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Abstract—Motivated by the rank modulation scheme for flash
memories, we consider an information representation system
with relative values (permutations) and study codes for correct-
ing deletions. In contrast to the case of a deletion in a regular
(with absolute values) representation system, a deletion in this
new paradigm results in a new permutation over the remaining
symbols. For example, the deletion of 3 (or 2) from (1, 3, 2, 4)
yields (1, 2, 3); while the deletion of 1 yields (2, 1, 3). Codes
for correcting deletions in permutations were studied by Leven-
shtein under a different model, however, he considered absolute
values where the deletions are missing symbols.

We study the single deletion relative-values model and prove
that a code can correct a single deletion if and only if it can
correct a single insertion. Using the concept of a signature of a
permutation, we construct single-deletion correcting codes and
prove that they are asymptotically optimal with respect to an
upper bound that we derive. Finally, we describe an efficient
decoding algorithm.

I. INTRODUCTION

Channel codes play an important role in the rapid growth of
Flash memories. In order to overcome the complicated task of
exactly programming each flash memory cell to its designated
level, the novel framework of rank modulation codes was pro-
posed in [3]. Under this scheme, the cells form a permutation
which is derived from the relative amount of charge stored in
the cells. Most of the error-correcting codes designed for rank
modulation schemes have focused on constructing codes un-
der different error metrics, such as the Kendall’s τ distance,
[6], [11] and the Ulam distance [1].

In this paper, we consider a related problem, and focus on
the setup where cells can be deleted. Deletions in permuta-
tions can be modeled in two ways. Suppose the permutation
(1, 5, 4, 3, 2) is stored and the symbol 3 is deleted. For the
first model, we assume the other symbols are not affected,
and the received vector, which is no longer a permutation, is
(1, 5, 4, 2). For the second model, all symbols greater than 3
are decreased by one, so the received vector is the permutation
(1, 4, 3, 2). One important difference between these two mod-
els is the resulting size of the deletion ball. In the first model,
every deleted symbol results in a different vector so that the
size of the deletion ball is the same, regardless of the stored
permutation. In contrast, the deletion ball size in the second
model depends on the permutation; for example, the outcome
of every deleted symbol in the permutation (1, 2, 3, 4, 5) is the
permutation (1, 2, 3, 4), so the deletion ball consists of only
this single permutation. The first model was first studied by
Levenshtein [5].

To the best of our knowledge, no prior work has been done
using the second model. In this paper, we design codes for
the second model where both the stored vector and the re-
ceived vector are permutations. The first model of insertions
and deletions is studied in our parallel work in [2].

The deletion model studied here has an analogue for inser-
tions. Suppose that the symbol 3 is inserted into the fourth
position of the permutation (1, 5, 4, 3, 2). Then, the resulting
permutation is (1, 6, 5, 3, 4, 2) where all the symbols in the
original permutation of value greater than or equal to 3 were
incremented by one. Although the purpose of this work is to
study deletions, we show that there exists a duality between
insertions and deletions.

The remainder of the paper is organized as follows. In Sec-
tion II, we formally define the single deletion and insertion
models studied in the paper. We prove some basic properties
when deletions and insertions occur. These properties will be
useful in proving that a code over permutations can correct
a single deletion if and only if it can correct a single inser-
tion. We proceed in Section III to give an asymptotic upper
bound on the maximal size of a code over permutations that
can correct a single deletion. This will be done in a similar
fashion to the equivalent upper bound given by Levenshtein
for deletions in binary vectors [4]. Our main contribution in
the paper is given in Section IV. We present a construction of
codes over permutations capable of correcting a single dele-
tion. The correctness of this construction will be verified by
providing a decoder for our code and proving its correctness.
We lastly show in this section that our construction is asymp-
totically optimal. Due to the lack of space, some of the proofs
in the paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

In this section, we establish the notation that will be used
throughout the paper. Afterwards, we consider some properties
of codes that correct a single deletion.

The set of permutations of length n will be referred to as
Sn and we refer to the set {1, 2, . . . , n} as [n]. Let us first
formally define the models for a single deletion and a single
insertion for permutations.
Definition 1. We say that a permutation π = (π1, . . . , πn) ∈
Sn experiences a single deletion of the symbol π j at position
j ∈ [n], resulting in the permutation π↓,π j = (π ′1, . . . , π ′n−1) ∈
Sn−1 if the following holds for all i ∈ [n− 1]:

1) For every i < j, if πi < π j then π ′i = πi.
2) For every i < j, if πi > π j then π ′i = πi − 1.
3) For every i > j, if πi+1 < π j then π ′i = πi+1.
4) For every i > j, if πi+1 > π j then π ′i = πi+1 − 1.

