
On the Channel Induced by Sneak-Path Errors

in Memristor Arrays

Yuval Cassuto

Dept. of Electrical Engineering.

Technion – Israel Institute of Tech.

Haifa, 3200000, Israel

Email: ycassuto@ee.technion.ac.il

Shahar Kvatinsky

Dept. of Electrical Engineering.

Technion – Israel Institute of Tech.

Haifa, 3200000, Israel

Email: skva@tx.technion.ac.il

Eitan Yaakobi

Dept. of Computer Science.

Technion – Israel Institute of Tech.

Haifa, 3200000, Israel

Email: yaakobi@cs.technion.ac.il

Abstract—Memristors, also known as resistive RAMs,

are very promising non-volatile media that can be packed

in unprecedented density. However, the crossbar layout

by which this high density is achieved entails major chal-

lenges arising from cell-to-cell interference. In particular,

cell readout is affected by sneak paths, which are electric

paths passing through other crossbar cells and affecting

the outcome of the read operation. The existence of sneak

paths and their severity depends upon the current bit

assignment stored in the array. In this paper we study

sneak-path errors by modeling the array as a single-

parameter information theoretic channel. We calculate

this parameter in closed form as a function of the array

dimensions and the bias between 0s and 1s in the written

bits. We extend this result to the case where error occurs

only when at least L sneak-paths exist, and also examine

the correlation between sneak-path errors in different cells

within the array. The channel capacity is calculated in

a flavor similar to the capacity of the Z channel, only

with transition probability that depends on the array-bit

distribution.

Index Terms—Memristors, resistive memories, storage

channels, inter-cell interference, coding for storage.

I. INTRODUCTION

The memristor technology [6] allows packing storage

cells in unprecedented density, over a simple crossbar

structure. The blessing of high storage density and ar-

chitectural simplicity comes with a major caveat: severe

cell-to-cell interference [4]. The primary manifestation

of cell-to-cell interference in memristor arrays is the

sneak-path problem [4], causing the read outcome of

a given cell to depend on the contents of other cells

within the array.

To understand the sneak-path problem in memris-

tor arrays, we first show a simplified schematic of a

memristor array in Fig. 1(a). Each row-column pair is

connected by a resistor that can be in either the high-

resistance state (marked white) or the low-resistance

state (marked black). In Fig. 1(b) appear the corre-

sponding logical values of the cells: logical ”0” for

the high-resistance state, and logical ”1” for the low-

resistance state. The sneak-path problem occurs when

000

00

00

00

1

1

1

11

11

11

1

1

2

2

2

2

3

33

3

4

4

4

4

(a) (b)

Fig. 1. (a) A memristor array as an array of programmed

resistors – white: high resistance, black: low resistance. The

high-resistance cell at location (4, 1) has a sneak-path in par-

allel (plotted dashed), causing it to be read as low-resistance.

(b) The corresponding logical values of the memristor array.

The cell in the square frame has a sneak-path comprising of

the three cells marked in circles.

a resistor in the high-resistance state (white) is being

read, while a series of resistors in the low-resistance

state (black) exists in parallel to it, thereby causing it

to be erroneously read as low-resistance. It is shown

by the dashed line in Fig. 1(a) that the white resistor

in (row,column) location (4, 1) has a sneak path that

traverses the black resistors in locations (4, 3), (1, 3)

and (1, 1). This dashed path is in parallel to the main

current path of (4, 1) marked by a solid line.

In this paper we seek to characterize sneak-path

errors as an information-theoretic channel, serving as

the foundation for a comprehensive coding theoretic

treatment that will enable reliable memristor storage.

Harnessing information-theoretic techniques for sneak-

path mitigation has already proven effective in prior

work. In [7] it was suggested to force the number of

zeros and ones in every row and column to be the

same (see also [3]), aiming at reducing the incidence

of sneak paths. Completely eliminating sneak paths by

constraint-coding of the array bits was studied in [1],

[5]. The drawback of the elimination approach is that

it imposes restrictions on the array content that are

stronger than what is practically needed, thereby result-

978-1-4799-4665-5/14/$31.00 ©2014 IEEE

ing in a high rate loss. Here we adopt a more lenient

approach where sneak paths do exist, and treating the

resulting error-prone readout as an information-theoretic

channel.

