
Approximate Sorting of Data Streams
with Limited Storage

Farzad Farnoud (Hassanzadeh), Eitan Yaakobi, and Jehoshua Bruck

California Institute of Technology, Pasadena, CA, USA
{farnoud,yaakobi,bruck}@caltech.edu

Abstract. We consider the problem of approximate sorting of a data
stream (in one pass) with limited internal storage where the goal is not
to rearrange data but to output a permutation that reflects the ordering
of the elements of the data stream as closely as possible. Our main ob-
jective is to study the relationship between the quality of the sorting and
the amount of available storage. To measure quality, we use permutation
distortion metrics, namely the Kendall tau and Chebyshev metrics, as
well as mutual information, between the output permutation and the
true ordering of data elements. We provide bounds on the performance
of algorithms with limited storage and present a simple algorithm that
asymptotically requires a constant factor as much storage as an opti-
mal algorithm in terms of mutual information and average Kendall tau
distortion.

1 Introduction

In many applications, such as sensor networks, finance, and web applications,
data may be available as a transient stream that is not permanently accessible [1].
Often, in these applications, the large volume of data or time constraints prevent
storage of the whole stream before processing. Even if data is locally stored,
certain storage media only allow sequential access in a time-efficient manner.

In this paper, we study the fundamental problem of sorting a data stream
when internal storage is limited. As the nature of the problem makes rearrang-
ing the data into a sorted stream impossible, by sorting we mean determining
the ordering of the elements of the stream. In our model, the amount of available
internal storage limits the number of elements of the data stream that can be
stored internally. Furthermore, only elements in internal storage can be com-
pared with each other. Lack of storage capable of holding the whole data stream
implies that sorting must be approximate; the goal is to produce a permutation
that represents the ordering of the elements of the data stream as faithfully as
possible. As in [1], we consider algorithms that make only one pass over the data
stream.

To evaluate performance, we measure the distortion between the output per-
mutation and the permutation representing the true ordering of the data. There
are many possible distortion measures on permutations [6], among which we con-
sider the Kendall tau metric and the Chebyshev metric. The Kendall tau met-
ric can be viewed as the number of mistakes made by the algorithm, while the

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 465–476, 2014.
c© Springer International Publishing Switzerland 2014

466 F. Farnoud, E. Yaakobi, and J. Bruck

Chebyshev metric represents the maximum error in the rank of any element. An-
other quality measure considered in the paper is the mutual information between
the true permutation and the output permutation, which reflects the amount of
relevant information present in the output.

We first provide universal bounds on the performance of algorithms with lim-
ited storage, namely an upper bound on mutual information, and lower bounds
on distortion, between the true permutation and the output. Further, we present
a simple algorithm that is asymptotically optimal in terms of mutual information
and asymptotically requires a constant factor as much storage as any algorithm
with the same average Kendall tau distortion. For the Chebyshev distortion, the
algorithm is also asymptotically constant-factor-optimal, provided that normal-
ized distortion, to be defined later, is bounded away from 0.

The problem of sorting a data stream with limited storage goes back to the
work of Munro and Paterson [12], where they considered sorting of, and selecting
from, data stored on a read-only tape and showed that for exact sorting of a
stream of length n in p passes, one requires storage of size Θ(n/p). While they
allowed making multiple passes over the data and considered only exact sorting,
in this work we study the quality of approximate sorting that can be obtained
in one pass. Since the work of Munro and Paterson, many papers have studied
problems related to selection in data streams, such as finding the kth highest
value or quantiles, in one or many passes, e.g., [2, 8, 10, 11]. The problem of
approximate sorting in one pass, however, to the best of our knowledge, has not
been studied.

The rest of this paper is organized as follows. In Section 2, we present the
formal problem statement and preliminaries. Section 3 includes universal bounds
on the performance of algorithms with limited storage. In Section 4, an algorithm
for sorting with limited storage is given and its performance is analyzed.

