
1

Codes Correcting Erasures and Deletions
for Rank Modulation

Ryan Gabrys∗, Eitan Yaakobi‡, Farzad Farnoud†, and Jehoshua Bruck†
∗Electrical Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
†Electrical Engineering Department, California Institute of Technology, Pasadena, CA 91125, U.S.A
‡Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

rgabrys@ee.ucla.edu, {farnoud, bruck}@caltech.edu, yaakobi@cs.technion.ac.il

Abstract—Error-correcting codes for permutations have received
a considerable attention in the past few years, especially in
applications of the rank modulation scheme for flash memories.
While several metrics have been studied like the Kendall’s τ , Ulam,
and Hamming distances, no recent research has been carried for
erasures and deletions over permutations.

The problems studied in this paper are motivated by a hardware
implementation of the rank modulation codes. If the flash memory
cells represent a permutation, which is modulated by their relative
charge levels, then we explore the problems arise when some of
the cells are either erased or deleted. In each case we study how
these erasures and deletions affect the information carried by the
remaining cells. In particular, the cells can either be stable and do
not change their values in the permutation or unstable where the
remaining cells form an induced permutation with less symbols.
Yet another erasure model, called here soft erasures, assumes that
all cells can be read, however the relative levels between some
of the cells is not known. Our main approach in tackling these
problems is to build upon the existing works of error-correcting
codes in the three metrics mentioned above and leverage them in
order to construct codes in each model of deletions and erasures.
Lastly, we follow up on codes in the Ulam distance and improve
upon the state of the art results.

I. INTRODUCTION
Flash memory has become the storage medium of choice

in portable consumer electronic applications, and high per-
formance solid-state drives (SSDs) are also being introduced
into mobile computing, enterprise storage, data warehousing,
and data-intensive computing systems. The rapid increase in
the capacity of flash memories makes them attractive in these
applications. However, the capacity increase of these technolo-
gies presents major challenges in the areas of device reliability
and endurance. These challenges can be overcome through
innovative coding and data handling techniques.

Flash memories are comprised of block of cells, which can
store binary values or can have multiple levels and thus store
more than a bit in a cell. For example, a typical block of cells
in flash memories contains about 106 cells and the number of
levels per cell can vary between 2 to 16. One of the main
challenges in flash memories is to exactly program each cell to
its level. In order to overcome this difficulty, rank modulation
codes were proposed and studied in [6]. In this setup, the
information is carried by the relative values between the cells
rather than by their absolute levels. Thus, every group of cells
induces a permutation, which is derived by the ranking of
the level of each cell in the group. Shortly after the work
in [6], several works explored codes which correct errors in
permutations specifically for the rank modulation scheme; see
e.g. [1], [7], [12]. These works include different metrics such
as Kendall’s τ , Ulam, and Hamming distances. However, none
of the recent works explored the setup underneath the cells in

the permutations are either deleted or erased. The goal of this
work is to establish the foundations and present results for these
faulty mechanisms.

The paradigms explored in this work are derived from a
hardware implementation of the modulation process in rank
modulation codes. In particular, while reading and comparing
between the levels of the cells, it may happen that some
cells are corrupted and thus cannot be read correctly. This
leads to erasures in case their locations are not known or
deletions otherwise. Furthermore, the missing information about
the corrupted cells may or may not affect the values of the other
cells. Assume that a permutation π is stored in the flash memory
cells. While reading π some of the cells could be erased and/or
deleted. However, while in codes over symbols, every symbol
can be independently erased or deleted, for permutations, such
erasures and deletions can affect the other symbols as well. To
simplify our discussion, we will assume for now that only one
cell was either erased or deleted. We will consider four different
models, which correspond to 1) erasure/deletion: whether the
location of the lost cell is known, i.e. an erasure or deletion, and
2) stability: whether the other symbols do or do not change their
values as a result of the erasure/deletion. For example, assume
that the stored permutation is (5, 3, 2, 4, 1) and the third symbol
2 was either erased or deleted. For the case of stable erasure,
the read information is (5, 3, ?, 4, 1); for unstable erasure, the
read information is (4, 2, ?, 3, 1); for stable deletion, the read
information is (5, 3, 4, 1); and lastly, for unstable deletion, the
read information is (4, 2, 3, 1).

In this work, we discuss the first three models. The last
one, which can also be extended for the case of insertions,
is studied in our companion paper [4]. Our main contribution
in each model of erasures and deletions is to find a known
distance metric for permutations that will provide codes in
the corresponding model. In particular, we show that codes
based upon the Hamming distance can be used to correct stable
erasures. We also show that the models of unstable erasures and
stable deletions are equivalent and codes in the Ulam distance
can be used in these setups.

