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Abstract—Parallel programming is an important tool used
in flash memories to achieve high write speed. In parallel
programming, a common programm voltage is applied to many
cells for simultaneous charge injection. This property significantly
simplifies the complexity of the memory hardware, and is a
constraint that limits the storage capacity of flash memories.
Another important property is that cells have different hardness
for charge injection. It makes the charge injected into cells differ
even when the same program voltage is applied to them.

In this paper, we study the parallel programming of flash
memory cells, focusing on the above two properties. We present
algorithms for parallel programming when there is information
on the cells’ hardness for charge injection, but there is no
feedback information on cell levels during programming. We then
proceed to the programming model with feedback information
on cell levels, and study how well the information on the cells’
hardness for charge injection can be obtained. The results can be
useful for understanding the storage capacity of flash memories
with parallel programming.

I. INTRODUCTION

Parallel programming is an important tool used in flash
memories to achieve high write speed. Studying how cells
are programmed is crucial for understanding the storage ca-
pacity of flash memories. The basic storage units in flash
memories are floating-gate cells. The cells use the charge
(e.g., electrons) stored in them to represent data, and the
amount of charge stored in a cell is called the cell’s level.
A cell level can be increased or decreased by injecting charge
into it or by removing charge from it, respectively, using
the hot-electron injection mechanism or the Fowler-Nordheim
tunnelling mechanism [1]. Flash memories have an important
asymmetric feature when programming cells: while charge
can be progressively injected into a cell, to remove charge
from any cell, a large block of cells (about 106 cells) must
be first erased together (i.e., all charge in them be fully
removed) before reprogrammed. This is called block erasure,
a very costly operation that substantially reduces the speed
and longevity of flash memories [1]. To avoid block erasures,
flash memory cells are usually programmed cautiously with
multiple rounds of charge injection, so that every cell’s level
gradually approaches its target level [6], [8].

Parallel programming in flash memories has two important
properties: shared program voltages, and variation in charge-
injection properties. A flash memory injects charge into a
cell by applying a program voltage to the cell. In paral-
lel programming, a common program voltage is applied to
many cells for simultaneous charge injection [1]. Compared
to applying a separate program voltage to each cell, this
property significantly simplifies the complexity of the memory

hardware. It is also a constraint for the storage capacity of
flash memories. Another important property is that cells have
different hardness for charge injection [6], [8]. Some cells are
easy to program, while others are hard to program. When the
same program voltage is applied to cells, the easier-to-program
cells will have more charge injected into them than the harder-
to-program cells. This hardness is an intrinsic property of
each cell. To accurately control the final cell levels, different
program voltages should be applied to cells based on their
hardness for programming. A widely used method in industry
is the Incremental Step Pulse Programming (ISPP) scheme [6],
[8], which gradually increases the program voltage to first
program the easier cells and then the harder cells. To ensure
that the (easier) cells are not overprogrammed, the subsequent
program voltages are not applied to the cells whose levels are
already sufficiently close to their target levels.

In previous works, the optimal programming of single
flash memory cells has been studied. In [3], an optimal
programming algorithm was presented for storing as much
data as possible in a single cell, which achieves the zero-error
storage capacity under its programming noise model. In [4],
an algorithm was shown for optimizing the expected cell
programming precision, when the programming noise follows
a random distribution. Note that for programming a single
cell, the two important properties for parallel programming
– shared program voltages and variation in programming
hardness – are not considered. So for parallel programming,
new techniques need to be developed.

In this paper, we study the parallel programming of flash
memory cells, focusing on the two new properties introduced
above. We present polynomial-time algorithms that optimize
the precision of the final cell levels, when there is information
on the cells’ programming hardness but there is no feedback
information on cell levels during programming. We then
proceed to the programming model with feedback information
on cell levels, and study a related problem: how accurately
can the cells’ programming hardness be estimated through the
feedback information on cell levels. The results can be useful
for understanding the storage capacity of flash memories with
parallel programming.

II. TERMS AND CONCEPTS

Let c1, c2, . . . , cn be n flash memory cells, whose initial lev-
els (i.e., charge levels) are all 0. When they are programmed,
a cell’s level can only increase. We model the hardness
of charge injection for the cells by the positive parameters
α1, α2, . . . , αn. Specifically, for i ∈ [n] , {1, 2, . . . , n}, if a
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program voltage V is used to inject charge into the cell ci, the
level of ci will increase by

αiV + ε,

where ε is called the programming noise and is a random
number with a probabilistic distribution. (The distribution of
ε may depend on αi and V .) In this paper, we will mostly
consider the case ε = 0 (which means the programming
noise is sufficiently small), and focus on studying how αi
(i.e., the variance in charge-injection hardness) impacts parallel
programming.