2 Problem Statement and Preliminaries

For a positive integer n, we let [n] = {1, . . . , n}. The set of all permutations of
[n] is denoted by Sn. For a permutation π ∈ Sn and distinct i, j ∈ [n], we use
i ≺π j (resp. i �π j) to denote that i appears before j (resp. after j) in π. For
example, if π = (2, 3, 1), we have 2 ≺π 3 and 1 �π 2. The inverse of π is denoted
by π−1. The rank of element i in π is its position in π, that is, π−1 (i).

The data stream is denoted by the sequence s = s1, s2, . . . , sn. We assume
there is a permutation X ∈ Sn that represents the ordering of the elements of s;
if i ≺X j, then si < sj with respect to X . The goal is to approximate X as closely
as possible. While X is not directly accessible in our setting, the relationship
between every two elements si and sj of s can be queried (or computed) if they
are both present in internal storage, and the result of the query is either i ≺X j
or j ≺X i. Throughout the paper, our assumption is that X is chosen uniformly
and at random among the permutations of Sn but we only consider deterministic
algorithms.

The elements of s are revealed in a streaming fashion, i.e., one by one. If
an element of the stream is not stored internally when revealed, it will not be

Approximate Sorting of Data Streams with Limited Storage 467

possible to access it in the future. The storage limitation is that there are m
cells each of which can store one element of s and thus any algorithm can only
access m elements of the sequence s at any one time. The set of these m cells is
termed stream memory. When a new element si of the stream s arrives, it can
only be stored in the stream memory if there is an empty cell or if the contents
of a cell is discarded; otherwise, si is ignored. To make a query regarding the
relative order of si and sj with respect to X , both si and sj should be stored
in the stream memory. We do not impose any other type of storage limitation.
For example, there is no restriction on the number of integer values that an
algorithm can store and access. This assumption is for simplifying the analysis
and is also valid when each element of s is much larger than other types of data
that an algorithm may require. To avoid trivial cases, we assume n,m ≥ 2.

The output of the algorithms considered here is a permutation, denoted Y .
To measure performance, we evaluate how “close” Y is to X . Closeness between
two permutations can be quantified in a variety of ways. We use the Kendall
tau and Chebyshev metrics, defined below, as well as the mutual information
between X and Y .

The Kendall tau distance between two permutations π, σ ∈ Sn is the number
of pairs of distinct elements i and j such that i ≺π j and j ≺σ i, or equivalently,
the number of adjacent transpositions needed to take π to σ. This distance is
denoted as dτ (π, σ). The Chebyshev distance between π and σ, denoted dC (π, σ),
is defined as

max
i∈[n]

∣
∣π−1 (i)− σ−1 (i)

∣
∣ .

In other words, the Chebyshev distance is the maximum difference in the rank
of any element in the two permutations.

For two functions fn and gn of n, the notation fn ∼ gn is used to denote
limn→∞ fn/gn = 1. Furthermore, we use lg and ln as shorthands for log2 and
loge, respectively.

3 Universal Bounds

In this section, we present bounds on the performance of any algorithm that
can only store m elements of the sequence s. To derive these bounds, we use
the fact that to make a query for comparing two elements si and sj , both need
to be present in the stream memory and so the amount of information that
can be obtained via queries is limited because of the limitation on storage. As
mentioned earlier, X is a random element of Sn but only deterministic algorithms
are considered. We first present bounds on the mutual information between X
and the output permutation Y and then consider distortion under the Kendall
tau and Chebyshev metrics.

We use H(X) and I(X ;Y) to refer to the entropy of X and the mutual
information between X and Y , respectively. For these functions, logarithms are
base 2. Note that as X is a random element of Sn, we have H(X) = lgn!.

468 F. Farnoud, E. Yaakobi, and J. Bruck

Theorem 1. For any algorithm with stream memory of size m, we have

I (X ;Y) ≤ n lgm−m lg e+O(lgm) .