Another model which we explore in the paper assumes that
none of the cells was erased or deleted. However, it is not
possible to correctly sense and thus determine the order between
several cells that have adjacent levels. For example, assume that
the stored permutation is (5, 3, 2, 4, 1). Then, an example for
a read information is (5, 32, 41), where the notations 32, 41
indicate that the orders between 3 and 2 and between 4 and 1 are
not known. However, it is known that 1 and 4 have higher ranks
than 2 and 3. In this setup codes in the Kendall’s τ distance are

2014 IEEE International Symposium on Information Theory

978-1-4799-5186-4/14/$31.00 ©2014 IEEE 2759

2

used in order to correct this type of erasures.
To the best of our knowledge, the research on codes com-

batting the proposed models is very limited. We could only
specify the work by Levenshtein [9] which falls under the stable
deletions model and the follow up works in [10], [11].

The rest of the paper is organized as follows. In Section II, we
formally define the erasures and deletions models studied in the
paper and review the Kendall’s τ , Ulam, and Hamming distance
metrics over permutations. In Section III, we show how to use
codes in these three distance metrics in order to construct codes
for our erasures and deletions models. In Section IV, we give
a construction of codes in the Ulam distance which improves
upon the best known ones. Due to the lack of space, some of
the proofs in the paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

Let Sn denote the set of all n! permutations of n elements,
chosen to be {1, 2, . . . , n}. We use the vector notation to denote
a permutation π = (π1, π2, . . . , πn). Given some permutation
π = (π1, π2, . . . , πn) ∈ Sn, its inverse permutation is π−1 =
(π−1

1 , π−1
2 , . . . , π−1

n), where π−1
i is the location of the element

i in π . For example, for π = (6, 1, 3, 2, 5, 4) we have π−1 =
(2, 4, 3, 6, 5, 1). The set {1, . . . , n} is denoted by [n], and for
two positive integers a < b, the set {a, . . . , b} is denoted by
[a, b].

We first formally define the four models of stable/unstable
erasures and deletions. For a permutation π = (π1, . . . , πn) ∈
Sn, and a set of positions I ⊆ [n], π(I) is the set π(I) = {πi :
i ∈ I}. For an integer a ∈ [n] and a subset I ⊆ [n], the integer
a(I) ∈ [n] is defined as a(I) = a− |{i ∈ I : i < a}|. For
example, assume π = (6, 1, 3, 2, 5, 4) and I = {1, 4, 5}, then
π(I) = {6, 2, 5} and π3(π(I)) = 3({6, 2, 5}) = 3− 1 = 2.

Definition 1. Assume that π = (π1, . . . , πn) is a permutation in
Sn and I ⊆ {1, . . . , n} is a positions set of size t. We consider
the following four models of erasures and deletions:

1) Stable Erasure (SE): The permutation π suffered t stable
erasures (SEs) in the positions set I, resulting in the vector
π ′ = (π ′1, . . . , π ′n), if

a) for all i ∈ I, π ′i =?, and
b) for all i ∈ [n] \ I, π ′i = πi.

2) Unstable Erasure (UE): The permutation π suffered t
unstable erasures (UEs) in the positions set I, resulting in
the vector π ′ = (π ′1, . . . , π ′n), if

a) for all i ∈ I, π ′i =?, and
b) for all i ∈ [n] \ I, π ′i = πi(π(I)).

3) Stable Deletion (SD): The permutation π suffered t stable
deletions (SDs) in the positions set I, resulting in the vector
π ′ = (π ′1, . . . , π ′n−t), if
for all k ∈ [n] \ I and i = k(I), π ′i = πk.

4) Unstable Deletion (UD): The permutation π suffered t
unstable deletions (UDs) in the positions set I, resulting in
the permutation π ′ = (π ′1, . . . , π ′n−t) ∈ Sn−t, if
for all k ∈ [n] \ I and i = k(I), π ′i = πk(π(I)).

A code C ⊆ Sn is called a t-SE/UE/SD/UD-correcting code if
it can correct at most t SEs/UEs/SDs/UDs, respectively.

The next example illustrates these four models.

Example 1. Let π = (6, 1, 3, 2, 5, 4) ∈ S6 and I = {1, 4, 5}.
Then, the following vectors are the received ones for each model:

1) Stable Erasure: π ′ = (?, 1, 3, ?, ?, 4).
2) Unstable Erasure: π ′ = (?, 1, 2, ?, ?, 3).
3) Stable Deletion: π ′ = (1, 3, 4).
4) Unstable Deletion: π ′ = (1, 2, 3).
Note that the first model in Definition 1 is the easiest one

and the last one is the hardest one, with respect to the amount
of information that is lost. The last model of unstable deletions
can be generalized for insertions such that more symbols can
be inserted and the other cells scale their value accordingly.
For example, assume that the symbol 2 is inserted between the
first and second cells in the permutation π from Example 1.
Then, the read permutation in S7 will be (7, 2, 1, 4, 3, 6, 5).
This model of insertions as well as the fourth model of UDs
are addressed and studied in our work in [4].