Definition 2. We say that a permutation π = (π1, . . . , πn)
experiences a single insertion of the symbol s ∈ [n + 1]
at position j ∈ [n + 1], resulting in the permutation
π↑,s, j = (π ′1, . . . , π ′n+1) ∈ Sn+1 if the following holds for all
i ∈ [n + 1]:

1) For every i < j, if πi < s then π ′i = πi.
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2) For every i < j, if πi > s then π ′i = πi + 1.
3) If i = j, π ′i = s.
4) For every i > j, if πi < s then π ′i = πi−1.
5) For every i > j, if πi > s then π ′i = πi−1 + 1.

For a permutation π ∈ Sn, let BD(π) be the set of all
permutations given that a single deletion occurred to π ,
i.e., BD(π) = {π↓,s : s ∈ [n]}. We say that a code C
is a single-deletion-correcting code if for any π ,σ ∈ C,
BD(π) ∩ BD(σ) = ∅. Similarly, BI(π) is the set of all per-
mutations given that a single insertion occurred to π , that
is, BI(π) = {π↑,s, j : s, j ∈ [n + 1]}. We say that a code
C is a single-insertion-correcting code if for any π ,σ ∈ C,
BI(π) ∩ BI(σ) = ∅.

We first begin with a few basic properties that are conse-
quences of Definitions 1 and 2.
Claim 1. Let π = (π1, . . . , πn) ∈ Sn. Then, for any
j ∈ [n], π = (π↓,π j)

↑,π j , j. Similarly for any s, j ∈ [n + 1]
π = (π↑,s, j)↓,s.
Claim 2. Let π = (π1, . . . , πn) ∈ Sn, s, t ∈ [n] and suppose
that s < t. Then (π↓,s)↓,t−1 = (π↓,t)↓,s.

Claim 3. Let π ∈ Sn and j, k, s, t ∈ [n + 1] such that s 6
t. If j < k, then (π↑,s, j)↑,t+1,k+1 = (π↑,t,k)↑,s, j. If j > k,
then (π↑,s, j)↑,t+1,k = (π↑,t,k)↑,s, j+1. If j = k and s < t, then
(π↑,s, j)↑,t+1, j = (π↑,t, j)↑,s, j+1.

The last three claims will be useful in showing that, simi-
larly to the traditional setup of deletions and insertions in vec-
tors [4], there is also a duality between insertions and deletions
in permutations.
Lemma 1. For any π ,σ ∈ Sn, BD(π) ∩ BD(σ) 6= ∅ if and
only if BI(π) ∩ BI(σ) 6= ∅.

Proof: We first prove that if BD(π) ∩ BD(σ) 6= ∅ then
BI(π) ∩ BI(σ) 6= ∅. Let τ ∈ BD(π) ∩ BD(σ) so there ex-
ist j, k ∈ [n] such that π↓,π j = σ↓,σk

= τ . Notice that from

Claim 1, π = τ↑,π j , j and σ = τ↑,σk ,k. Assume without loss
of generality that π j 6 σk. We first consider the case where
j < k. From Claim 3, we conclude that

π↑,σk+1,k+1 = (τ↑,π j , j)↑,σk+1,k+1 = (τ↑,σk ,k)↑,π j , j = σ↑,π j , j,

and thus BI(π) ∩ BI(σ) 6= ∅. Suppose j > k where, as be-
fore, π j 6 σk. From Claim 3, we have, (τ↑,π j , j)↑,σk+1,k =

(τ↑,σk ,k)↑,π j , j+1 and so BI(π) ∩ BI(σ) 6= ∅ in this case
as well. Now suppose j = k. First notice that if j = k
and π j = σk, then π = σ and so the result trivially
holds. Therefore we assume π j < σk. Then from Claim 3,
we have (τ↑,π j , j)↑,σk+1, j = (τ↑,σk , j)↑,π j , j+1 and again
BI(π) ∩ BI(σ) 6= ∅.

Now we prove that if BI(π) ∩ BI(σ) 6= ∅ then BD(π) ∩
BD(σ) 6= ∅. Let θ ∈ BI(π) ∩ BI(σ) and thus there exists
j, k, s, t ∈ [n + 1] such that

π↑,s, j = σ↑,t,k = θ = (θ1, . . . ,θn+1).