Furthermore, I (X ;Y ∗) /H (X) ∼ lgm/ lgn for m,n → ∞, where Y ∗ is the
output of an algorithm that maximizes the mutual information between X and
Y .

Proof. Let Z be the set of responses provided to the comparison queries made
by the algorithm. Since the algorithm can only have access to X through Z,
by the data processing inequality [5], we have I(Y ;X) ≤ I(Y ;Z). Furthermore,
I(Y ;Z) ≤ H (Z).

We now show that H (Z) ≤ lgm! + (n − m) lgm. The first m elements of s
can be fully compared and so m! cases arise from their ordering. Let Z ′

0 be an
integer in [m!] denoting the permutation representing the ordering of the first m
elements. Each of the next n−m elements can at most be compared with m− 1
elements already present in the stream memory. These m− 1 elements define m
intervals, into one of which the new element falls. For i ∈ {m+1, . . . , n}, let Z ′

i be
an integer in [m] denoting the interval in which the ith element of the stream falls.
Given the algorithm, Z is a deterministic function of

(

Z ′
0, Z

′
m+1, Z

′
m+2, . . . , Z

′
n

)

and thus

H (Z) ≤ H
(

Z ′
0, Z

′
m+1, Z

′
m+2, . . . , Z

′
n

)

≤ H (Z ′
0) +

n∑

i=m+1

H (Z ′
i)

≤ lgm! + (n−m) lgm .

It follows that I (X ;Y) ≤ H (Z) ≤ lgm! + (n − m) lgm. The first theorem
statement then follows from the Stirling approximation: For a positive integer
k, we have lg k! = k lg k − k lg e+O (lg k) .

Since I (X ;Y) ≤ lgm! + (n−m) lgm holds for Y = Y ∗, we have

I (X ;Y ∗)
H (X)

≤ n lgm+O(m)

n lgn+O(n)
=

lgm

lgn
(1 + o (1)) , (1)

where we have used the fact that m
n lgm = O(1/ lgn) = o(1). In Section 4, we

present an algorithm that produces an output Y1 such that

I (X ;Y1)

H (X)
≥ lgm

lgn
(1 + o (1)) , m, n → ∞ ·

Since I(X ;Y ∗) ≥ I (X ;Y1), we have

I (X ;Y ∗)
H (X)

≥ lgm

lgn
(1 + o (1)) , m, n → ∞ · (2)

The second statement of the theorem follows from (1) and (2).
�

Approximate Sorting of Data Streams with Limited Storage 469

In particular, if m = nβ + O(1) for a constant β, then a β fraction of the
information of X can be recovered by an algorithm with stream memory m.

Next, we use the rate-distortion theory to find lower bounds on the average
Kendall tau distortion between X and Y , defined as E[dτ (X,Y)]. We use δ to
denote the normalized version of this distortion, that is, δ = E[dτ (X,Y)]/n.
This choice leads to simpler expressions. Note that since dτ can be of the order
of n2, δ can take on values in the range [0,∞).

The following theorem applies to any algorithm with stream memory m. We
use W0 and W−1 to respectively denote the principal and the lower branches
of the Lambert W function. The Lambert W function W (x) is defined as the
function satisfying W (x)eW (x) = x [4].

Theorem 2. Let μ = m
n and δ = E[dτ(X,Y)]

n . Suppose ε is a positive constant.
For any algorithm with stream memory m and δ > ε, we have

μ ≥ −W0

(

− δδ

e(1 + δ)1+δ

)(

1− Kε lg n

n

)

, (3)

where Kε is a constant that depends on ε, and

μ ≥ 1

e2δ

(

1 +O

(
lgn

n

)

+O

(
1

δ

))

. (4)

Proof. Since we only consider deterministic algorithms, the number M of outputs
of a given algorithm is bounded from above by m!mn−m. This statement can be
proven in a similar manner to the upper bound on H (Z) in Theorem 1.