For i ∈ [n], let θi > 0 denote the target level of the cell
ci. The programming process consists of t rounds of charge
injection, and the goal is to make the final level of ci be very
close to θi. To guarantee high write speed, t is usually a small
constant (e.g., t = 6 or 8 for MLC flash). Let V1, V2, . . . , Vt
denote the program voltages of the t rounds of programming,
respectively. In each round, the memory can decide whether
to apply the program voltage to a cell or not. For i ∈ [n] and
j ∈ [t], let bi,j be a 0/1 integer such that in the j-th round
of programming, if the program voltage Vj is applied to the
cell ci, then bi,j = 1; otherwise, bi,j = 0. For i ∈ [n] and
j ∈ [t], let `i,j denote the level of ci after the j-th round of
programming. Then we have

`i,j = αi · (V1, V2, · · · , Vj) · (bi,1, bi,2, · · · , bi,j)T .

We measure the performance of programming by a cost
function C(Θ, L), where Θ , (θ1, θ2, . . . , θn) are the target
levels and L , (`1,t, `2,t, . . . , `n,t) are the final cell levels.
There are various ways to define C(Θ, L). We will adopt the
`p metric and denote it by Cp(Θ, L):

Cp(Θ, L) ,

(
n∑
i=1

|θi − `i,t|p
)1/p

.

Given the integer p, our objective is to minimize Cp(Θ, L).
In the parallel programming problem, Θ and t are given

parameters. We can choose V1, . . . , Vt and b1,1, . . . , bn,t for
the best performance. It makes a difference whether we know
the values of α1, . . . , αn, and whether we can learn the cell
levels after each round of programming (which is feedback
information). If the feedback information on cell levels is
available, the programming algorithm can be adaptive. Note
that it is very time consuming to measure the exact cell
levels. In practice, it is much faster to compare the cell
levels with some preset threshold levels (using comparators),
and use the information on cell levels to make decisions on
programming [6], [8]. We show examples in the following.

Example 1. Let n = 8, Θ = (1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 2.0,
2.0), t = 2, and (α1, . . . , α8) = (0.5, 0.5, 0.8, 0.75, 0.5, 0.42,
0.85, 0.46) be known parameters. Assume there is no feedback
information on the cell levels after each round of programming.

Suppose we choose V1 = 2.0 and V2 = 2.5, and choose(
b1,1 b2,1 · · · b8,1

b1,2 b2,2 · · · b8,2

)
=
(

1 1 0 0 1 1 0 1
0 0 1 1 0 1 1 1

)
.

Then we get L = (1.0, 1.0, 2.0, 1.875, 1.0, 1.89, 2.125, 2.07),
and Cp(Θ, L) = (2× 0.125p + 0.11p + 0.07p)1/p. If p = 2,
then the programming performance is C2(Θ, L) = 0.220.

Example 2. Let n > 1, Θ = (1.0, 1.0, . . . , 1.0), and t = 2. Let
αmin and αmax be two known parameters such that 0 < αmin <
αmax. Suppose that the values of α1, · · · , αn are unknown;
however, it is known that αi ∈ [αmin, αmax] for i ∈ [n].
Suppose that we have feedback information on cell levels in
the following way: after the first round of programming, we
can compare all cells with a common preset threshold level τ
to see if their levels are above or below τ . Based on this infor-
mation, the memory can adaptively adjust the second round of
programming. Suppose that we want to minimize C∞(Θ, L).

It can be verified that the following programming algo-
rithm is optimal. Choose V1 = 2√

αmax(
√
αmax+

√
αmin) , V2 =

2(
√
αmax−

√
αmin)√

αmaxαmin(
√
αmax+

√
αmin) , and τ = 2

√
αmin√

αmax+
√
αmin

. After the
first round of programming, all the cell levels are in the range
[αminV1, αmaxV1] = [ 2αmin√

αmax(
√
αmax+

√
αmin) ,

2
√
αmax√

αmax+
√
αmin

].
(Note that τ < 1, αmaxV1 > 1, and 1− τ = αmaxV1 − 1.)

