical to the proof of
Theorem 19.

Finally, we conclude with the following theorem.
Theorem 23: The value τ ∗(H(GG , 1)) satisfies

τ ∗(H(GG , 1)) � 2 +
n∑

ρ=2

ρ−2∑

μ=0

Nn(ρ, μ)w(ρ,μ).

Table IX summarizes the improvements and results
discussed in this section on the cardinalities of single-
grain error-correcting codes. In the last column we gave the
cardinalities of the best codes known to us taken
from [10], [20], and [21]. The best known upper is given
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TABLE IX

GRAIN-ERROR CHANNEL COMPARISON

in the column before last. For 5 � n � 11 it is taken
from [20] and [21], and for n = 14 is a result from [22].
All other values in this column are the ones calculated by
the monotonicity upper bound [10], [13]. For 12 � n � 23,
Theorem 23 improves on the best known so far, that is the
monotonicity upper bound and the result for n = 14 from [22].

VII. PROJECTIVE SPACES

In this section, we explain an example where there is
no monotonocity property, yet we benefit from the graph
automorphisms and we simplify the linear programming again.

Koetter and Kschischang [15] modeled codes as subsets
of projective space F

n
q , the set of linear subspaces of F

n
q , or

of Grassmann space G(n, k), the subset of linear subspaces of
F

n
q having dimension k. Subsets of F

n
q are called projective

codes and similar to previous sections, it is desired to select
elements with large distance from each other.

Let us first introduce the graph GP = (X P , E P) for the
projective codes, where X P is the set of all linear subspaces
in F

n
q and

E P = {{x, y} : x ⊂ y or y ⊂ x, and | dim(x)−dim(y)| = 1},
and using the path distance dP(x, y) defined on graph GP we
define

BP,r (x) = {y ∈ XP : dP(x, y) � r}.
The corresponding hypergraph is H(GP , r) = (X P,r , EP,r ),
such that X P,r = X P and EP,r = {BP,r (x) : x ∈ X P }. The
generalized sphere packing bound becomes

τ ∗(H(GP , r))

= min

{ ∑

x∈X P

w(x) : ∀x ∈ XP ,
∑

y∈BP,r (x)

wy � 1, wx � 0

}

.

Assume x1 and x2 are elements in X P with same
dimension k. There exist an injective linear transform
T : F

n
q → F

n
q mapping the basis of x1 into a basis

for x2. Note that x ⊂ y if and only if T (x) ⊂ T (y).
Therefore, all such linear transforms are automorphisms
on GP , which means for any x1, x2 ∈ X P of the same

TABLE X

PROJECTIVE CODES: UPPER BOUNDS AND WEIGHTS FOR r = 1

dimensions, there exist an automorphism mapping one to
another and they are in a same equivalence class. So we assign
a same transversal weight to all the subspaces with the same
dimension. We also need to find the size and the distribution
of elements in BP,r(x). The general formula is given in [7]
but we only study the case r = 1. Given x with dimension
k in X P , there are

[ k
k−1

]

2
= 2k − 1 subspaces of dimension

k − 1 in BP,1(x), where
[

n

m

]

2
= (2n − 1)(2n−1 − 1) · · · (2n−m+1 − 1)

(2m − 1)(2m−1 − 1) · · · (21 − 1)

is the number of subspaces of dimension m in a space of
dimension n. There are also 2n−2k

2k = 2n−k − 1 subspaces of
dimension k + 1 in BP,1(x) that include x . Therefore, there
are (2k − 1) + (2n−k − 1) + 1 elements in BP,1(x). And,

τ ∗(H(GP , 1))

= min

{ n∑

k=0

wk

[
n

k

]

2
: ∀ 0 � k � n, wk + (2k − 1)wk−1

+ (2n−k − 1)wk+1 � 1, wk � 0

}

. (16)

It is also shown that there exist automorphisms mapping
a fixed subspace of dimension k to a fixed subspace of
dimension n − k (see [3].) So, subspaces of dimension k and
n−k are also in same equivalence classes and we assign same
weights to them. Note that

[n
k

]
2 = [ n

n−k

]

2
. So, we can benefit

from the symmetry and we set wk = wn−k to halve both the
number of constraints and the number of parameters in the
linear programming.

