
High Dimensional Error-Correcting Codes

Eitan Yaakobi
Dept. of Electrical and Computer Engineering

University of California, San Diego

La Jolla, CA 92093, USA

Email: eyaakobi@ucsd.edu

Tuvi Etzion
Dept. of Computer Science

Technion-Israel Institute of Technology

Haifa 32000, Israel

Email: etzion@cs.technion.ac.il

Abstract—In this paper we construct multidimensional codes
with high dimension. The codes can correct high dimensional
errors which have the form of either small clusters, or confined
to an area with a small radius. We also consider small number
of errors in a small area. The clusters which are discussed are
mainly spheres such as semi-crosses and crosses. Also considered
are clusters with small number of errors such as 2-bursts, two
errors in various clusters, and three errors on a line. Our main
focus is on the redundancy of the codes when the most dominant
parameter is the dimension of the code.

I. INTRODUCTION

Multidimensional coding in general and two-dimensional

coding in particular is a subject which attracts a lot of attention

in the last three decades. But, although the related theory of

the one-dimensional case is well developed, the theory for the

multidimensional case is developed rather slowly. This is due

to the fact that most of the one-dimensional techniques are

not generalized easily to higher dimensions and usually many

different techniques are used in the multidimensional case.
Remark 1: In our discussion we will consider noncyclic

arrays, even if the construction works on a cyclic array, i.e.,

a torus. This is done for convenient reasons. In the following

redundancy definition, the array is considered to be cyclic.

But, since the size of the array is very large we will omit the

minor difference in the redundancy between a cyclic array and

a noncyclic array.
A binary multidimensional error-correcting code corrects

errors which occur in a multidimensional array. Throughout the

paper the volume of the array is N . If we are given a set with

β possible patterns of errors (no error is also such a pattern)

that can occur anywhere in the array then the redundancy of

the code must satisfy r ≥ log (N · β) = log N + log β (all

logarithms in this paper are in base 2). The difference r−log N
is called the excess redundancy of the code [1], [2].

Abdel-Ghaffar [1] constructed binary two-dimensional

codes which correct a cluster of a rectangle shape with area B
for which r = �log N�+B. These codes attain the lower bound

on the excess redundancy. There is no known generalization

for the construction of Abdel-Ghaffar [1] to more than two

dimensions. Moreover, the number of length parameters on

which the construction works is very limited. A construction

in [3] produces a D-dimensional code for correction of a D-

dimensional box-error with redundancy �log N�+B+�log b1�,
where b1 is the length of the D-dimensional box in the first

dimension. For the two-dimensional case, this construction is

more flexible in its parameters than the construction in [1].
In this paper we are interested in D-dimensional codes,

where D > 2 is usually very large. On the other hand, we

are interested either in a small number of errors or that the

cluster is spread in radius at most one from the center of the

error event.

How can we correct such bursts? If the size of the burst

is one then we can always use an one-dimensional Hamming

code folded on the D-dimensional array to obtain an optimal

code. Given a set S with patterns of errors, the most natural and

simple way to correct an error from S is to correct a box-error

which contains all possible errors from S. This might result

in a large excess redundancy as the number of patterns in S
might be much smaller than the number of patterns defined

by a box-error. The goal of this paper is to construct codes

with excess redundancy much smaller than the one implied by

a correction of a related box-error. If the size of the burst is

two then we will see in the sequel that a code with optimal,

or almost optimal, excess redundancy can be constructed. But,

if the size of the burst is three then we don’t know how to

construct a code which attains the lower bound on the excess

redundancy. In fact, the question how to construct an optimal

code which corrects an arbitrary cluster is still open.

The rest of the paper is organized as follows. In Section II

we present the definitions of linear codes and shapes which

are discussed throughout this paper. In Section III we discuss

codes for which the error is small and confined to an one-

dimensional line. We will examine two types of errors, 2-bursts

and 3-bursts (bursts of length two and three, respectively) on

a line, where a b-burst is any set of errors that is confined

to an area of size b. In Section IV we discuss a coloring

method presented in [3] and explain how it is designed to

correct cluster errors. We show how to correct error whose

shape is a semi-cross (corner) with arms of length one (radius

of length one) or a cross (Stein’s sphere) with arms of length

one (radius of length one). These two shapes will exhibit an

excellent example for the strength of the coloring method.