The information-theoretic treatment of sneak-path er-

rors is explored in Section II. We first formulate sneak-

path errors as a special kind of a Z channel, in which

the (one-directional) transition probability depends on

the array dimensions and on the distribution of the

written bits. We give a precise closed-form calculation

of the transition probability as a function of these

parameters. We then extend this calculation to the case

where an error occurs only if at least some number L

of sneak paths affect the cell. Section II continues with

an asymptotic analysis showing that an infinite array

has zero capacity, and then with a derivation of a lower

bound on the capacity of semi-infinite arrays. Section III

then studies the joint error probability for cells within

the same array, in light of the fact that bit errors due to

sneak paths are not independent.

II. ANALYSIS OF ERRORS DUE TO SNEAK PATHS

We start the information-theoretic treatment of sneak

paths by examining the errors that they cause, and cal-

culating the resulting error probabilities. In this section

and throughout the paper we assume that a resistive

cell at location (i, j) programmed to the “0” state (high

resistance) is read in error as being at the “1” state (low

resistance) when it is affected by at least one sneak path,

i.e., there exists a path as defined in Definition 1.

Definition 1. Given a binary array A of size m × n,

we say that there is a sneak path of length 2k + 1

affecting the cell at position (i, j) if ai,j = 0 and there

exist 2k positive integers 1 � r1, . . . , rk � m and

1 � c1, . . . , ck � n for some k � 1 such that the

following 2k + 1 cells satisfy

ai,c1 = ar1,c1 = ar1,c2 · · ·ark−1,ck = ark,ck = ark,j = 1.

The sneak path is a closed path originating from and

returning to (i, j) and traversing “1”-state cells through

alternating vertical and horizontal steps. The integers

r1, . . . , rk and c1, . . . , ck are, respectively, the row and

column indices of the traversed cells.

A. Calculating the sneak-path bit-error probability

In an m×n array we want to calculate the probability

that a certain bit will be in error due to one or more

sneak paths affecting it. To this end we define that a bit

will be in error due to sneak path if the following two

conditions are met:

1) The bit value is 0.

2) The bit location (i, j) has at least one combination

c1, r1 that induces a sneak path defined by

ai,c1 = ar1,c1 = ar1,j = 1. (1)

Note that according to the definition of sneak path given

in (1), we only consider in the analysis sneak paths with

3 cells, which is a special case of the 2k+1-cell sneak

path given in Definition 1. We do so for two reasons.

One is that sneak paths with more than 3 (e.g. 5, 7, etc.)

cells are less prone to errors because of their higher

resistance. The second is that analyzing longer sneak

paths is much more difficult.

A bit error due to sneak paths can thus be charac-

terized using the Z channel depicted in Figure 2. If a

0 is written, it is read in error with probability P , the

probability that there is a sneak path affecting it. If a 1

is written, it is always read correctly.

0 0

1 1

P

1− P

write read

Fig. 2. Sneak-path read errors as a Z channel. A written 0
is read as 0 if no sneak path affects it and as 1 otherwise. A

written 1 is always read correctly.

It is now our objective to calculate the sneak-path

transition probability P . The main challenge in finding

P stems from the fact that there are many possible

c1, r1 combinations, and multiple of them may exist

simultaneously for the same array assignment. We now

define the problem formally.

Problem 2. Given an array of dimensionsm× n, where

bits are written to array locations such that Pr(ai,j =

1) = q, Pr(ai,j = 0) = 1 − q, i.i.d. for all (i, j). What

is the probability P that a 0-written array bit is read in

error due to sneak path?

It is clear that the answer to Problem 2 depends on the

parameter q. For example, it is possible to trivially make

the sneak-path transition probability identically zero by

setting q = 0 (hence having no 1s in the array to create

sneak paths). However, this would not be a wise choice

as the resulting information rate is zero. The sneak-

path transition probability also depends on the array

dimensions, hence we re-denote P as P (m,n, q).