Let S denote the set of cells whose levels are less than τ after
the first round of programming. (Note that for any cell ci ∈ S,
we know now that αi ∈ [αmin,

τ
V1

).) Only the cells in S are
programmed in the second round. After the second round, the
levels of the cells in S are in the range [αmin(V1 + V2), τV1

·
(V1 + V2)) = [τ, αmaxV1). So are the cells in {c1, . . . , cn} \ S.
So we get C∞(Θ, L) = 1− τ = αmaxV1 − 1 =

√
αmax−

√
αmin√

αmax+
√
αmin

.

III. OPTIMAL PROGRAMMING WITHOUT FEEDBACK

In this section, we present an optimal programming
algorithm when the cells’ hardness for programming –
α1, α2, . . . , αn – is known. In this case, there is no need
to obtain the feedback information on cell levels during
programming, because they change deterministically. (In prac-
tice, α1, . . . , αn may be estimated values through some cell
profiling process.) Let n, t, θ1, . . . , θn and p also be known pa-
rameters. The programming algorithm needs to find V1, . . . , Vt
and b1,1, . . . , bn,t that minimize Cp(Θ, L).

The parallel programming problem here is similar to the
Subspace/Subset Selection Problem (SSP) [2] and the Sparse
Approximate Solution Problem (SAS) [7], because we can
see ~pi , (b1,i, b2,i, . . . , bn,i)

T (for i = 1, . . . , t) as vectors,
see V1, . . . , Vt as real coefficients, and the objective is to
make the linear combination (~p1, . . . , ~pt) · (V1, . . . , Vt)

T be
close to a given vector (θ1, . . . , θn)T . Both SSP and SAS
problems are NP hard. However, we show here that the parallel
programming problem has a polynomial-time solution (for
many commonly used `p metrics, including p = 1, 2,∞),
using the condition that here t = O(1) is a constant.

Without loss of generality (WLOG), we assume that θ1
α1

6
θ2
α2

6 · · · 6 θn
αn

. (It takes time complexity O(n lg n) to sort
the n ratios and label the n cells this way.)

Lemma 3. There exists an optimal solution
V1, . . . , Vt, b1,1, . . . , bn,t such that for any 1 6 i < j 6 n,

(V1, . . . , Vt) · (bi,1, . . . , bi,t)T 6 (V1, . . . , Vt) · (bj,1, . . . , bj,t)T

Proof: For k = 1, 2, . . . , n, let us define yk ,
(V1, . . . , Vt) · (bk,1, . . . , bk,t)

T . Note that for each k ∈
[n], Cp(Θ, L) is monotonically increasing in |θk − `k,t| =
|θk − αkyk|. Consider any optimal solution where yi > yj .
Since |θi − `i,t| is minimized, we have yi+yj

2 6 θi
αi

. Since



|θj − `j,t| is minimized, we have θj
αj

6 yi+yj
2 . Since θi

αi
6 θj

αj
,

we get θi
αi

= yi+yj
2 = θj

αj
. So |θi − αiyi| = |θi − αiyj |. So

we can make (bi,1, . . . , bi,t) take the value of (bj,1, . . . , bj,t)
and still get an optimal solution. This way we can convert any
optimal solution to an optimal solution that has the property
shown in the lemma.

Let B1, B2, . . . , B2t denote the 2t distinct binary vectors of
length t, respectively. And let SB , {B1, B2, . . . , B2t}. (Let
B1, . . . , B2t be column vectors, e.g., (0, 0, . . . , 0)T . Clearly,
for i = 1, . . . , n, (bi,1, bi,2, . . . , bi,t)

T ∈ SB .) There are 2t!
permutations for the elements in SB , which we denote by
π1, π2, . . . , π2t!. For i ∈ [2t!], we denote the permutation
πi (SB) by

(
Bπi1 , Bπi2 , . . . , Bπi2t

)
.

Define ~V , (V1, V2, . . . , Vt). Given the program voltages
V1, . . . , Vt, let I(~V ) be the integer in [2t!] such that

~V ·B
πI(~V )
1 6 ~V ·B

πI(~V )
2 6 · · · 6 ~V ·B

πI(~V )

2t .

(If there is more than one such integer, I(~V ) can be any one
of them.) The following result follows from Lemma 3.