Let A = 1
n lg M

n! . We have lgM ≤ n lgm−m lg e+O(lgm) and so

A ≤ 1

n
(n lgm−m lg e− n lg n+ n lg e+O(lg n))

= lg
(

μe1−μ
)

+O
(

n−1 lg n
)

.

Hence, there exists a positive constant K1 such that A ≤ lg
(

μe1−μ
)

+K1 lg n/n.
The parameter M can be viewed as the size of a rate-distortion code. Hence,

from [7, Theorem 5], we have the following relationship between the average
distortion E [dτ (X,Y)] and M , expressed in terms of δ and A,

A ≥ lg
δδ

(1 + δ)1+δ
− lgn

n
.

From this and the fact that A ≤ lg
(

μe1−μ
)

+K1 lgn/n, we obtain

μe1−μ ≥ δδ

(1 + δ)1+δ

(

1−K2
lgn

n

)

,

where K2 = (1 +K1) ln 2, or equivalently,

−μe−μ ≤ −δδ

e(1 + δ)1+δ

(

1−K2
lgn

n

)

.

470 F. Farnoud, E. Yaakobi, and J. Bruck

Hence

μ ≥ −W0

(−δδ

e(1 + δ)1+δ

(

1−K2
lgn

n

))

. (5)

For convenience, let g (δ) = δδ

e(1+δ)1+δ . By taking derivatives, one can show that
the function W0 is concave. Hence,

W0

(

−g(δ) + g(δ)K2
lg n

n

)

≤ W0(−g(δ)) +W ′
0(−g(δ))g(δ)K2

lgn

n

= W0(−g(δ)) +
W0(−g(δ))

−g(δ) (1 +W0(−g(δ)))
g(δ)K2

lgn

n

= W0(−g(δ))

(

1− K2

1 +W0(−g(δ))

lg n

n

)

≤ W0(−g(δ))

(

1−Kε
lgn

n

)

,

where Kε = K2

1+W0(−g(ε)) . Note that for δ ≥ 0, the expression −g(δ) is strictly
increasing and we have −g(δ) ∈ [−1/e, 0). Since ε > 0, we have −g (ε) > −1/e
and so W0 (−g (ε)) > −1. Thus Kε is well defined. Furthermore, W0 (−g (δ)) >
W0 (−g (ε)) for δ > ε and from this and the fact that W0(−g(δ)) < 0, the last
step of the above derivation follows. We finally have,

μ ≥ −W0

(

− δδ

e(1 + δ)1+δ

)(

1− Kε lgn

n

)

. (6)

To prove the second statement, note that by concavity of W0 and the facts
that W0(0) = 0 and W ′

0(0) = 1, we have

W0

(

− δδ

e(1 + δ)1+δ

)

≤ − δδ

e(1 + δ)1+δ

≤ − 1

e2(1 + δ)

= −1 + O(1/δ)

e2δ
. (7)

The second statement of the theorem then follows from (6) and (7).
�
Finally, we consider the Chebyshev distortion between X and Y . The normalized
Chebyshev distortion is χ = E [dC(X,Y)] /n. We only consider the case of χ ≤
1/2 which is more important as it represents small distortions.

Theorem 3. Let μ = m
n and χ = E[dC(X,Y)]

n . Suppose 2/n ≤ χ ≤ 1/2. For any
algorithm with stream memory m, we have

μ ≥ −W0

(

− (e/2)2χ

2χn

)
(

1 +O
(

n−1 lg n
))

.

Approximate Sorting of Data Streams with Limited Storage 471

Proof. Let M be defined as in the proof of Theorem 2 and let R = 1
n lgM . Since

lgM ≤ n lgm − m lg e + O(lgm), we have R ≤ lgm − m
n lg e + O(n−1 lgm).