Optimal transversal weights for n � 11 are listed in Table X.
To avoid repetition we only list the first half of the optimal
transversal weight in the second column. The third column is
the average sphere packing value (ASPV) and the fourth col-
umn is the generalized sphere packing bound, which together
validate the ASPV as an upper bound on the size of the code
for n � 11 and r = 1. The last column is the best known upper
bound from [1], which uses the semidefinite programming to
improve the best previously known upper bounds from [7]
for projective codes. While the GSPB is not smaller than the
already existing upper bound, it is easy to derive it for all n as
the linear programming in this case is solved and the optimal
solution is given, see (17) below.

It is interesting to see that w� n
2 � = 0 for all n > 2,

which is not surprising since
[ n
� n

2 �
]

2
is the largest multiplier
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in the cost function. This leads us to a greedy approach of
starting from the middle, which has the highest impact on cost
function; minimizing it, i.e. w� n

2 � = 0; and moving toward
the tails by picking the least possible value that satisfies the
constraints. We call it as the greedy weight assignment, which
is expressed as

w∗
[ n

2 ] = 0,

and for all k: 0 � k < �n

2
�,

w∗
k = max

{
1 − w∗

k+1 − (2n−k−1 − 1)w∗
k+2

2k+1 − 1
, 0

}

; (17)

But, if w∗
0 = w∗

1 = 0, we reset w∗
0 to 1.

Finally, we use the symmetry and set w∗
k = w∗

n−k .

It is clear that the greedy output has the transversal property
and lies in the feasible set. The following theorem also
shows the optimality of the greedy assignment in (17)
(See Appendix B for the proof.)

Theorem 24: Let GP be the associated graph with projective
code when F

n
q is the space and w∗ be defined as (17), then

τ ∗(H(GP , 1)) =
n∑

k=0

w∗
k

[
n

k

]

2
.

VIII. CONCLUSIONS AND DISCUSSION

This paper follows up on a recent work by Kulkani and
Kiyavash for deriving upper bounds on the cardinality of
deletion-correcting codes. We study this method in order
to give a generalization of the sphere packing bound. This
scheme can provide an upper bound on the cardinality of
codes according to any error channel. The main challenge
in deriving this upper bound is the solution of a linear
programming problem, which in many cases is not easy to
find. We found this solution for the Z channel and projective
spaces in case of radius one. In the other setups studied
here, namely the limited magnitude, deletion, and grain-error
channels, we didn’t completely solve the linear programming
problem but found a corresponding upper bound, which is
a valid upper bound on the codes cardinalities in each case.
Thus, solving the linear programming, in order to find the
generalized sphere packing bound for each error channel, still
remains an interesting open problem. We lastly also mention
that other error channels can be studied as well using the
method presented in the paper.

APPENDIX A
OPTIMAL TRANSVERSAL WEIGHT FOR Z CHANNEL

In this section, we first complete the proof of the transversal
property for the proposed transversal weight assignment w∗
in (8) by using Lemma 25 to prove Theorem 10. Next, we
show that this choice of w∗ is also the optimal transversal
assignment for the Z Channel and hence the generalized sphere
packing bounds in Tables I, II, III, and VI are the bests one
can get with this method.

Lemma 25: For all r ∈ N, |Dm | � (2r)m−r+1.

Proof: The proof is based on induction on m. Let us
assume |Di | � (2r)i−r+1 for all i � m − 1. Therefore,

Dm = −
(

r !
(r − 1)! Dm−1 + r !

(r − 2)! Dm−2 + · · · + r !
0! Dm−r

)

� r !|Dm−1|
(r − 1)! + r !|Dm−2|

(r − 2)! + · · · + r !|Dm−r |
0!

� r !(2r)m−r

(r − 1)! + r !(2r)m−r−1

(r − 2)! + · · · + r !(2r)m−2r+1

0!
= (2r)m−r+1

(
r !(2r)−1

(r − 1)! + r !(2r)−2

(r − 2)! + · · · + r !(2r)−r

0!
)

� (2r)m−r+1(2−1 + 2−2 + · · · + 2−r )

� (2r)m−r+1.