Lemma 4. There exists an optimal solution
V1, . . . , Vt, b1,1, . . . , bn,t such that we can partition the
set {1, 2, . . . , n} into 2t subsets

{1, 2, . . . , k1}, {k1 + 1, k1 + 2, . . . , k2}, . . . , {ki−1 + 1,
ki−1 + 2, . . . , ki}, . . . , {k2t−1 + 1, k2t−1 + 2, . . . , n}

with this property: ∀ i ∈ [2t] and j ∈ {ki−1 + 1, ki−1 +
2, . . . , ki}, we have (bj,1, bj,2, . . . , bj,t)

T = B
I(~V )
i . (Here we

let 0 = k0 6 k1 6 k2 6 · · · 6 k2t = n.)

There are
(
n+2t−1

2t−1

)
ways to choose the integers

k1, k2, . . . , k2t−1. (Note that if ki−1 = ki for some i, then
the subset {ki−1 + 1, ki−1 + 2, . . . , ki} is actually empty.) For
i = 1, 2, . . . ,

(
n+2t−1

2t−1

)
, let (k1(i), k2(i), . . . , k2t−1(i)) be the

integers chosen for (k1, k2, . . . , k2t−1) in the i-th way.
We present the parallel programming algorithm. The idea

is to fix each permutation πi and the partitioning integers
k1, . . . , k2t−1, and search for the optimal solution.

Algorithm 5 PROGRAMMING WITHOUT FEEDBACK
Let fopt ←∞.

Let ~Vopt ← (−1,−1, . . . ,−1). (~Vopt has length t.)
Let bopti,j ← −1 for i ∈ [n] and j ∈ [t].

For i = 1, 2, . . . , 2t!
{ For j = 1, 2, . . . ,

(
n+2t−1

2t−1

)
{ Find V1, V2, . . . , Vt that minimize the function f ,

2t∑
d=1

∑
q=kd−1(j)+1,kd−1(j)+2,...,kd(j)

|θq − αq · (V1, V2, . . . , Vt) ·Bπid |
p

subject to the constraints that V1, V2, . . . , Vt > 0.
Let V ∗1 , . . . , V

∗
t denote the optimal solution to the above

optimization problem, and let f∗ be the corresponding
minimum value of the objective function f .
If f∗ < fopt, do:
{ fopt ← f∗.

~Vopt ← (V ∗1 , . . . , V
∗
t ).

For d = 1, 2, . . . , 2t

{ For q = kd−1(j) + 1, kd−1(j) + 2, . . . , kd(j)
{
(
boptq,1 , b

opt
q,2 , . . . , b

opt
q,t

)T ← Bπid .
} } } } }
Output the solution ~Vopt, b

opt
1,1 , . . . , b

opt
n,t . (The corresponding

minimized value of the cost function Cp(Θ, L) is f1/p
opt .

Theorem 6. Algorithm 5 outputs an optimal solution to the
parallel programming problem.

Proof: In each iteration of Algorithm 5, V ∗1 , . . . , V
∗
t and

the values b1,1, . . . , bn,t (which are specified by the vectors
Bπid in the iteration) form a feasible solution to the parallel
programming problem. On the other hand, an optimal solution
to the parallel programming problem that has the properties
in Lemma 3 and Lemma 4 must be found by Algorithm 5.

It can be seen that when p = 1, 2, and ∞ (which are
the most commonly used metrics for Cp(Θ, L)), the time
complexity of Algorithm 5 is polynomial in n. (Note that
t is a small constant.) For example, consider p = 2. In
each iteration of Algorithm 5, the optimization problem is a
quadratic programming problem with t = O(1) non-negativity
constraints for variables, which can be solved with time
complexity of O(n) [5]. There are 2t!

(
n+2t−1

2t−1

)
= O(n2t−1)

iterations. So Algorithm 5 has time complexity O(n2t).
Note that we can further optimize the complexity of Algo-

rithm 5 by using the fact that not all the 2t! permutations πi
need to be checked. For simplicity, we skip the details.

We conclude this section by studying a simplified yet useful
case of parallel programming. In this case, all n cells have the
same target cell level, that is, θ1 = · · · = θn = θ. (For multi-
level cells (MLC), it is a natural heuristic solution to program
cells of the same target level together, which corresponds to
this case.) We consider programming noise ε; that is, if the
program voltage V is applied to a cell ci, its charge level will
increase by αiV +εi(V ), where the programming noise εi(V )
is a random number related to V . The values of α1, . . . , αn
are unknown, but we see them as i.i.d. random variables with
known expectation µ1(α) and second moment µ2(α). (That is,
if we use E (x) to denote the expectation of a random variable
x, then for i ∈ [n], E (αi) = µ1(α) and E

(
α2
i

)
= µ2(α).