From [7, Theorem 16], we find R ≥ lg 1
2χ + 2χ lg e

2 + O(n−1 lg n) for χ ≤ 1/2.
Hence,

lg
1

2χ
+ 2χ lg

e

2
≤ lgm− m

n
lg e+O(n−1 lg n)

implying that μe−μ ≥ (e/2)2χ

2χn

(

1 +O
(

n−1 lgn
))

, or equivalently,

μ ≥ −W0

(

− (e/2)2χ

2χn

(

1 +O
(

n−1 lgn
))
)

.

Since χ ≤ 1/2, we have (e/2)2χ ≤ e/2 and since χ ≥ 2/n, we have 2χn ≥ 4.
So − (e/2)2χ

2χn ≥ − e
8 > − 1

e . Hence, W0

(

− (e/2)2χ

2χn

)

is bounded away from -1. We
have

W0

(

− (e/2)2χ

2χn

(

1 +O
(

n−1 lg n
))
)

(a)

≤ W0

(

− (e/2)2χ

2χn

)

+W ′
0

(

− (e/2)2χ

2χn

)
(e/2)2χO

(

n−1 lg n
)

2χn

= W0

(

− (e/2)2χ

2χn

)

+W0

(

− (e/2)2χ

2χn

)
O
(

n−1 lg n
)

1 +W0

(

− (e/2)2χ

2χn

)

(b)
= W0

(

− (e/2)2χ

2χn

)
(

1 +O
(

n−1 lg n
))

.

where (a) and (b) follow from the concavity of W0 and the fact that 1 +

W0

(

− (e/2)2χ

2χn

)

is bounded away from 0, respectively.
�

4 Algorithm for Limited-Storage Approximate Sorting

We present the following simple algorithm for approximately sorting a stream
using storage of size m and then present results regarding its performance. Let
c1, . . . , cm denote the m memory cells capable of storing elements of the stream.
Recall that si < sj if i appears before j in X , i.e., i ≺X j.

Algorithm 1

1. Store the first m− 1 elements of s in memory cells c1, . . . , cm−1.
2. Find permutation y of {1, . . . ,m− 1} such that sy1 < sy2 < . . . < sym−1 .
3. Let Y1 ← y.
4. For each new element si, i = m,m+ 1, . . . , n, of the stream:

(a) Store si in cm.
(b) If there exists j such that syj−1 < si < syj , insert i immediately before

yj in Y1.
(c) If si < sj for all j ∈ [m− 1], insert i immediately before y1 in Y1.
(d) If si > sj for all j ∈ [m− 1], append i to the end of Y1.

472 F. Farnoud, E. Yaakobi, and J. Bruck

In this algorithm, the first m−1 elements, namely, s1, . . . , sm−1, are stored in
the memory for the duration of the algorithm and every new element is compared
with these. An element that is stored in memory, for the purpose that new
elements can be compared with it, is called a pivot.

Example 1. Suppose X = (5, 4, 2, 3, 7, 6, 1, 9, 8) and m = 3. After step 3 of Al-
gorithm 1, we have y = Y1 = (2, 1). For i = 3, Y1 is updated to (2, 3,1),
where the indices of the pivots are shown in bold. For i = 4 and i = 5,
Y1 is respectively updated to (4,2, 3,1) and (4, 5,2, 3,1). The final output is
Y1 = (4, 5,2, 3, 6, 7,1, 8, 9). For the Kendall tau and Chebyshev distortions, we
have dτ (X,Y1) = 3 and dC(X,Y1) = 1.

In Algorithm 1, the index set of pivots is {1, 2, . . . ,m−1} and they are in correct
order in Y1. However, indices of elements between the pivots, and between the
pivots and the boundaries, are sorted in the natural increasing order which may
differ from their order in X , e.g., the subsequence 3, 6, 7 of Y1 in the preceding
example. Let r1, . . . , rm−1 be an increasing sequence that denotes the positions
of the indices of the pivots in X (or equivalently in Y1). Furthermore, let r0 = 0
and rm = n+ 1. In Example 1, we have r0 = 0, r1 = 3, r2 = 7, and r3 = 10. For
j ∈ [m], the elements of Y1 between positions rj−1 and rj can have any order in
X . Additionally, all possibilities are equally probable. Given Y1, the number of
possible cases for X is given by

∏m
j=1 (rj − rj−1 − 1)!. We will use this fact to

compute the conditional entropy of X given Y1 in the next theorem.