Recall that from Claim 1, we have π = θ↓,s and σ = θ↓,t.
Notice that if s = t, then j = k by Definition 2. Furthermore,
if j = k and s = t then π = σ and the result is straightfor-
ward. Suppose, without loss of generality, that s < t. From
Claim 2,

π↓,t−1 = (θ↓,s)↓,t−1 = (θ↓,t)↓,s = σ↓,s.

By the assumption s < t, we have s, (t− 1) ∈ [n], and thus
we showed that BD(π) ∩ BD(σ) 6= ∅, as required.

The following corollary follows directly from Lemma 1.

Corollary 1. A code C ⊆ Sn is a single-deletion-correcting
code if and only if it is a single-insertion-correcting code.

The following definition will be useful for characterizing
permutations in the next section.

Definition 3. For a permutation π = (π1, . . . , πn) ∈ Sn, a
consecutive run is a substring of maximal length in π that con-
tains consecutively valued symbols, increasing or decreasing.

For example, if π = (1, 5, 4, 3, 2) ∈ S5, then π has 2 con-
secutive runs: (1) and (5, 4, 3, 2).

III. AN UPPER BOUND ON THE CARDINALITY OF
SINGLE-DELETION-CORRECTING CODES

The goal of this section is to derive an upper bound on the
maximum size of a single-deletion-correcting code. We refer
to the maximum size of such codes over Sn by A(n) and our
upper bound on A(n) will be given in Theorem 1.

We first note that the size of the deletion ball BD(π) de-
pends on the permutation π . However, as will be shown in the
following lemma, the size of the deletion ball for a permuta-
tion π can be solely characterized as a function of the number
of consecutive runs in π . For a vector, v = (v1, . . . , vn) and
two integers i1, i2, we denote by v[i1 ,i2 ] the vector v[i1 ,i2 ] =
(vi1 , . . . , vi2). As a formality, if i2 < i1, then v[i1 ,i2 ] is the
empty string.

Lemma 2. Let π = (π1, . . . , πn) ∈ Sn and suppose the sym-
bols π j and πk ( j, k ∈ [n]) belong to the same consecutive run
in π . Then, π↓,π j = π↓,πk

.

Proof: We denote σ = π↓,π j and θ = π↓,πk
and assume

without loss of generality that j < k. Let (π j, π j+1, . . . , πk)
be a substring of the consecutive run shared by the symbols
π j, πk. Assume that πk > π j, while the opposite case is proven
similarly.

Since π j and πk are in the same consecutive run in π , then
from Definition 1, σ[1, j−1] = θ[1, j−1] and σ[k,n−1] = θ[k,n−1].
Since (π j, . . . , πk) is a substring of an increasing consecu-
tive run, then π j+1 = π j + 1, π j+2 = π j+1 + 1, . . . , πk =
πk−1 + 1. If πk is deleted from (π j, . . . , πk) then the
resulting substring is (π j, . . . , πk−1). If π j is deleted
from (π j, π j+1, . . . , πk), then the resulting substring is
(π j+1 − 1, π j+2 − 1, . . . , πk − 1) = (π j, . . . , πk−1), and
therefore σ[ j,k−1] = θ[ j,k−1]. Thus, we conclude that σ = θ.

The converse of Lemma 2 is proven next.

Lemma 3. Let π = (π1, . . . , πn) ∈ Sn, j, k ∈ [n]. If π↓,π j =
π↓,πk

then π j and πk belong to the same consecutive run.

Proof: Assume without loss of generality, that j < k. Let
us denote

π↓,π j = π↓,πk
= π ′ = (π ′1, . . . , π ′n−1). (1)

The proof will be by induction on (k− j). For the base case,
we prove that the result holds when (k− j) = 1. Since π ′ =
π↓,π j , we have that π ′j = π j+1 − 1 if π j < π j+1 or π ′j =
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π j+1 if π j > π j+1. Similarly, since π ′ = π↓,πk
, we have that

π ′j = π j if π j < πk or π ′j = π j − 1 if π j > πk. Thus, since
π ∈ Sn, we have that either π ′j = π j = π j+1 − 1 if π j < πk
or π ′j = π j − 1 = π j+1 otherwise. In either case, (π j, π j+1)
is a substring of a consecutive run.