In Section V we consider clusters with small weight inside

a relatively larger cluster. We present asymptotically optimal

solutions for the case where the weight is two and the cluster is

a semi-cross, cross, or a two-dimensional square. In Section VI

we conclude and present the goals for the future research.

II. BASIC DEFINITIONS

A binary multidimensional b-error-correcting code is a set

C consisting of D-dimensional binary arrays of the same size,

such that if we are given an array A from C and the values

of up to b positions in A are changed, then we will be able

to recover A. We consider only linear codes as done in all

previous works.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1178978-1-4244-7891-0/10/$26.00 ©2010 IEEE ISIT 2010

A binary D-dimensional linear code C is a linear subspace

of the n1 × n2 × · · · × nD binary matrices. If the subspace is

of dimension N − r, where N =
∏D

�=1 n�, we say that the

code is an [n1 × n2 × · · · × nD, N − r] code. The code can

be also defined by its parity-check matrix. Let H = (hi,j),
where i ∈ I, I = {(i1, i2, . . . , iD) : 0 ≤ i� ≤ n� − 1}, and

0 ≤ j ≤ r−1, be a (D+1)-dimensional binary matrix of size

n1 × n2 × · · · × nD × r, consisting of r linearly independent

n1 × n2 × · · · × nD matrices. Let c = (ci) denote a binary

n1×n2×· · ·×nD matrix. The linear subspace defined by the

following set of r equations,∑
i∈I

cihi,j = 0,

for all 0 ≤ j ≤ r− 1, is an [n1×n2× · · · ×nD, N − r] code.

We say that r is the redundancy of the code.

Our goal in this paper is to handle D-dimensional errors

from one of the following types:

• Errors which don’t spread more than one position around

an artificial center (which is the center of the error event).

• Two errors in a cluster of some shape.

These clusters include the following types of bursts.

1) A D-dimensional 2-burst which corresponds to any two

adjacent positions that might be in error.

2) A D-dimensional 3-burst in which all the errors are

on the same line. Such an error corresponds to three

positions of the form (i1, . . . , ij−1, ij−1, ij+1, . . . , iD),
(i1, . . . , ij−1, ij , ij+1, . . . , iD), and (i1, . . . , ij−1, ij +
1, ij+1, . . . , iD) for some j, 1 ≤ j ≤ D.

3) A D-dimensional burst whose shape is a semi-cross with

arms of length one. Such a semi-cross has a center point

at (i1, i2, . . . , iD) and includes all the points of the form

(i1, . . . , ij−1, ij + 1, ij+1, . . . , iD), 1 ≤ j ≤ D.

4) A D-dimensional burst whose shape is a cross with

arms of length one. Such a cross has a center point at

(i1, i2, . . . , iD) and includes all the points of the form

(i1, . . . , ij−1, ij − 1, ij+1, . . . , iD) and all the points of

the form (i1, . . . , ij−1, ij +1, ij+1, . . . , iD), 1 ≤ j ≤ D.

5) Two errors inside a semi-cross or a cross with arms of

length R. A semi-cross with arms of length R has a

center point at (i1, i2, . . . , iD) and includes all the points

of the form (i1, . . . , ij−1, ij + �, ij+1, . . . , iD), 1 ≤ j ≤
D, 1 ≤ � ≤ R. Similarly, a cross with arms of length

R is defined. These errors are also related to two errors

inside a two-dimensional square with edges of length R.

Why are we interested in crosses and semi-crosses? Errors

are likely to be spread within spheres to some limited radius.

Crosses and semi-crosses are types of spheres as described

in [4] which are relatively simpler to handle than other spheres.

These spheres are also discussed extensively in the literature,

e.g. [5], [6], [7], [8].

III. CONSTRUCTIONS WITH LOW REDUNDANCY

In this section we will handle two types of errors, 2-burst

and 3-burst on a straight line. The number of possible patterns

of errors (excluding no errors) which can be confined to a D-

dimensional 2-burst is D + 1 and to a D-dimensional 3-burst

on a line is 3D+1. Hence, a lower bound of their redundancies

is log ((D + 2) ·N) and log ((3D + 2) ·N), respectively.

A. Correction of 2-burst

Assume that we have a D-dimensional array of size n1 ×
n2×· · ·×nD on which we want to correct any cluster of error

that can be confined to a 2-burst.