Theorem 4. Algorithm 1 is asymptotically optimal for m,n → ∞, with respect
to mutual information.

Proof. Since I(X ;Y1) = H(X) −H(X |Y1) and H(X) = lgn!, to find I(X ;Y1),
it suffices to find H(X |Y1). We have

H(X |Y1) =
∑

z∈Sn

P (Y1 = z)H(X |Y1 = z)

=

(
n

m− 1

)−1 ∑

r0<···<rm

m∑

j=1

lg (rj − rj−1 − 1)! .

For given values of r0, . . . , rm, the set [n] is divided into m blocks with lengths
rj − rj−1 − 1. To compute the above sum, we count how many times a block of
size k occurs for all possible values of r0, . . . , rm. The number of times a block of
length k appears starting at position 1 equals

(
n−k−1
m−2

)

since we have r1 = k + 1
but must choose the values of r2, . . . , rm−1 among the n− (k + 1) possibilities.
The number of times a block of size k ends at position n is the same. A similar
argument shows that the number of times a block of length k starts at position i
and ends at position i+ k− 1, for each i ∈ {2, . . . , n− k}, is

(
n−k−2
m−3

)

. Thus, the
total number of blocks of size k is 2

(
n−k−1
m−2

)

+ (n− k − 1)
(
n−k−2
m−3

)

= m
(
n−k−1
m−2

)

.
Hence,

H(X |Y1) =

(
n

m− 1

)−1

m
n−m+1∑

k=2

(
n− k − 1

m− 2

)

lg k! . (8)

Approximate Sorting of Data Streams with Limited Storage 473

It can be shown that
n−m+1∑

k=1

(
n− k − 1

m− 2

)

k lg k ≤
(
n

m

)(

lg
n

m
+O(1)

)

. (9)

From (8), (9), and the fact that lg k! < k lg k, we obtain

H (X |Y1) ≤ (n−m+ 1)
(

lg
n

m
+O(1)

)

= n lg
n

m
+O(n)

and so I(X ;Y1) ≥ lg n! − n lg n
m + O(n) = n lgm + O(n). Thus I(X;Y1)

H(X) ≥
lgm
lgn (1 + o (1)) for m,n → ∞. Recall from the proof of Theorem 1 that I(X;Y)

H(X) ≤
lgm
lgn (1 + o (1)) for the output Y of any algorithm. Therefore,

I (X ;Y1)

H (X)
=

lgm

lgn
(1 + o (1)) , m, n → ∞ ,

which is optimal.
�
Next, we discuss the average Kendall tau distortion of Algorithm 1.

Theorem 5. Suppose Algorithm 1 has stream memory m = μ1n and produces
an output with average Kendall tau distortion δn. We have

μ1 ≤
(

1 + δ −
√

δ(δ + 2)
)

(1 +O(1/n)) .

Furthermore, Algorithm 1 asymptotically requires at most a constant factor as
much storage as an optimal algorithm with the same average Kendall tau distor-
tion.

Proof. For a random permutation of length k, the average Kendall tau distance
from the identity is 1

2

(
k
2

)

. Hence, from the discussion preceding Theorem 4, we
obtain

E [dτ (X,Y1)] =

(
n

m− 1

)−1 ∑

r0<···<rm

m∑

j=1

1

2

(
rj − rj−1 − 1

2

)

=
1

2

(
n

m− 1

)−1

m
n−m+1∑

k=2

(
k

2

)(
n− k − 1

m− 2

)

=
1

m+ 1

(
n−m+ 1

2

)

, (10)

where for the second equality, we have used an argument similar to that of the
proof of Theorem 4. We have δn = E [dτ (X,Y1)] =

1
μ1n+1

(
n−μ1n+1

2

)

and thus

δn ≤ (n−μ1n+1)2

2μ1n
. It follows that

μ1 ≤ 1 + δ +
1

n
−
√

δ(δ + 2 + 2/n)

=
(

1 + δ −
√

δ(δ + 2)
)

(1 +O(1/n)) .