Now, we are ready to prove Theorem 10.
Theorem 10 (Recall): Let w∗ be the transversal weight

assignment defined in (8). For all k � 3r − 1 we have

w∗
k � r !k!

(r+k)! 2
−(n−k−r) > 0.

Proof:

w∗
k = r !k!

n∑

m=r+k

Dm−k−1

m!

= r !k!
(

1

(r + k)! +
n∑

m=r+k+1

Dm−k−1

m!
)

� r !k!
(r + k)!

(

1 −
n∑

m=r+k+1

|Dm−k−1|(r + k)!
m!

)

� r !k!
(r + k)!

(

1 −
n∑

m=r+k+1

|Dm−k−1|
(4r)m−r−k

)

� r !k!
(r + k)!

(

1 −
n∑

m=r+k+1

(2r)m−r−k

(4r)m−r−k

)

= r !k!
(r + k)!

(

1 −
n−k−r∑

m=1

2−m
)

= r !k!
(r + k)!2−(n−k−r) > 0,

(18)

where (18) comes from Lemma 25. In other words, for
k � 3r − 1, the first term in (8) is greater than the sum of the
absolute values of the remaining terms and they cannot cancel
it out.

The idea behind the optimality proof is to write the cost
function f (w) as a non-negative linear combination of some
other cost functions denoted by fi (w) and show that w∗ is a
feasible point which minimizes them all, and hence w∗ also
minimizes the cost function f (w) and it is the desired optimal
solution.

Let us define the cost functions fi (w) for all 0 � i � n as

fk(w) = w0 k = 0,

fk(w) =
r∑

i=0

wk+i

(
k + r

r − i

)

∀1 � k � n − r,

fk(w) = wk ∀n − r < k � n.
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From (7), any feasible w should satisfy

fk(w) � 1 k = 0,

fk(w) � 1 ∀1 � k � n − r,

fk(w) � 0 ∀n − r < k � n;
And, w = w∗ gives us equalities in all of them. We are
required to show w∗ also minimizes f (w), where

f (w) =
n∑

i=0

wi

(
n

i

)

.

In order to prove the optimality, we show f (w) can be
written as

f (w) = y0 f0(w) + y1 f1(w) + · · · + yn fn(w),

where yi ’s are some non-negative constants. Hence, for any
transversal weight w we have

f (w) � y0 f0(w∗) + y1 f1(w∗) + · · · + yn fn(w∗)
= y0 + y1 + · · · + yn−r = f (w∗).

We first show that the choice of y is unique. Then the
problem reduces to show the non-negativity of y. Note that
the cost functions fi (w) are inner products of w with some
non-negative vectors mi , i.e. fi (w) =< mi , w >, where

mi, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j = 0,

1 if i = j, and n − r < i � n,
(i+r

j

)
if 1 � i � n − r, and i � j � i + r,

0 otherwise.

Now, if we form the (n + 1) × (n + 1) matrix M with
elements {mi, j }, the problem of finding y will be equivalent
to solving MT y = c, where c = (

(n
0

)
,
(n

1

)
, · · · ,

(n
n

)
). M is an

upper triangular matrix with non-zero elements on the main
diagonal, and hence M is non-singular and the solution is
unique. Since M is upper triangular, MT y = c gives us the
following recursions on yi ’s:

y0 = 1,

∀i : 1 � i � n − r,

yi = 1
(r+i

i

)

((
n

i

)

−
i−1∑

j=max{i−r,1}

(
r + j

i

)

y j

)

; (19)

And,

yi =
(

n

i

)

−
n−r∑

j=max{i−r,1}

(
r + j

i

)

y j ,

∀i : n − r < i � n.

Lemma 26 gives an explicit formula for yk when
0 � k � n − r , which again uses the sequence Di defined
in (10). We present the proof at the end of this subsection.

Lemma 26: If y is the solution to MT y = c, then

y0 = 1, and for all 1 � k � n − r we have

yk = r !
(k + r)!

k∑

m=1

n!
(n − m)! Dk−m+r−1 .