Theorem 3. The transition probability due to sneak

paths in an m × n array with parameter q equals the

expression in (2).

P (m,n, q) = 1−

m−1
�

u=0

n−1
�

v=0

�

m− 1

u

��

n− 1

v

�

qu+v(1 − q)m−1−u+n−1−v+uv. (2)

Proof: The proof proceeds by summing the prob-

abilities of bit assignments for which there is no sneak

path affecting cell (i, j). Taking the complement yields

P (m,n, q).

We consider a location (i, j) where the bit value is 0.

Suppose column j has u 1s in row locations taken from

{1, . . . ,m} \ i, and row i has v 1s in column locations

taken from {1, . . . , n}\j. Then in order for cell (i, j) to

have no sneak path, each intersection of a 1 in column

j with a 1 in row i must have a 0 value. An example

for an array with no sneak path for cell (i, j) = (1, 1)

is given in Figure 3.

(a)

0

0

0

0

0

0 0

1

1

1

11

1

2

2

3

3

4

4

X

XXX

X

Fig. 3. An example of an array with no sneak path for cell

(1, 1). Given 0/1 assignments in row i = 1 and column j = 1,
the intersections of the 1-rows with the 1-columns must be

set to zeros. In the rest of the array locations, the value can

be arbitrary, marked with X.

The probability that all these intersections have 0s is

(1− q)uv . Now all that is needed to obtain the second

term of (2) is to sum over all u from 0 to m − 1 and

all v from 0 to n− 1 and weight with their respective

probabilities.

Theorem 3 gives an exact closed-form expression for

the probability that randomly selecting the m×n array

bits i.i.d. with parameter q will result in at least one

sneak path affecting location (i, j). Note that the same

expression applies to any array location, as (2) does

not depend on (i, j). This implies a simple coding

scheme where the encoder chooses a bias q, and obtains

information reliability given by (2). Since sneak-path

errors are caused by cells in 1 state, the error probability

is monotone increasing in q. It is also clear that the

error probability grows as we increase the array size,

as a larger array contains more potential sneak paths

affecting a given cell. These can be seen in Figure 4

plotting the error probability as a function of q for two

array sizes.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

q

P (m,n, q)

4× 4

6× 6

Fig. 4. Sneak-path error probability as a function of the bias

q. Solid line for a 4× 4 array; dashed line for a 6× 6 array.

For a given array area (number of cells), square

arrays suffer from higher sneak-path error probability

compared to non-square arrays. This fact is depicted in

Figure 5 comparing the error probabilities of a 4 × 4

(solid) and a 2× 8 (dashed) arrays.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

q

P (m,n, q)

4× 4

2× 8

Fig. 5. Comparing sneak-path error probability for two array

sizes with the same area. Solid line for a 4× 4 array; dashed

line for a 2× 8 array.

It is important to observe that for two locations

(i1, j1) and (i2, j2) on the same array, sneak-path error

events are not independent. For example, if i1 = i2,

knowing that (i1, j1) has a sneak path makes a sneak

path for (i2, j2) more likely. The dependence between

sneak-path errors within the array is discussed in more

detail in Section III.

It may be the case in practice that one sneak path

is not sufficient to cause a bit error. Rather, the circuit

may have sufficient margins to tolerate up to L − 1

sneak paths affecting an array location, in which case

a bit error due to sneak paths requires at least L sneak

paths affecting the same array location. For this case

we derive a generalized expression for the bit-error

probability due to L or more sneak paths.

PL(m,n, q) =

(m−1)(n−1)
�

l=L

m−1
�

u=1

n−1
�

v=1

�

m− 1

u

��

n− 1

v

�

qu+v+l(1− q)m−1−u+n−1−v+uv−l

�

uv

l

�

. (3)

Theorem 4. The transition probability due toL or more

sneak paths in an m × n array with parameter q equals

the expression in (3).