Construction A: Let α be a primitive element in GF(2m) for

2m − 1 ≥ ∏D
�=1 n�. Let d = �log D� and i = (i1, i2, . . . , iD),

where 0 ≤ i� ≤ n� − 1. Let A be a d ×D matrix containing

distinct binary d-tuples as columns. We construct the following

n1 × n2 × · · · × nD × (m + d + 1) parity check matrix H:

hi =

⎡
⎣ 1

AiT mod 2
α

∑ D
j=1 ij(

∏D
�=j+1 n�)

⎤
⎦ ,

for all i = (i1, i2, . . . , iD), where 0 ≤ i� ≤ n� − 1.

Remark 2: The matrix A that we are using was also used

in [9], but the construction here is more flexible in its pa-

rameters. This is a consequence from the way that we fold

the elements of GF(2m) into the parity-check matrix of the

code. Moreover, we will see in the sequel that this method

will be of use for constructions of larger bursts with at most

two erroneous positions.

In the decoding algorithm we assume that the error occurred

can be confined to a 2-burst. The syndrome received v in the

decoding algorithm consists of three parts.

• The first bit determines the number of errors occurred.

Obviously if the syndrome is the all-zeroes vector than

no errors occurred. If the first bit of the syndrome is an

one then exactly one error occurred and its position is the

position of v in H . If the first bit of a non-zero vector

v is a zero then two errors occurred. Their position is

determined by the other m + d entries of v.

• The next d bits determine the dimension in which the

burst occurred. There are D dimensions and each column

of the matrix A corresponds to a different dimension

for two consecutive errors. If the errors occurred in

positions i1 = (i1, . . . , iD) and i2 = (i1, . . . , ij−1, ij +
1, ij+1, . . . , iD) then the value of the d bits, (AiT1 +
AiT2) mod 2, is the j-th column of the matrix A.

• The entries of the last m rows of the matrix H form

the folding of the first ΠD
�=1n� consecutive elements of

GF(2m). Given a dimension � there exists an integer i(�)
such that each two consecutive elements in dimension �
have the form αj , αj+i(�). It is easy to verify that for

j1 �= j2 we have αj1 + αj1+i(�) �= αj2 + αj2+i(�). Thus,

given the dimension of the burst of size two, the last m
bits of v can determine the two consecutive positions of

the burst.

Theorem 1:

• The code constructed in Construction A can correct any

error pattern confined to a 2-burst in an n1×n2×· · ·×nD

array codeword.

• The code constructed by Construction A has redundancy

which is greater by at most two from the trivial lower

bound on the redundancy.

Remark 3: There are cases in which we can prove that the

code of Construction A is optimal.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1179

B. 3-burst on a line

Next, we would like to consider correction of error patterns

confined to an arbitrary D-dimensional 3-burst. This appears to

be much more difficult than the 2-burst case. The main reason

is that the error can be spread on a two-dimensional subspace.

Therefore, we consider only the case of a D-dimensional

cluster of size three on an one-dimensional subspace, i.e. on a

straight line. In this case we can generalize Construction A.

Construction B: Let α be a primitive element in GF(2m) for

2m−1 ≥ ∏D
�=1 n�. Let B be a matrix of size �log (D+1)�×D

which contains all binary representations of the integers be-

tween 1 and D as its columns, such that the binary representa-

tion of D is the left most column, and the binary representation

of 1 is the right most column. The rows of B are denoted

by b1, b2, . . . , b�log (D+1)�. Let β be a primitive element in

GF(4). By abuse of notation, if v = (v1, v2, . . . , v�log (D+1)�)T

is a column vector of length �log (D + 1)�, we denote

βv = (βv1 , βv2 , . . . , βv�log (D+1)�)T . We construct the follow-

ing n1 × n2 × · · · × nD × (m + 2�log (D + 1)� + 2) parity

check matrix HD:

hD
i =

⎡
⎢⎢⎢⎣

1(∑D
j=1 ij

)
mod 2

βBiT

α
∑ D

j=1 ij(
∏D

�=j+1 n�)

⎤
⎥⎥⎥⎦ ,

for all i = (i1, i2, . . . , iD), where 0 ≤ i� ≤ n� − 1. The

multiplication BiT is taken over the integers and the vector

βBiT consists of �log (D + 1)� vectors of length two, each

one representing an element in GF(4).