Note that the statistics µ1(α) and µ2(α) are easy to obtain
by the memory by testing many cells with the values of the
injected and trapped charges in the cells.) We also assume
that the programming noise ε1(V ), . . . , εn(V ) are i.i.d. random
variables; and for i ∈ [n], we assume E(εi(V )) = 0 (namely,
its expectation is zero) and E

(
(εi(V ))2

)
= σV 2 (namely,

its standard deviation is proportional to the program voltage
V ). We can use t rounds of programming. We consider the `2
metric for the cost function and define it as

C ,
n∑
i=1

(θ − `i,t)2 .

And our objective is to minimize E (C), that is, the expected
cost. We call this case uniform programming.



Clearly, the optimal solution is to apply the same set of
program voltages V1, . . . , Vt to all the n cells. The following
theorem presents the optimal solution and the optimal cost.

Theorem 7. For the uniform programming problem, the opti-
mal solution is to set

V1 = · · · = Vt =
θµ1(α)

tµ2(α) + σ

and bi,j = 1 for i ∈ [n] and j ∈ [t]. The corresponding
minimized value of the expected cost E (C) is

n

(
1− µ1(α)2

µ2(α) + σ
t

)
θ2.

Proof: It can be seen that in the optimal solution,
`1,t, `2,t, . . . , `n,t are i.i.d. random variables. So E (C) =
nE
(

(θ − `1,t)2
)

. For i ∈ [t], let ε1,i denote the programming
noise for cell c1 in the i-th round of programming. Then

E (C) /n = E
((
θ −

∑t
i=1 (α1Vi + ε1,i)

)2)
= θ2 − 2θE

(∑t
i=1 (α1Vi + ε1,i)

)
+ E

((∑t
i=1 (α1Vi + ε1,i)

)2)
= θ2 − 2θµ1(α)

∑t
i=1 Vi + µ2(α)

(∑t
i=1 Vi

)2
+ σ

∑t
i=1 V

2
i

Note that
∑t
i=1 V

2
i > 1

t

(∑t
i=1 Vi

)2

. So we get

E (C) /n >
(
µ2(α) + σ

t

) (∑t
i=1 Vi

)2

− 2θµ1(α)
∑t
i=1 Vi +

θ2 >
(

1− µ1(α)2

µ2(α)+σ
t

)
θ2. The above inequalities will become

equalities if and only if
∑t
i=1 Vi = θµ1(α)

µ2(α)+σ
t

and V1 = V2 =
· · · = Vt.

IV. FEEDBACK INFORMATION ON CELL LEVELS

In this section, we extend the study to parallel programming
with feedback information on cell levels. That is, the memory
can measure the cell levels after every round of charge
injection. Note that in practice, it is very time consuming to
measure the exact level of every cell. It is much faster to
compare the cell levels (in parallel using comparators) with
one or more preset threshold levels, to see if the cell levels
are above or below the threshold level [1], [6], [8]. This
is the scheme we consider here. By obtaining this feedback
information on cell levels, the memory can learn more about
the cells’ hardness for charge injection, and adaptively choose
the subsequent program voltages for optimal performance.

Let αmin and αmax be two known parameters, where 0 <
αmin < αmax. We assume that initially (i.e., before program-
ming starts), the only knowledge on cells’ hardness for charge
injection is that for i ∈ [n], αi ∈ [αmin, αmax]. After every
round of programming, based on the feedback information on
cell levels, the memory can estimate the values of the αi’s
better, and adaptively optimize the following program volt-
ages. Therefore, the programming algorithm is a combination
of two iterative processes: iteratively obtaining information
on the cells’ hardness for programming (i.e., the values of
αi’s), and adaptively optimizing the program voltages (i.e.,
V1, . . . , Vt) and the on/off of cells (i.e., b1,1, . . . , bn,t).

In this section, we focus on the first iterative process, and
study this related problem: How much information can be
learned about a cell’s hardness for charge injection, α, through

t rounds of programming? Specifically, let [α′min, α
′
max] ⊆

[αmin, αmax] denote the range we can narrow down to such
that after t rounds of programming, we can learn for sure that
α ∈ [α′min, α

′
max]. The smaller α′max − α′min is, the better.