Proof: Given u 1s in column j and v 1s in row i,

an array will induce l sneak paths on location (i, j) if it

has exactly l 1s out of the uv cells that intersect a 1-row

of column j and a 1-column of row i. There are
�

uv
l

�

combinations to choose these l 1s. To restrict to exactly

l 1s in the probability expression, we add (on top of (2))

l to the exponent of q to get qu+v+l and uv − l to the

exponent of (1− q) to get (1− q)m−1−u+n−1−v+uv−l.

Summing for all l greater or equal to L yields (3).

One can verify that P (m,n, q) = P1(m,n, q), hence

Theorem 3 is a special case of Theorem 4.

B. Asymptotic analysis

We now want to analyze the sneak-path transition

probability when the array dimensions m and n tend

to infinity. In particular, we want to know whether

reliable readout is possible in the limit of large memory

arrays. The following theorem answers this question to

the negative, i.e., that one cannot store bits reliably on

arrays with both m and n tending to infinity.

Theorem 5. The transition probability P (m,n, q) tends

to 1 ifm and n tend to infinity, for any constant q.

Proof: As we did in the proof of Theorem 3, we

will look at the complement of P (m,n, q), now proving

that it tends to 0 for m and n tending to infinity.

Suppose that column j is assigned a particular vector

u with weight u = 1. Then the probability that there is

no sneak path conditioned on u in column j is given

by

1−P (m,n, q|u) =

n−1
�

v=0

�

n− 1

v

�

qv(1−q)n−1−v(1−q)v.

(4)

The power of q in (4) is the number of 1s in row i and

the first power of (1− q) is the number of 0s in row i.

The second power of (1−q) is the number of 0s required

to not have sneak path when the weight of u is 1.

Simplification of (4) yields equation (5), which proves

transition probability tending to 1 given u. It is clear

that for any vector u′ in column j with weight u � 1,

the probability of having no sneak path conditioned on

u
′ similarly tends to 0. (Intuitively, more 1s in column

j mean fewer assignments to the remaining bits that

do not cause sneak path.) Hence the probability of no

sneak path conditioned on the weight of column j being

greater or equal to 1 tends to 0 as n tends to infinity. To

prove that the same applies even without conditioning,

we observe that the probability that column j has weight

0 (u′ is the all-zero vector) tends to 0 as m tends to

infinity. This completes the proof.

To overcome the impossibility result of Theorem 5, we

resort to the solution of physically limiting the sneak-

path effect to a constant number b of rows. Instead of

being vulnerable to sneak paths from m rows, where m

tends to infinity, we now only consider a subset of rows

of size b, where b is a constant. Practically speaking,

reducing the sneak-path effect to a small subset of rows

is done with a simple technique called grounding [2],

which incurs some implementation cost in the form of

higher power consumption. The number of columns n

is assumed as before to be large, and tending to infinity

in the analysis. We call such b× n arrays semi-infinite.

For a constant number b of rows (which include row i

and b− 1 additional rows), the probability that column

j has all 0s equals

(1 − q)b−1.

Since all 0s in column j guarantees that there are no

sneak paths, we can bound from above the transition

probability

P (b, n, q) � 1− (1− q)b−1. (6)

The bound (6) applies to any n, and becomes tighter

as n tends to infinity. For the forthcoming analysis, we

use the notation P̂ for this upper bound on the transition

probability

P̂ � 1− (1− q)b−1.

Using this upper bound, we next calculate the capacity

of reliable storage on semi-infinite arrays with sneak

paths.

C. Capacity of semi-infinite arrays with sneak paths

In this sub-section we seek to find the information

capacity of semi-infinite arrays with sneak paths. Bits

stored on such arrays are subject to errors due to sneak-

paths, and the capacity – denoted C(b) – gives the

amount of information that can be stored reliably on one

physical array bit (hence 0 � C(b) � 1). Information

theoretically, errors due to sneak paths in semi-infinite

arrays are modeled using the Z channel depicted in

Figure 2. The uniqueness of sneak-path errors over a

1− P (m,n, q|u) = (1− q)n−1(1 + q)n−1 = (1− q2)n−1 −→
n→∞

0. (5)

standard Z channel is that the transition probability P

depends on the input distribution through the parameter

q. Accordingly, the calculation of the channel capacity

will need to consider this coupling between the input

and the channel.