Theorem 2:
• The code constructed in Construction B can correct any

error pattern confined to a 3-burst on a straight line in an

n1 × n2 × · · · × nD array codeword.

• The code constructed by Construction B has excess

redundancy 2�log (D + 1)� + 2 which is at most twice

than the trivial lower bound on the excess redundancy.

IV. THE COLORING METHOD

The coloring method introduced in [3] is an effective method

to handle multidimensional cluster errors. In the coloring

method we use D one-dimensional auxiliary codes for our

encoding and decoding procedures. These codes are called

component codes. Each such a code Cs, 1 ≤ s ≤ D, has

length ηs and we assign to it a coloring of the array codeword

A. Position j of the code Cs is the binary sum of all positions

in A colored with color j by the s-th coloring. Assume that

the size of the burst is B. The first code is a (B + δ1)-burst-

correcting code, δ1 ≥ 0. This code finds and corrects the

shape of the error in the codeword of C1. The error that C1
corrects can occur in a few positions of the array codeword

A. It might also have different shapes in A, but the erroneous

positions in A have the colors of the positions which were

in error in the codeword of C1. The s-th component code,

2 ≤ s ≤ D, is a (B + δs)-burst-locator code, δs ≥ δ1

(usually, δs will be the same integer for all 2 ≤ s ≤ D).

Burst-locator codes were discussed in [3] and are designed to

find the location of a one-dimensional burst which its shape

is given up to a cyclic shift. Each of these codes, Cs, provides

additional information concerning the positions of the errors,

i.e., it reduces the sets of possible locations of errors in A as

were found by C1, C2, . . . , Cs−1. Finally, the last component

code finds the actual positions of the burst-error. To execute

these tasks the colorings should satisfy a few properties:

• (p.1) For the s-th coloring, for each s, 1 ≤ s ≤ D,

the colors inside a burst of the given shape are distinct

integers and the difference between the largest integer and

the smallest one is at most B + δs − 1.

• (p.2) Given the D colorings and a color νs, for the s-

th coloring, for each 1 ≤ s ≤ D, there is at most one

position in the array which is colored with the colors

(ν1, ν2, . . . , νD).
• (p.3) Any two positions which are colored with the same

color by the first coloring, have colors which differ by

a multiple of B + δs by the s-th coloring, for each s,

2 ≤ s ≤ D.

The redundancy of the D-dimensional code is the sum of the

redundancies of the D component codes. If we use a (B+δs)-
burst-correcting code for the s-th component code then this

code does not need to satisfy (p.3). The disadvantage will be

that the total redundancy of the multidimensional code will

increase. The advantage will be that we will be more flexible

in the parameters of the multidimensional code since burst-

locator codes are more rare than burst-correcting codes.
Which codes can be used for the coloring method? We start

with the code for the first component code. The most efficient

codes are those constructed by Abdel-Ghaffar et al. [10] for

correction of a b-burst. For a code of length n, the redundancy

of the code is �log n� + b − 1. The main disadvantage of

these codes is that their existence depends on a sequence of

conditions which are not easy to satisfy.
What about the locator codes? We can use locator codes

derived from the codes of Abdel-Ghaffar [10], [11] as demon-

strated in [3]. The redundancy of a locator code of length n
is �log n�, i.e., it does not depend on the length of the burst.

But, these locator codes exist only for odd burst length [3].

Component codes with the parameters ηs, b and D, which

satisfy (p.3) are usually difficult to find. Hence, if we want

codes designed especially to fit the parameters ηs, b and D we

should compromise on the redundancy of the component codes

which will result in larger redundancy of the multidimensional

code. The best codes known for this purpose are the Fire

codes [12], [13]. A Fire code of length n which corrects a

b-burst has redundancy at most �log n�+ 2b− 1.
It will be more convenient if each coloring is a linear

function of the coordinate indices, i.e., given a position

(i1, i2, . . . , iD), its color for the s-th coloring is defined by

D∑
k=1

αs
kik

where αs
k is a constant integer which depends on the coloring

s and the shape of the D-dimensional cluster. Such a coloring

will be called a linear coloring. With a linear coloring we

associate a coloring matrix AD, where (AD)s,k = αs
k. It

is easy to verify that property (p.2), is fulfilled for a linear

coloring if and only if the coloring matrix is invertible.
Now we will apply the coloring method on two types of

errors, semi-crosses and crosses with arms of length one. If

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1180

we will try to correct an error of either type by correcting a

box-error which inscribes it then the excess redundancy will be

exponential in D. The lower bound on the excess redundancy

is linear in D and our code will have slightly larger excess

redundancy. For simplicity we will assume for the rest of this

section that all the edges of our array are equal to n. We use

the notation (×n)D to denote n× · · · × n︸ ︷︷ ︸
D times

.