Suppose that for all (k − j) < m, if π↓,π j = π↓,πk
then

π j and πk belong to the same consecutive run and consider
the case where (k − j) = m and π↓,π j = π↓,πk

. First, we
show that if π↓,π j = π↓,πk

, then π↓,π j = π↓,π j+1
. Since as-

sumption (1) holds, then as before either 1) π ′j = π j+1, or
2) π ′j = π j+1 − 1. Using the same logic, we can conclude
that (π j, π j+1) is a substring of a consecutive run and from
Lemma 2, it follows that π↓,π j = π↓,π j+1

= π↓,πk
.

Let ` = j+ 1. Since (k− `) < m, we can use the inductive
hypothesis to conclude that since π↓,πk

= π↓,π` , then πk, π`

are in the same consecutive run. Since π j, π` are in the same
consecutive run and π`, πk are in the same consecutive run,
it follows that π j, πk are in the same consecutive run and the
proof is complete.

For a permutation π ∈ Sn, we denote by R(π) the num-
ber of consecutive runs in π . The following is a corollary of
Lemmas 2 and 3.

Corollary 2. For all π ∈ Sn, |BD(π)| = R(π).

We introduce some terminology that will be used for the
derivation of the upper bound on A(n). For positive integers
n, r where r < n, we define

F(n, r) =
(

n− 1
r− 1

)
· 2min{r,n−r} · r!. (2)

To simplify the notation, we assume that n is a power of
two so that the floors and ceilings can be dropped for conve-
nience. We also assume that all log functions are base 2.

Lemma 4. The number of permutations from Sn with r (1 6
r 6 n) consecutive runs is at most F(n, r).

Proof: Consider the set of permutations from Sn that
contain r consecutive runs. We proceed by over-counting this
quantity. We first partition the elements from [n] into r con-
secutive runs. This is equivalent to computing the number of
solutions to the problem ∑

r
j=1 t j = n, where t j > 1 and each

t j is an integer. There are
(

n− 1
r− 1

)
such solutions.

If r 6 n
2 then there can be at most r consecutive runs of

length greater than one. Each consecutive run can be either
increasing or decreasing and so there are at most 2r ways to
re-arrange the numbers within each consecutive run. If r > n

2
then there are at most n− r consecutive runs of length greater
than one. In this case there are 2n−r ways to re-arrange the
numbers within each consecutive run. Then, if we permute
each (block of symbols that constitute each) consecutive run
we have at most(

n− 1
r− 1

)
· 2min{r,n−r} · r!

permutations in Sn with r consecutive runs.
We need the following claim and lemma in order to prove

Theorem 1.

Claim 4. For 2 6 r 6 n− log(n), F(n, r− 1) 6 F(n, r).

Lemma 5. The number of permutations in Sn with at most n−
log(n) consecutive runs is at most n!(n−log(n))2

(log(n))! .

Proof: From Claim 4, the maximum number of permuta-
tions in Sn with fewer than n− log(n) consecutive runs is at
most ∑

n−log(n)
r=1 F(n, r) 6 ∑

n−log(n)
r=1 F(n, n − log(n)). Sub-

stituting the expression for F(n, n− log(n)) from (2) gives
that there are at most

(n− log(n)) ·
(

n− 1
n− log(n)− 1

)
· 2log(n) · (n− log(n))!

=
n!(n− log(n))2

(log(n))!

permutations in Sn with at most n− log(n) consecutive runs.

Using a similar approach as in [4], we provide an upper
bound for the maximum size of a single-deletion-correcting
code.

Theorem 1. For any 0 < ε < 1 there exists an Nε such that for
all n > Nε, A(n) 6 n!

n(n−log(n)) (1 +ε).

Proof: Suppose C is a single-deletion-correcting code
over Sn. Let S′n = {π ′ ∈ Sn : |BD(π

′)| > n − log(n)}.
We first consider an upper bound on |C ∩ S′n|. Since the
sets BD(π

′) ⊆ Sn−1, for all π ′ ∈ C ∩ S′n are disjoint and
|BD(π

′)| > n− log(n) we get,

|C ∩ S′n| 6
(n− 1)!

n− log(n)
.

Let S′′n = {π ′′ ∈ Sn : |BD(π
′′)| 6 n− log(n)}. Clearly,

|C ∩ S′′n | 6 |S′′n | and from Lemma 5, |S′′n | 6
n!(n−log(n))2

(log(n))! .
Thus, we have

|C| =|C ∩ S′n|+ |C ∩ S′′n | 6
(n− 1)!

n− log(n)
+

n!(n− log(n))2

(log(n))!