Proposition 6. The capacity of the semi-infinite sneak-

path array with b rows is given by

C(b) =

argmaxq {H [(1 − q)(1− P (q))]− (1− q)H [P (q)]} ,

(7)

where

P (q) = P̂ = 1− (1− q)b−1,

andH(·) is the binary entropy function.

Proof: This is the standard Z-channel capacity,

only with substitution of the coupled transition prob-

ability P (q) = 1 − (1 − q)b−1 and maximization over

q.

We calculated the capacity for several values of b and

listed them in Table I.

b C(b) optimal q

2 0.383 0.287

3 0.245 0.203

4 0.181 0.157

5 0.143 0.128

TABLE I

THE CAPACITY OF SEMI-INFINITE SNEAK-PATH ARRAYS FOR

DIFFERENT VALUES OF b.

III. SECOND MOMENT OF SNEAK-PATH ERRORS

The probability to have a sneak-path error is shown

in the previous section to be independent of the array

location, only depending on the array parameters. How-

ever, it is not hard to see that a sneak-path error in

one array location is not independent from a sneak-

path error in another location given the array parame-

ters (m,n, q). For example, a sneak path affecting an

array location increases the likelihood of a sneak path

affecting another location in the same row or column, as

sneak paths affecting locations in the same row/column

have many cells in common. One option to mitigate this

dependence is to perform sneak-path error-correction

coding across arrays (i.e., each bit in a codeword is

assigned to a different array with the same parameters),

so that errors within a code block can be assumed i.i.d.

However, restricting coding to be performed cross-array

has significant practical drawbacks, mainly increased

latency due to the need to read multiple arrays before

the decoding of a code block can start. So to avoid

this, we study in this section the dependence between

sneak-path errors in the same array.

A. Joint sneak-path distribution between two cells in

the same row/column

Consider an m×n array with bias q. Denote by ei,j
the event that cell (i, j) is affected by a sneak path, and

by ēi,j the complementary event that cell (i, j) is not

affected by a sneak path. In the notation of Section II-A

we write Pr(ei,j) = P (m,n, q) and Pr(ēi,j) = 1 −

P (m,n, q). We now want to examine the probability

that two cells within the same array column are affected

by sneak paths. In other words, we want to calculate the

joint probability

Pr(ei,j , ei′,j),

for some index triple i, i′, j. We may similarly be

interested in the joint probability Pr(ēi,j , ēi′,j) (one

can be obtained from the other and the individual

probability Pr(ei,j)). Denote by u the number of 1s

in column j, by v the number of 1s in row i, and by

v′ the number of 1s in row i′. In addition, denote by σ

the number of column indices in which both rows i, i′

have 1s. Hence σ � min{v, v′}.

Theorem 7. The joint probability Pr(ēi,j , ēi′,j) in an

m × n array with parameter q equals the expression

in (8).

Proof: Given u, v, v′ and the overlap σ, avoiding

sneak paths for both cells (i, j) and (i′, j) requires 0

assignments to the cells that intersect the u row indices

where column j has 1s, with the union of the v and v′

column indices where row i or i′ (or both) have 1s. The

size of this union is v + v′ − σ, and this adds the right

term u(v+v′−σ) to the exponent of (1−q) in (8). The

remaining terms in the exponent of (1−q), as well as the

terms in the exponent of q, follow from the assignment

of 0s and 1s to column j and rows i, i′ prescribed by

u, v, v′. The latter two binomial coefficients in (8) count

the number of assignments of v′ column indices having

overlap σ with a given set of v column indices.