A. Semi-crosses with arms of length one

We define the colorings by the coloring matrix, which is a

D ×D matrix A = {aij}1≤i,j≤D

a1k = k, 1 ≤ k ≤ D .

For each s, 2 ≤ s ≤ D we define

ask = k, 1 ≤ k < s ,

ask = k −D − 1, s ≤ k ≤ D .

The s-th color, 1 ≤ s ≤ D, of position (i1, i2, . . . , iD) in the

array is given by

cs
(i1,i2,...,iD) =

D∑
k=1

askik.

Using these colorings we obtain the following result. We

present here its proof in order to demonstrate how the coloring

method works. The proofs for all other colorings is similar as

they all satisfy properties (p.1), (p.2), and (p.3).

Theorem 3: For any given even D, there exists a code which

corrects any D-dimensional error confined to a semi-cross

burst with radius one in an (×n)D cube and its redundancy is

at most
⌈
log nD

⌉
+ 2D �log (D + 1))�+ D.

Proof: One can verify that the three coloring properties

hold. Therefore, given the set of erroneous colors by the first

coloring, according to property (p.3) the shape of the burst

in all other colorings is known up to cyclic permutation.

Therefore, for 2 ≤ s ≤ D, the burst-locator code can find the

locations of the erroneous colors in the s-th coloring. Then,

for each error in the multidimensional array, its set of colors

by each coloring is known and according to property p.2 it is

possible to find the error location in the array.

Better redundancy is obtained if we slightly change the

coloring and define a nonlinear coloring. The s-th color,

1 ≤ s ≤ D, of position (i1, i2, . . . , iD) is given by

cs
(i1,i2,...,iD) =

(
D∑

k=1

askik

)
mod (n(D + 1)).

As a consequence we have the following theorems.

Theorem 4: For any given even D, there exists a code which

corrects any D-dimensional error confined to a semi-cross

burst with radius one in an (×n)D cube and its redundancy is

at most
⌈
log nD

⌉
+ D �log (D + 1))�+ D.

If we use the Fire codes [12], [13] as locator codes we obtain

the following theorem.

Theorem 5: For any given D and n, there exists a code

which corrects any D-dimensional error confined to a semi-

cross burst with radius one in an (×n)D cube and its redun-

dancy is at most �log nD�+ 2D2 + D �log (D + 1)�+ D.

B. Crosses with arms of length one

We define the colorings by the coloring matrix, which is a

D ×D matrix A = {aij}1≤i,j≤D

aij = ij mod (2i(D − i + 1) + 1) ,

aij ∈ {−i(D − i + 1), . . . ,−1, 0, 1, . . . , i(D − i + 1)}.
The first color of position (i1, i2, . . . , iD) in the array is given

by

c1
(i1,i2,...,iD) =

D∑
k=1

a1kik.

The s-th color, 2 ≤ s ≤ D, of position (i1, i2, . . . , iD) in the

array is given by

cs
(i1,i2,...,iD) =

(
D∑

k=1

askik

)
mod (2s(D − s + 1)n).

Theorem 6: There exists a code which corrects any D-

dimensional error confined to a Lee sphere burst with ra-

dius one in an (×n)D cube and its redundancy is at most

�log nD�+ 2D �log D�.
Theorem 7: For any given D and n, there exists a code

which corrects any D-dimensional Lee sphere burst with

radius one in an (×n)D cube and its redundancy is at most

�log nD�+ 2D2 + 2D �log D�.
Remark 4: For specific values of D, i.e., when 2D + 1 is

a prime number, 11 ≤ 2D + 1 ≤ 10000, this construction can

be slightly improved.

V. CLUSTERS WITH LIMITED WEIGHT

When a certain area suffers from an error event we might

expect that not all the positions will be in error. Hence, it

seems that practically, we would expect to correct a cluster

with a limited weight. In this section we will consider the

case where the weight of the cluster is at most two.

A. Semi-crosses

We start by correcting an error with weight at most two in

a D-dimensional semi-cross with arms of length one.