We assume that after every round of programming, we can
compare a cell with one preset threshold level. We formally
formulate the problem as follows. Let c be a cell whose initial
level is 0. Let α denote the cell’s hardness for charge injection,
such that when a program voltage V is applied, the cell’s level
will increase by αV . Initially, the only knowledge about α is
that α ∈ [αmin, αmax] for some known parameters αmin, αmax.
We can use up to t rounds of programming (whose program
voltages are denoted by V1, . . . , Vt), and choose in advance
r threshold levels τ1, τ2, . . . , τr. For i ∈ [t], let `i denote
the cell’s level after the i-th round of programming, and let
[αmin
i , αmax

i ] denote the range such that after the i-th round
of programming, we know for sure that α ∈ [αmin

i , αmax
i ].

(By convention, let `0 = 0 and [αmin
0 , αmax

0 ] = [αmin, αmax].
Clearly, when 0 6 i < j 6 t, [αmin

i , αmax
i ] ⊇ [αmin

j , αmax
j ].)

For i ∈ [t], after the i-th round of programming, we can
compare `i with one threshold level – say τj – to see if
`i < τj or `i > τj , compute αmin

i and αmax
i , and adaptively

choose the next program voltage Vi+1. Our objective is to
choose τ1, . . . , τr in advance, choose V1, . . . , Vt online, such
that αmax

t − αmin
t is minimized (in the worst case).

Let ∆ (t, r, αmin, αmax) denote the smallest achievable
value of αmax

t − αmin
t over all possible solutions. Intuitively,

∆ (t, r, αmin, αmax) > (αmax − αmin) /2t. (Every comparison
with a threshold level can reduce the interval size by at most
half.) We now present a better bound. Given i > j, define((

i
j

))
,
∑j
k=0

(
i
k

)
. For i < j, define

((
i
j

))
, 2i. Note that((

i
j

))
=
((
i−1
j

))
+
((

i−1
j−1

))
.

Theorem 8. ∆ (t, r, αmin, αmax) > (αmax − αmin) /
((
t
r

))
.

Proof: We present the sketch of proof. As base cases,
∆(t, 0, αmin, αmax) = ∆(0, r, αmin, αmax) = αmax − αmin.
Now consider t, r > 1, and we use induction on t, r.
After one round of programming, we compare the cell
level ` with some threshold level τ ; then for some α′ ∈
[αmin, αmax] we can determine if α > α′ (because ` > τ )
or α < α′ (because ` < τ ). There are t − 1 more rounds;
and if the cell level ` has exceeded τ , there are at most
r − 1 threshold levels left to compare with. (Note that
the cell level can only increase.) So by induction, we get
∆(t, r, αmin, αmax) = minα′ max{∆(t − 1, r − 1, α′, αmax),
∆(t − 1, r, αmin, α

′)} > minα′ max{αmax−α′

((t−1
r−1))

, α
′−αmin

((t−1
r )) } >

minα′
(αmax−α′)+(α′−αmin)

((t−1
r−1))+((t−1

r )) = αmax−αmin

((tr))
.

We now present an optimal algorithm whose performance
matches the above bound. It has r 6 t. (Having r > t
does not help.) In the algorithm, for i = 1, . . . , r, let

τi = τ1

(
αmax
αmin

)i−1

. (The value of τ1 > 0 can be arbitrary.

By convention, let τ0 , 0.) Let z1, . . . , zt+1 and flag be
integer parameters, and set z1 = r and flag = 1. Then,
for i = 1, 2, . . . , t, the i-th round of programming (and its
following computation) is performed as follows:

1) If zi = 0, then αmin
i ← αmin

i−1, αmax
i ← αmax

i−1 , zi+1 ← 0



and skip the next three steps. (In this case, we see Vi as
Vi = 0; namely, the cell is not really programmed.)

2) α′i ←
αmin
i−1

(
( t−izi−1)

)
+αmax

i−1

(
(t−izi )

)
(
( t−izi−1)

)
+
(
(t−izi )

) .

3) If flag = 1, then Vi ←
τr−zi+1

α′i
− τr−zi

αmin
i−1

;

If flag = 0, then Vi ←
τr−zi+1

α′i
− τr−zi+1

αmax
i−1

.
Program the cell with program voltage Vi.

4) Compare cell level `i with threshold level τr−zi+1.
If `i < τr−zi+1, then αmin

i ← αmin
i−1, αmax

i ← α′i,
flag ← 0, zi+1 ← zi.
If `i > τr−zi+1, then αmin

i ← α′i, α
max
i ← αmax

i−1 ,
zi+1 ← zi − 1.