=
n!

n(n− log(n))

(
1 +

n(n− log(n))3

(log(n))!

)
.

Since this upper bound holds for any single-deletion-correcting
code C, we conclude that A(n)6 n!

n(n−log(n))

(
1+ n(n−log(n))3

(log(n))!

)
.

Lastly, since limn→∞ n(n−log(n))3

(log(n))! = 0, there exists an Nε

such that for all n > Nε, we have A(n) 6 n!
n(n−log(n)) (1+ε).

IV. CODE CONSTRUCTION

In this section, we first consider some properties regarding
deletions in permutations. Afterwards, an asymptotically op-
timal construction of single-deletion-correcting codes is pro-
vided. Lastly, we prove the correctness of the construction and
discuss a decoding algorithm.
A. Permutation Matrices, Signatures, and Runs

A permutation matrix is a square binary matrix such that
in each row and each column there is precisely one 1. For a
permutation π = (π1, . . . , πn) ∈ Sn, the permutation matrix
of π is a permutation matrix M = f (π) such that Mi j = 1 if
j = πi. Notice that if M is an n× n permutation matrix, then
there exists an unique permutation π such that M = f (π).
Hence, the mapping f is invertible. We denote its inverse by
f−1 and write f−1( f (π)) = π . The next claim follows from
Definition 1.
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Claim 5. For π ∈ Sn, the matrix f (π↓,π j) is the result of re-
moving row j and column π j from f (π). Furthermore, if row
j and column π j are removed from f (π) thus resulting in M′,
then π↓,π j = f−1(M′).

We next use a mapping, referred to as the signature, that
will be useful in our code construction. This mapping was
also used in [9] in the context of single-deletion-correcting
codes over non-binary vectors. Let m > 2 be an integer. For
y ∈ [m]n, define the binary length-(n− 1) signature α(y) =
(α(y)1, . . . ,α(y)n−1) as follows. For 1 6 i 6 n− 1,

α(y)i =

{
1, if yi+1 > yi .
0, otherwise.

(3)

For a permutation π = (π1, . . . , πn) ∈ Sn, recall from [7]
that the inverse permutation π−1 = (π−1

1 , . . . , π−1
n ) ∈ Sn is

such that for i ∈ [n], π−1
i is the location of the element i in π .

It is straightforward to verify that the permutation of the trans-
pose of f (π) corresponds to the inverse permutation for π . In
other words, we have f (π−1) = ( f (π))T . For shorthand, we
will refer to the signature of the inverse permutation as the in-
verse signature. The next example illustrates a signature and
an inverse signature.
Example 1. Suppose π = (1, 3, 5, 4, 2) ∈ S5. Then
α(π) = (1, 1, 0, 0). Furthermore, π−1 = (1, 5, 2, 4, 3) ∈ S5
and α(π−1) = (1, 0, 1, 0).

We are now ready to prove the following lemma.
Lemma 6. For π ∈ Sn, we have (π↓,π j)

−1 = (π−1)↓, j.

Proof: From Claim 5, if the symbol π j (where j ∈ [n])
is deleted from π , then the permutation matrix f (π↓,π j) is the
result of removing row j and column π j from f (π). Alter-
natively, we can obtain ( f (π↓,π j))

T by removing row π j and
column j from ( f (π))T . From Claim 5, removing row π j and
column j from ( f (π))T corresponds to the deletion of symbol
j from π−1 since f−1(( f (π))T) = π−1.

In the following, if the input to BD is a binary vector x ∈
GF(2)n, then the output of BD(x) is the set of all possible
vectors obtainable by deleting one bit from x.

If a symbol from a permutation π is deleted, then a symbol
from its signature, α(π), is deleted as well. That is, α(π↓,x) ∈
BD(α(π)). Hence, an immediate consequence of Lemma 6 is
the following.
Corollary 3. Let π ∈ Sn and j ∈ [n]. Then α(π↓,π j) ∈
BD(α(π)) andα((π↓,π j)

−1) ∈ BD(α(π
−1)).

A binary code will be called a binary single-deletion-
correcting code if it can correct any single-bit deletion. As
a result of Corollary 3, in the next subsection we will lever-
age binary single-deletion-correcting codes which will be
invoked over the signature and inverse signature of permu-
tations in order to construct single-deletion-correcting codes
for permutations.