Construction C: Let α be a primitive element in GF(2m) for

2m − 1 ≥ ∏D
�=1 n�. Let d = �log D� and i = (i1, i2, . . . , iD),

where 0 ≤ i� ≤ n�−1. LetH be a (2d)×D parity-check matrix

of a double-error correcting BCH code (or its shortened code).

We construct the following n1×n2×· · ·×nD× (m+2d+1)
parity check matrix H:

hi =

⎡
⎣ 1

HiT mod 2
α

∑ D
j=1 ij(

∏D
�=j+1 n�)

⎤
⎦ ,

for all i = (i1, i2, . . . , iD), where 0 ≤ i� ≤ n� − 1.

Theorem 8:
• The code constructed in Construction C can correct any

error of weight at most two inside a semi-cross with arms

of length one in an n1 × n2 × · · · × nD array codeword.

• The code constructed by Construction C has redundancy

which is greater by at most two from the trivial lower

bound on the redundancy.

Proof: The first part of the Theorem is an immediate

consequence from the decoding procedure and the second part

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1181

is easily verified. The decoding is very similar to the one

of Construction A. If the received syndrome is the all zero

vector then no error occurred. The first bit of the syndrome

indicates whether one or two errors occurred. If the first bit

is one, then one error occurred, and its location can be found

by the rest of the syndrome. Otherwise, two errors occurred.

The two errors can be of the form i1 = (i1, . . . , iD) and

i2 = (i1, . . . , ij−1, ij + 1, ij+1, iD) or i1 = (i1, . . . , ik−1, ik +
1, ik+1, iD) and i2 = (i1, . . . , ij−1, ij +1, ij+1, iD). In the first

case, the next 2d bits of the syndrome are the j-th column of

the matrix H, and in the second case the next 2d bits are the

sum of the j-th and k-th columns of the matrix H. Since H
is a parity check matrix of a double error-correcting code it

is possible to distinguish between these cases and know the

shape of the error. Thus, as in Construction A, the last m bits

of the syndrome indicate the location of the error.

Construction C is generalized for a semi-cross with arms of

length R with some extra redundancy in Construction D which

follows.

Construction D: Let α be a primitive element in GF(2m)

for 2m− 1 ≥ ∏D
�=1 n�. Let t be the smallest integer such that

2t−1 ≥ 2RD. LetH be a (4t)×(2t−1) parity-check matrix of

a four-error-correcting BCH code. Let Π = {Ĥ1, Ĥ2, ..., ĤD}
be a set of disjoint subsets of columns of size 2R from H,

where Ĥi = [ĥi
0, . . . , ĥ

i
2R−1]. We construct the following n1×

n2 × · · · × nD × (m + 4t + 1) parity-check matrix:

hi =

⎡
⎢⎣ 1∑D

�=1 ĥ�
i� mod 2R mod 2

α
∑ D

j=1 ij(
∏D

�=j+1 n�)

⎤
⎥⎦ ,

for all i = (i1, i2, . . . , iD), where 0 ≤ i� ≤ n� − 1.

Theorem 9:
• The code constructed in Construction D can correct any

error of weight at most two inside a semi-cross with arms

of length R in an n1 × n2 × · · · × nD array codeword.

• The code constructed by Construction D has excess

redundancy 4�log D + log R� + 5 compared to a trivial

lower bound 2log D + 2log R− 1.

Remark 5: Two errors inside a two-dimensional square, of

a D-dimensional array, with edge of length R can be viewed

as an error with weight two inside a semi-cross with arms of

length R − 1. Hence, Construction D can be used to correct

the related error.

B. Crosses

The idea of correcting an error with weight two in a cross is

a modification of the one for a semi-cross. The two directions

in which the two errors occurred are revealed exactly as in

the semi-cross. The difference is that in the semi-cross the

directions are only positive, while in the cross they can be

either positive or negative. We will demonstrate how to solve

the problem in the case when the cross has arms with length

one. Similar solution is given for longer arms. It appears that

we only have to find whether the two directions have the same

sign or not, reducing the number of cases from four to two.