Pr(ēi,j , ēi′,j) =

m−2
�

u=0

n−1
�

v=0

n−1
�

v′=0

n−1
�

σ=0

�

m− 2

u

��

n− 1

v

��

v

σ

��

n− 1− v

v′ − σ

�

qu+v+v′

(1−q)m−2−u+n−1−v+n−1−v′+u(v+v′
−σ).

(8)

Thanks to symmetry between rows and columns1 the

formula (8) can be used also for the case of two cells

in the same row.

We now use Theorem 7 to compare the joint error

probability of two same-column cells to the probability

of double bit error assuming independent errors. Intu-

itively, since two cells in the same column share the

same number u of 1s in the column, we expect a higher

likelihood of both erring together (when u is high),

and also a higher likelihood of both not erring together

(when u is low). We validate this intuition quantita-

tively in the following figures. Figure 6 compares the

probability Pr(ēi,j , ēi′,j) to the square of the probability

1− P (m,n, q) from Section II-A.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

q

Pr(ē, ē)

Independent

Joint

Fig. 6. Comparing the probability Pr(ēi,j , ēi′,j) from The-

orem 7 (dashed line) to the square of the individual-cell no-

error probability from Theorem 3 (solid line).

Figure 7 compares the probability Pr(ei,j , ei′,j) (cal-

culated from Pr(ēi,j , ēi′,j) and the individual error

probability) to the square of the probability P (m,n, q).

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

q

Pr(e, e)

Independent

Joint

Fig. 7. Comparing the probability Pr(ei,j , ei′,j) (dashed line)

to the square of the individual-cell error probability (solid

line).

1When we transpose an m × n array we obtain an n × m array

where rows and columns switch roles.

Figures 6 and 7 show that both the joint no-error

probability and the joint error probability of cells in the

same column (or row) are higher than those probabili-

ties had errors been independent.

IV. CONCLUSION

This paper lays the information-theoretic foundations

for studying memristor arrays that are prone to read

sneak paths. The errors due to sneak paths are char-

acterized as a read channel whose parameter depends

on the array dimensions and the 0/1 bias of the stored

bits. This characterization opens the way for extensive

coding theoretic treatment of sneak-path errors that will

enable reliable data storage on memristors arrays. In the

present paper we considered a basic sneak-path model

for which error rates get high even for small-size arrays.

It is likely that a real memristor array will suit a refined

model with lower absolute error rates (e.g. through

better physical isolation between cells), but for which

information theoretic treatment will follow similar lines.

V. ACKNOWLEDGMENTS

This work was supported in part by the European

Union Marie Curie CIG grant, by the Intel Center for

Computing Intelligence, and by the Israeli Ministry of

Science and Technology.

REFERENCES

[1] Y. Cassuto, S. Kvatinsky, and E. Yaakobi. “Sneak-path con-

straints in memristor crossbar arrays,” In IEEE International

Symposium on Information Theory, ISIT 2013.

[2] A. Chen. “Accessibility of nano-crossbar arrays of resistive

switching devices,” In IEEE 11th International Conference on

Nanotechnology, 2011.

[3] E. Ordentlich and R.M. Roth. “Low complexity two-

dimensional weight-constrained codes,” IEEE Transactions on

Information Theory, 58(6):3892–3899, 2012.

[4] S. Shin, K. Kim, and S. Kang. “Analysis of passive mem-

ristive devices array: data-dependent statistical model and self-

adaptable sense resistance for RRAMs,” Proceedings of the

IEEE, 100(6):2021–2032, 2012.

[5] P. P. Sotiriadis, “Information capacity of nanowire crossbar

switching networks,” IEEE Transactions on Information Theory,

vol. 52, no. 7, pp. 3019–3032, July 2006.

[6] D. Strukov, G. Snider, D. Stewart, and S.Williams, “The missing

memristor found,” Nature, vol.,453, pp. 80–83, May 2008.

[7] P.O.Vontobel, W.Robinett, P. J. Kuekes, D. R. Stewart,

J. Straznicky, and S.Williams, “Writing to and reading

from a nano-scale crossbar memory based on memristors,”

Nanotechnology, vol. 20, October 2009.