Let us benefit from a simple change of variables to get

zk := yn−k
(n − k + r)!

r !n! =
n−k∑

m=1

Dn−k−m+r−1

(n − m)!

=
n−k−1∑

m=0

Dm+r−1

(m + k)! = 1

k! +
n−k−1∑

m=1

Dm+r−1

(m + k)! ,

which is proven to be positive if k � 4r −1 by using the same
argument as w∗

k > 0 when k � 3r − 1 in (18). Also, we can
verify zk � 0 for the values of r � k � 4r − 2 by finding
some numbers n′

k such that

n′
k∑

m=k

Dm+r−k−1

m! � 1

(2r)k

(

e2r −
nk∑

m=0

(2r)m

m!
)

,

and we get zk > 0 for all n > n′
k because

zk =
n−1∑

m=k

Dm+r−k−1

m!

=
nk∑

m=k

Dm+r−k−1

m! +
n−1∑

m=nk+1

Dm+r−k−1

m!

�
nk∑

m=k

Dm+r−k−1

m! −
n−1∑

m=nk+1

(2r)m−k

m!

>

nk∑

m=k

Dm+r−k−1

m! − 1

(2r)k

∞∑

m=nk+1

(2r)m

m!

=
nk∑

m=k

Dm+r−k−1

m! − e2r − ∑nk
m=0

(2r)m

m!
(2r)k

� 0.

Finally, we check the values of zk for the finite set of
k < 4r − 1 and n � n′

k .
In order to show yk � 0 for k > n − r , we rewrite the

expression for yk when k > n − r as

yk =
(

n

k

)

−
n−r∑

j=max{k−r,1}

(
r + j

k

)

y j

=
(

n

k

)

− yn−r

(
n

k

)

−yn−r−1

(
n − 1

k

)

− · · · − yn−r−p

(
n − p

k

)

,

where n − r − p = max{k − r, 1}. So, yk � 0 is equivalent to

yn−r

� 1 −
(n−1

k

)

(n
k

) yn−r−1 −
(n−2

k

)

(n
k

) yn−r−2 − · · · −
(n−p

k

)

(n
k

) yn−r−p .

By assuming yi � 0 for all i � n−r and the recursive formula
for yk’s, we have

yn−r = 1 −
(n−1

n−t

)

( n
n−r

) yn−r−1−
(n−2

n−r

)

( n
n−r

) yn−r−2−· · · −
(n−q

n−r

)

( n
n−r

) yn−r−q

� 1−
(n−1

n−t

)

( n
n−r

) yn−r−1−
(n−2

n−r

)

( n
n−r

) yn−r−2−· · ·−
(n−p

n−r

)

( n
n−r

) yn−r−p,
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where n−r −q = max{n−2r, 1} � max{k −r, 1} = n−r − p.
Now, it suffices to show
(n−�

k

)

(n
k

) �
(n−�

n−r

)

( n
n−r

) ⇐⇒ (n − k)!
(n − � − k)! � r !

(r − �)!
⇐⇒ (n−k)(n−k −1) · · · (n − k − �) � r(r −1) · · · (r − �),

which always holds since n − k < r . In short, for any fixed
radius, one can verify the optimality in a very same fashion as
feasibility by just proving zk � 0 for all r � k � 4r − 2 and
the non-negativity of the remaining yk’s follows immediately.
Doing so, we proved the optimality of our transversal weight
assignment for all r � 20.

Proof of Lemma 26: We define sequences {y j
i (n)} for

1 � j � n − r as

y j
i (n) = 0, 1 � i < j,

y j
i (n) =

(
n

j

)

/

(
r + j

j

)

= n!r !
(r + j)!(n − j)! , i = j,

y j
i (n) = −

i−1∑

�=max{i−r,1}

(r+�
i

)

(r+i
i

) y j
� (n) j < i � n − r;

And, define y ′
i(n) as y ′

i (n) = ∑n−r
j=1 y j

i (n). It is easy to see
that for all 1 � i � n − r we have

y ′
i(n) = 1

(r+i
i

)

⎛

⎝
(

n

i

)

−
i−1∑

�=max{i−r,1}

(
r + �

i

)

y ′
j (n)

⎞

⎠ .