Construction E: Let α be a primitive element in GF(2m) for

2m − 1 ≥ ∏D
�=1 n�. Let t be the smallest integer such that

2t−1 ≥ 4D. Let H be a (4t)×(2t−1) parity-check matrix of

a four-error-correcting BCH code. Let Π = {Ĥ1, Ĥ2, ..., ĤD}
be a set of disjoint subsets of columns of size 4 from H, where

Ĥi = [ĥi
0, ĥ

i
1, ĥ

i
2, ĥ

i
3]. We construct the following n1 × n2 ×

· · · × nD × (m + 4t + 2) parity-check matrix:

hi =

⎡
⎢⎢⎢⎣

1∑D
�=1 ĥ�

i� mod 4 mod 2

�
∑ D

j=1 ij

2 	 mod 2
α

∑ D
j=1 ij(

∏D
�=j+1 n�)

⎤
⎥⎥⎥⎦ ,

for all i = (i1, i2, . . . , iD), where 0 ≤ i� ≤ n� − 1.
Theorem 10: The code constructed in Construction E can

correct any error of weight at most two inside a cross with

arms of length one in an n1 × n2 × · · · × nD array codeword.

VI. CONCLUSION

We have considered various types of errors in a D-

dimensional array, where D is a large integer. Given an error

pattern we have constructed codes for which the redundancy

and the excess redundancy are relatively small. The excess

redundancy is much smaller than the one obtained from a con-

struction which produces a code correcting a box-error which

contains the given cluster. The most immediate future goal will

be to construct D-dimensional codes which correct a cluster

error of size b (whose shape is not a D-dimensional box), for

large b, with asymptotically optimal excess redundancy.

ACKNOWLEDGMENT

The work of Eitan Yaakobi was supported in part by the

University of California Lab Fees Research Program, Award

No. 09-LR-06-118620-SIEP. Tuvi Etzion was supported by

the United States-Israel Binational Science Foundation (BSF),

Jerusalem, Israel, under Grant No. 2006097.

REFERENCES

[1] K. A. S. Abdel-Ghaffar, “An information- and coding-theoretic study
of bursty channels with applications to computer memories”, Ph.D.
dissertation, California Inst. Technol. Pasadena, CA, June 1986.

[2] K. A. S. Abdel-Ghaffar, R. J. McEliece, H. C. A. van Tilborg, “Two-
dimensional burst identification codes and their use in burst correction”,
IEEE Trans. on Inform. Theory, vol. IT-34, pp. 494-504, May 1988.

[3] T. Etzion and E. Yaakobi, “Error-Correction of Multidimensional
Bursts”, IEEE Trans. on Inform. Theory, vol. IT-55, pp. 961-976, March
2009.

[4] S. W. Golomb, “A general formulation of error metrics”, IEEE Trans.
Inform. Theory, vol. IT-15, 425–426, 1969.

[5] S. W. Golomb and L. R. Welch, “Perfect codes in the Lee metric and
the packing of polyominos”, SIAM Journal Applied Math., vol. 18, pp.
302–317, 1970.

[6] S. Stein, “Packings of Rn by certain error spheres”, IEEE Trans. on
Inform. Theory, vol. IT-30, pp. 356-363, March 1984.

[7] W. Hamaker and S. Stein, “Combinatorial packing of R3 by certain
error spheres”, IEEE Trans. on Inform. Theory, vol. IT-30, pp. 364-368,
March 1984.

[8] S. Stein and S. Szabó, Algebra and Tiling, The Mathematical Association
of America, 1994.

[9] M. Schwartz and T. Etzion, “Two-dimensional cluser-correcting codes”,
IEEE Trans. on Inform. Theory, vol. IT-51, pp. 2121-2132, June 2005.

[10] K. A. S. Abdel-Ghaffar, R. J. McEliece, A. M. Odlyzko, H. C. A. van
Tilborg, “On the existence of optimum cyclic burst-correcting codes”,
IEEE Trans. on Inform. Theory, vol. IT-32, pp. 768-775, Nov. 1986.

[11] K. A. S. Abdel-Ghaffar, “On the existence of optimum cyclic burst-
correcting codes over GF(q)”, IEEE Trans. on Inform. Theory, vol. IT-34,
pp. 329-332, March 1988.

[12] P. Fire, “A class of multiple error correcting binary codes for nonindepen-
dent errors”, Sylvania Reconnaisance Lab., Mountain View, California,
Sylvania Rep. RSL-e-2, 1959.

[13] W. W. Paterson, Error-Correcting Codes, Cambridge University Press,
2005.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1182