In the rest of this subsection, we define runs in permuta-
tions and binary sequences and present a claim that will be
useful in the next subsection.
Definition 4. For a binary sequence s, a run is a maximal sub-
string of s that is all-zero or all-one. For a permutation π , an

ascending run is a maximal substring of π whose values are
increasing and a descending run is a maximal substring of π
whose values are decreasing. A substring of π is a run if it is
an ascending or a descending run.

Example 2. Continuing with the setup from Example 1, let
π = (1, 3, 5, 4, 2) ∈ S5 and α(π) = (1, 1, 0, 0). Notice that
the signature of a permutation reflects the structure of the runs
in the permutation. For example, the first three symbols in π
comprise an ascending run and so the first two symbols of
α(π) are ones.

The following claim is straightforward to verify.
Claim 6. Consider a permutation π ∈ Sn and its signature
α(π). There is an ascending run starting at position i and end-
ing at position j + 1 in π if and only if there is a run of ones
starting at position i and ending at position j in α(π). Fur-
thermore, if σ = π↓,x, where x is at position k in π with
i 6 k 6 j + 1, then α(π) can be converted to α(σ) by delet-
ing a 1 from this run. A similar statement holds for descending
runs and deletion of 0s.

B. Code construction

Let us first review the binary single-deletion-correcting code
we will use in our construction. Namely, the code from [10],
known as a Varshamov-Tennegolts code (VT code), is defined
as follows. For a positive integer n > 2 and a ∈ Zn+1, Cn

a is
the code Cn

a = {x ∈ GF(2)n : ∑
n
i=1 ixi ≡ a mod n + 1}.

Lemma 7. (cf. [4]) For any integer n > 2 and a ∈ Zn+1, the
code Cn

a is a binary single-deletion-correcting code.

We are now ready to present our code construction of
single-deletion-correcting codes over permutations.
Construction 1. Given an integer n > 2 and a1, a2 ∈ Zn, let

Cn
a1 ,a2

=
{
π ∈ Sn : α(π) ∈ Cn−1

a1
,α(π−1) ∈ Cn−1

a2

}
. (4)

We first comment on the cardinality of the codes Cn
a1 ,a2

. Recall
from the previous section that A(n) represents the maximum
cardinality of a single-deletion-correcting code. Note that the
codes Cn

a1 ,a2
for a1, a2 ∈ Zn partition the space Sn into n2 mu-

tually disjoint codes. Hence, if we denote by F(n) for n > 2
the maximum cardinality of a code according to Construc-
tion 1, that is, F(n) = maxa1 ,a2∈Zn{|Cn

a1 ,a2
|}, then applying

the pigeonhole principle gives the following result.
Corollary 4. Construction 1 is asymptotically optimal, that is,

lim
n→∞ F(n)

A(n)
= 1.

C. Proof of Correctness of Construction 1

In this subsection, we prove the correctness of Construction
1. From our proof, a decoding algorithm for the codes can
be easily derived. Due to lack of space, however, we omit an
explicit presentation of the decoding algorithm.

For simplicity, for a permutation σ , we use x ≺σ y if and
only if σ−1 (x) < σ−1 (y).
Theorem 2. For n > 2 and a1, a2 ∈ Zn, the code Cn

a1 ,a2
is a

single-deletion-correcting permutation code.

Proof: Suppose that π ∈ Cn
a1 ,a2

and that σ = π↓,x for
some x ∈ [n]. We show that π is uniquely identifiable from
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σ . To do this, we first identify the runs in σ and σ−1 from
which x was deleted and show that there is an unique way to
increase the length of these runs by an insertion in a consistent
way.

Let k denote the position of x in π , that is, we have π =
σ↑,x,k. From the received word σ , we compute α (σ). Corol-
lary 3 implies that α(σ) ∈ BD(α(π)). Using a decoder for a
VT code, we find α (π) from α (σ) since there is a deletion
that converts α (π) to α (σ). By comparing α(π) and α(σ),
we find the i and j of Claim 6. Hence, πi , πi+1, . . . , π j+1 form
a run in π . Without loss of generality, assume that this run is
an ascending run, or equivalently, the deleted element in α(π)
is a 1. Thus, by Claim 6, π = σ↑,x,k such that

i 6 k 6 j + 1, (5)
σi < σi+1 < · · · < σ j, (6)

x 6 σm iff k 6 m for m ∈ {i, . . . , j} . (7)