The next lemma shows that the program voltages are all
non-negative, which means the algorithm can be successfully
implemented.

Lemma 9. In the algorithm, for i = 1, . . . , t, Vi > 0.

Proof: V1 =
αmin

(
( t−1
z1−1)

)
+αmax

(
(t−1
z1

)
)

(
( t−1
z1−1)

)
+
(
(t−1
z1

)
) > 0. Now con-

sider i > 2 and zi > 0. If flag = 1, then Vi = τr−zi+1

α′i
−

τr−zi
αmin
i−1

= αmax
αmin

· τr−ziα′i
− τr−zi

αmin
i−1

= τr−zi

(
αmax
αmin

· 1
α′i
− 1

αmin
i−1

)
.

Since αmin 6 αmin
i−1 and α′i 6 αmax, we get Vi > 0. If flag =

0, then Vi = τr−zi+1

α′i
− τr−zi+1

αmax
i−1

= τr−zi+1 ·
(

1
α′i
− 1

αmax
i−1

)
> 0.

The following lemma can be proved by induction. Due to
space limitation, we skip the details of the proof.

Lemma 10. In the algorithm, for i = 1, . . . , t, we have∑i
j=1 Vj = (τr−zi+1) /α′i when zi > 0. (If zi = 0, Vi = 0.)

The next theorem shows the performance of the algorithm.

Theorem 11. The algorithm outputs αmin
t , αmax

t such that

αmax
t − αmin

t =
αmax − αmin((

t
r

)) .

Proof: We present the sketch of the proof. Let k be the
smallest integer in {1, 2, . . . , t− 1} such that zk+1 = 0 in the
algorithm; if zi > 0 for i ∈ [t − 1], then let k = t. The k-th
round is the final round when the cell is really programmed,
and we have αmin

t = αmin
k , αmax

t = αmax
k . In the following,

we consider only the case k = t. (The case k < t is a simple
extension.) Note that zt+1 = 0. We prove for i ∈ {0, 1, . . . , t},
αmax
t −αmin

t =
(
αmax
i − αmin

i

)
/
((

t−i
zi+1

))
. This clearly holds

for i = t. We now prove it using induction on i, for i =
t− 1, t− 2, . . . , 0. (The case i = 0 leads to this theorem.)

Consider the (i + 1)-th round of program-
ming. The parameter α′i+1 is chosen such that

αmax
i − α′i+1 =

(
( t−i−1
zi+1−1)

)
(αmax
i −αmin

i )(
( t−i−1
zi+1−1)

)
+
(
(t−i−1
zi+1

)
) and

α′i+1 − αmin
i =

(
(t−i−1
zi+1

)
)
(αmax
i −αmin

i )(
( t−i−1
zi+1−1)

)
+
(
(t−i−1
zi+1

)
) . This means

αmax
i −α′i+1(
( t−i−1
zi+1−1)

) = α′i+1−α
min
i(

(t−i−1
zi+1

)
) . Since either “αmax

i+1 = αmax
i ,

αmin
i+1 = α′i+1 and zi+2 = zi+1 − 1” or “αmax

i+1 = α′i+1,

αmin
i+1 = αmin

i and zi+2 = zi+1”, using induction we get

αmax
t − αmin

t =
(
αmax
i+1 − αmin

i+1

)
/
((
t−i−1
zi+2

))
= αmax

i −α′i+1(
( t−i−1
zi+1−1)

) =

α′i+1−α
min
i(

(t−i−1
zi+1

)
) = (αmax

i −α′i+1)+(α′i+1−α
min
i )(

( t−i−1
zi+1−1)

)
+
(
(t−i−1
zi+1

)
) = αmax

i −αmin
i(

( t−izi+1
)
) .

From Theorem 8 and Theorem 11, we see that the bound
in Theorem 8 is actually exact. We get the following result.

Corollary 12 The above algorithm is optimal. And

∆ (t, r, αmin, αmax) =
αmax − αmin((

t
r

)) .

V. CONCLUSION

Parallel programming is an important technique for flash
memories. And flash memories have a unique iterative and
monotonic cell-programming model. In this paper, we study
parallel programming for flash memories, focusing on its two
special properties: shared program voltages and varied pro-
gramming hardness. As future work, we will further generalize
the model and study the storage capacity of flash memories.
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