So, y ′
i is nothing but the exact sequence yi defined in (19).

Now we use the variable change

δ
j
i (n) = y j

i (n)(r + i)! (n − j)!
n!r !

to get the recursion for δ
j
i (n) as

δ
j
i (n) = 0, 1 � i < j,

δ
j
i (n) = 1, i = j,

δ
j
i (n)

r ! + δ
j
i−1(n)

(r − 1)! + · · · + δ
j
i−r (n)

0! = 0, j < i � n − r.

We observe that δ
j
i (n) is also equal to Di− j+r−1 defined

in (10). Substituting this value in the formula for y ′ gives
the desired:

yi =
n−r∑

j=1

y j
i (n) =

n−r∑

j=1

δ
j
i (n)

n!r !
(r + i)!(n − j)!

= r !
(r + i)!

n−r∑

j=1

n!
(n − j)! Di− j+r−1

= r !
(r + i)!

i∑

j=1

n!
(n − j)! Di− j+r−1.

APPENDIX B
OPTIMAL TRANSVERSAL WEIGHT

FOR PROJECTIVE CODES

The idea behind the proof is to again write the cost function
f (w) = ∑n

k=0 wk
[n

k

]
2 as a non-negative linear combination of

some other cost functions fk(w), where w∗ minimizes them
all and so minimizes the cost function f (w). We benefit from
the symmetry in the optimal transversal i.e. w∗

k = w∗
n−k so

we limit the discussion to k � � n
2 �. Let us define the cost

functions fk(w) as

fk(w) = wk+1 + (2k+1 − 1)wk + (2n−k−1 − 1)wk+2,

if k ≡ �n/2� − 1(mod4) or k ≡ �n/2� − 2(mod4) and
otherwise

fk(w) = wk .

with the only exceptions of

fk(w) = wk−1 + (2n−k+1 − 1)wk + (2k−1 − 1)wk−2, (20)

if k = n
2 for n even, and

fk(w) = w0 + w1(2
n − 1), (21)

if k = 0 and � n
2 � �≡ 1 or 2 (mod4).

The idea is to write f (w) = ∑n
k=0 wk

[n
k

]
2 as∑n

k=0 yk fk(w), where yk’s are some fixed non-negative real
numbers. Note that all cost functions fk(w) take their mini-
mum values on w∗. So, the non-negativity of yk (for all k) is
enough to have the optimality of w∗ for f (w).

Assume that k is given such that

k ≡ �n

2
� + 1 mod 4,

and non of the indices in {k, k − 1, k − 2, k − 3} fall into the
two exceptional categories in (20) and (21). We have,

fk(w) = wk,

fk−1(w) = wk−1,

fk−2(w) = wk−2(2k−1 − 1) + wk−1 + wk(2n−k+1 − 1),

fk−3(w) = wk−3(2
k−2 − 1) + wk−2 + wk−1(2

n−k+2 − 1).

It is easy to see that {wk, wk−1, wk−2, wk−3} show up only
in these fi (w)’s. Comparing the corresponding coefficients
in f (w) results in the following system of equations for
yk, yk−1, yk−2, and yk−4:

[
n

k

]

2
= yk + yk−2(2n−k+1 − 1)

[
n

k − 1

]

2
= yk−1 + yk−2 + yk−3(2

n−k+2 − 1)

[
n

k − 2

]

2
= yk−2(2k−1 − 1) + yk−3

[
n

k − 3

]

2
= yk−3(2k−2 − 1).

And, the solution to the system of equations is given by

yk−3 =
[

n

k − 3

]

2
/(2k−2 − 1) � 0

yk−2 =
([

n

k − 2

]

2
− yk−3

)

/(2k−1 − 2) � 0

yk−1 =
[

n

k − 1

]

2
− yk−2 − yk−3(2n−k+2 − 1) � 0

yk =
[

n

k

]

2
− yk−2(2

n−k+1 − 1) � 0.
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The story is not much different on the edges i.e. where y0
or y� n

2 � are involved. Due to the symmetry, the non-negativity
of the first half of the y is followed by the non-negativity of
the other half. So yk (∀k) are all non-negative and w∗ is the
optimal transversal weight.
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