By Lemma 6, we have σ−1 = (π−1)↓,k and π−1 =(
σ−1)↑,k,x. We thus may apply Claim 6 by substituting π

with π−1. Let the corresponding values of i and j of the claim
be denoted by p and q, respectively, for this case. The claim
implies that the substring π−1

p , π−1
p+1, . . . , k, . . . , π−1

q , π−1
q+1 is

a run of π−1 and that p 6 x 6 q + 1.
The values of p and q can be determined from α

(
σ−1) as

follows. By Claim 6 and using a decoder for a VT code, we
find α

(
π−1) from α

(
σ−1) since there is a deletion that con-

verts α
(
π−1) to α

(
σ−1). We then find p and q by comparing

α
(
π−1) and α

(
σ−1).

There are two different cases depending on the deleted ele-
ment of α

(
π−1) being a 1 or a 0. Due to lack of space, here,

we only consider the former case. Suppose that a 1 in a run
of 1s in α

(
π−1) is deleted. We have π−1

p < π−1
p+1 < · · · <

k < · · · < π−1
q < π−1

q+1 and thus

x ∈ {p, p + 1, . . . , q + 1} , (8)
p ≺σ p + 1 ≺σ · · · ≺σ q, (9)

k 6 σ−1 (y) iff x 6 y for y ∈ {p, . . . , q} , (10)

where p ≺σ p + 1 denotes that the symbol p appears
before the symbol p + 1 in the permutation σ . Let
A =

{
σi , . . . ,σ j

}
∩ {p, . . . , q}. Suppose A is empty. Be-

causeσi , . . . ,σ j is an increasing run ofσ and p, p+ 1, . . . , q in
an increasing subsequence of σ , we have one of the following
cases: a) σ−1 (q) < i; b) σ−1 (p) > j; or c) σ−1 (z− 1) < i
and σ−1 (z) > j for some z ∈ {p + 1, . . . , q}. Note that
if cases a) and b) do not hold, then q > p and so the set
{p + 1, . . . , q} used in case c) is nonempty.

We consider each case separately: a) From (5), we have
σ−1 (q) < k, which using (10) implies that x > q. From (8),
we find x = q + 1. b) Similar to case a), from (5), (10), and
(8), we have x = p. c) From (5) it follows that σ−1 (z− 1) <
k 6 σ−1 (z). Using (10), we find that x = z. Hence, we can
identify x if A is empty. Having identified x, we can find the
unique position k in {i, . . . , j + 1} that satisfies condition (7).

Now suppose A is nonempty and so u = min A and v =
max A are well defined. From (6) and (9), it is not difficult
to show that every integer between u and v is also in A, i.e.,

A = {u, u + 1, . . . , v} ,

and that the elements of A form a consecutive run in σ . Based
on (5)–(10), it is straightforward (but tedious) to see that the
set of possible values for x is exactly {u, u + 1, . . . , v, v + 1}
and that k = σ−1(x) if u 6 x 6 v and k = σ−1(v) + 1 if
x = v + 1. Furthermore, with the aforementioned values for
x and k, the resulting permutation σ↑,x,k is the same; it is a
permutation in which the length of the consecutive run formed
by the element of A is increased by 1. Thus π is determined
uniquely.

We illustrate the preceding proof by the following example.

Example 3. Consider the code C8
a1 ,a2

, where a1 = 7
and a2 = 0. Suppose the stored codeword is π =
(7, 4, 5, 6, 8, 2, 1, 3) ∈ C8

a1 ,a2
, and the retrieved permutation

is σ = π↓,5 = (6, 4, 5, 7, 2, 1, 3). The decoder is given σ , a1,
and a2, and from these it computes

α(σ) = (0, 1, 1, 0, 0, 1),
α(π) = (0, 1, 1, 1, 0, 0, 1),

α(σ−1) = (0, 1, 0, 1, 0, 1),

α(π−1) = (0, 1, 0, 1, 1, 0, 1).

We thus have i = 2, j = 4, p = 4, and q = 5. Furthermore,
A = {4, 5, 7} ∩ {4, 5} = {4, 5}, implying that x ∈ {4, 5, 6}.
Hence, the possible pairs of values for (x, k) are (4, 2), (5, 3),
and (6, 4). Note that π = σ↑,4,2 = σ↑,5,3 = σ↑,6,4, and so the
decoding is successful.
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