474 F. Farnoud, E. Yaakobi, and J. Bruck

In particular, for large δ, we have μ1 ≤ 1/(2δ) (1 +O(1/δ)) (1 +O(1/n)).
Let μ∗n be the smallest amount of stream memory of any algorithm with

average Kendall tau distortion δn. From (4), we have

μ1

μ∗ ≤ 1/(2δ)

1/ (e2δ)
(1 +O(1/δ)) (1 +O(lg n/n)) .

Thus there is a constant c such that for δ, n ≥ c, μ1/μ
∗ is bounded.

On the other hand, if δ < c, from (3) and using the fact that μ∗ is a de-
creasing function of δ, we have μ∗ ≥ −W0

(−cce−1(1 + c)−1−c
)

(1 +O(lg n/n)) .
Furthermore μ1 ≤ 1. Hence, if δ < c, then μ1/μ

∗ is bounded.
�
Remark 1. There is an alternative way to show that E [dτ (X,Y1)]=

1
m+1

(
n−m+1

2

)

.
Without loss of generality, assume 1 ≺X · · · ≺X m − 1. Consider distinct
i, j ∈ {m, . . . , n}, with i < j. The pair i, j will have incorrect order in Y1, if
and only if j ≺X i and there is no p ∈ {1, . . . ,m− 1} such that j ≺X p ≺X i (in
other words, there is no pivot sp such that sj < sp < si). Since X is random, it
is straightforward to see that the probability of this event is 1/(m + 1). There
are

(
n−m+1

2

)

possible choices for the pair i, j. The desired result then follows by
the linearity of expectation.

The next theorem concerns the average Chebyshev distortion of Algorithm 1.

Theorem 6. Suppose Algorithm 1 has memory m and produces an output with
average Chebyshev distortion χn. Furthermore, suppose that χ ≤ 1/2 and m ≥ 2.
We have

m ≤ − 1

χ
W−1

(

−χ

e

)

.

Additionally, if χ is bounded away from zero, Algorithm 1 asymptotically requires
at most a constant factor as much memory as an optimal algorithm with the same
average Chebyshev distortion.

Proof. Consider an element i in Y1 that is between positions rj−1 and rj . We
know that the position of this element in X is also between rj−1 and rj . Thus,
∣
∣X−1(i)− Y −1

1 (i)
∣
∣ ≤ rj − rj−1 − 1 and so

dC (X,Y1) ≤ max
j

(rj − rj−1 − 1) .

Suppose a stick of length n is randomly broken at m − 1 points. Let the
length of the longest piece among the m pieces be denoted by S. From [9],
we have E[S] = nE[S′]/m, where S′ is the largest random variable among m
iid exponential random variables with mean 1. We have E[S′] =

∑m
i=1 1/i ≤

lnm+ γe +
1
2m , where the inequality follows from [3] and γe is Euler’s constant.

Since the positions of the pivots in Algorithm 1 are random, with a coupling
argument one can show that the expected length of the longest segment is not
more than E[S]. That is, E [maxj (rj − rj−1 − 1)] ≤ E [S]. Hence,

E[dC(X,Y1)] = χn ≤ n

m

(

lnm+ γe +
1

2m

)

.

Approximate Sorting of Data Streams with Limited Storage 475

Since m ≥ 2 we have γe + 1
2m ≤ 1, and thus χ ≤ ln(me)

m . This in turn im-
plies that −mχe−mχ ≤ −χ

e , from which it follows that −(1/χ)W0 (−χ/e) ≤
m ≤ −(1/χ)W−1 (−χ/e) and so we have the first statement in the theorem.
Note that for χ ≤ 1, we have −(1/χ)W0 (−χ/e) ≤ 1 and hence the inequality
−(1/χ)W0 (−χ/e) ≤ m does not give us any useful information.

Let μ1 denote m/n for Algorithm 1 and μ∗ denote the smallest amount of
storage of any algorithm with Chebyshev distortion χn. From Theorem 3,

μ1

μ∗ ≤
− 1

χnW−1

(−χ
e

)

−W0

(

− (e/2)2χ

2χn

)

(

1 +O

(
lgn

n

))

∼ − 1
χnW−1

(−χ
e

)

(e/2)2χ

2χn

∼ −2W−1

(−χ
e

)

(e/2)2χ
. (11)

Suppose χ is bounded away from 0. It follows that −χ/e is also bounded away
from 0. This in turn implies that −W−1(−χ/e) is bounded and so is the right
side of (11). This completes the proof of the theorem.
�

Acknowledgements. The authors would like to thank Ryan Gabrys and Yue
Li for useful discussions and comments.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proc. 21st ACM Symp. Principles of Database Systems
(PODS), New York, NY, USA (2002)

2. Chakrabarti, A., Jayram, T.S., Pǎtraşcu, M.: Tight lower bounds for selection in
randomly ordered streams. In: ACM-SIAM Symp. Discrete Algorithms (SODA),
pp. 720–729. Society for Industrial and Applied Mathematics, Philadelphia (2008),
http://dl.acm.org/citation.cfm?id=1347082.1347161

3. Chen, C.P., Qi, F.: The best lower and upper bounds of harmonic sequence. Global
Journal of Applied Mathematics and Mathematical Sciences 1(1), 41–49 (2008)

4. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lam-
bert W function. Advances in Computational Mathematics 5(1), 329–359 (1996),
http://dx.doi.org/10.1007/BF02124750

5. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons
(2006)

6. Diaconis, P.: Group Representations in Probability and Statistics, vol. 11. Institute
of Mathematical Statistics (1988)

7. Farnoud, F., Schwartz, M., Bruck, J.: Rate-distortion for ranking with incomplete
information. arXiv preprint (2014), http://arxiv.org/abs/1401.3093

8. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 58–66. ACM,
New York (2001), http://doi.acm.org/10.1145/375663.375670

http://dl.acm.org/citation.cfm?id=1347082.1347161
http://dx.doi.org/10.1007/BF02124750
http://arxiv.org/abs/1401.3093
http://doi.acm.org/10.1145/375663.375670

476 F. Farnoud, E. Yaakobi, and J. Bruck

9. Holst, L.: On the lengths of the pieces of a stick broken at random. Journal of
Applied Probability 17(3), 623–634 (1980)

10. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other
quantiles in one pass and with limited memory. In: Proc. ACM SIGMOD
Int. Conf. Management of Data, pp. 426–435. ACM, New York (1998),
http://doi.acm.org/10.1145/276304.276342

11. McGregor, A., Valiant, P.: The shifting sands algorithm. In: ACM-SIAM Symp.
Discrete Algorithms (SODA), pp. 453–458. SIAM (2012),
http://dl.acm.org/citation.cfm?id=2095116.2095155

12. Munro, J., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12(3), 315–323 (1980),
http://www.sciencedirect.com/science/article/pii/0304397580900614

http://doi.acm.org/10.1145/276304.276342
http://dl.acm.org/citation.cfm?id=2095116.2095155
http://www.sciencedirect.com/science/article/pii/0304397580900614

	Approximate Sorting of Data Streams with Limited Storage
	1 Introduction
	2 Problem Statement and Preliminaries
	3 Universal Bounds
	4 Algorithm for Limited-Storage Approximate Sorting
	2,
	1),
	2,
	1)
	2,
	1).
	2,
	1,

	References