The reading errors in Definition 1 assume that a certain
symbol was not read properly and thus was either deleted or
erased. The next studied model assumes that all symbols are
read and received, however some symbols are read together so
the order between them, and only them, is not known. We define
this erasure model formally.
Definition 2. We say that a permutation π ∈ Sn suffers an e =
(e1, . . . , et)-soft-erasure if there are t sets I1, . . . , It, such that
for 1 6 ` 6 t, I` = [a`, b`], b` = a` + e` − 1, 1 6 a1 <
b1 < a2 < b2 < · · · < at < bt 6 n, and only the orders of the
elements in each of the t groups π(I1), . . . , π(It) are not known.
The erasure-weight of the soft-erasure e is ω(e) = ∑

t
`=1 (

e`
2).

A code C ⊆ Sn is called an E-soft-erasure-correcting code if it
can correct any e-soft-erasure of erasure-weight at most E.

The motivation in choosing the erasure-weight terminology
results from the observation that this number indicates the
number of element pairs which their order is not known. Our
approach in finding codes for the aforementioned models is to
use, when possible, some of the already existing results of error-
correcting codes over permutations. There are several different
metrics that these codes were studied for and the following
metrics are the ones we use in this work.

An adjacent transposition in a permutation π ∈ Sn is the
local exchange of two adjacent elements in π . The Kendall’s τ
distance [8] between two permutations σ , π ∈ Sn is denoted
by dτ (σ , π) and is defined to be the minimum number of
adjacent transpositions required to obtain the permutation π
from the permutation σ . The Hamming distance between two
permutations π ,σ ∈ Sn, denoted by dH(π ,σ), is defined as
the number of positions for which π and σ differ. For two
permutations π ,σ ∈ Sn, let `(π ,σ) be the length of a longest
common subsequence of π and σ . The Ulam distance between
π and σ is defined as d◦(π ,σ) = n− `(π ,σ) [2], [3], [5].
Example 2. Let π = (4, 3, 1, 2, 5) and σ = (4, 3, 5, 1, 2), then
dτ (π ,σ) = 2, dH(π ,σ) = 3, and d◦(π ,σ) = 1.

The minimum distance of a code, according to any metric,
is the minimum distance between every two codewords in the
code. For a code C ⊆ Sn, its minimum Kendall’s τ , Hamming,
Ulam distance is denoted by dτ (C), dH(C), d◦(C), respectively.

III. CODES FROM EXISTING CODES IN OTHER METRICS

In this section we present codes for the erasures and deletions
models defined in Section II. In particular, we show how codes
in the Kendall’s τ , Hamming, and Ulam distance can be used
for these models.

2014 IEEE International Symposium on Information Theory

2760

3

Let us start with stable erasures. First notice that if only a
single stable erasure occurred then it is immediate to complete
the missing symbol since its location is known by the erasure
as well as its value, which is the missing symbol in the
permutation. Thus, the code Sn is a single-SE-correcting code.
For more than a single stable erasure, we show in the next
theorem how codes in the Hamming distance are necessary and
sufficient in the SE model.

Theorem 3. A code C ⊆ Sn is a t-SE-correcting code if and only
if dH(C) > t + 1.

Proof: We show that if dH(C) > t + 1 then C is a t-SE-
correcting code. Assume in the contrary that C is not a t-SE-
correcting code. Thus, there are two permutations π ,σ ∈ C and
two positions sets I1, I2 ⊆ [n], each of size at most t, such that
if π ′ is the result of stable erasures in the positions set I1 in π
and σ ′ is the result of stable erasures in the positions set I2 in
σ , then π ′ = σ ′. First notice that I1 = I2. Otherwise, assume
without loss of generality that there exists i ∈ I1 \ I2, so we
get π ′i =? and σ ′i 6=? which is a contradiction. Hence, we can
denote I1 = I2 = I and |I| 6 t. Then we get that for every
i ∈ [n] \ I, πi = π ′i = σ

′
i = σi, and thus dH(π ,σ) 6 |I| 6 t,

in contradiction.
The second part holds since we can consider C as a code in

[n]n so its minimum Hamming distance has to be t + 1.
We next move to the models of unstable erasures and stable

deletions. Note that in unstable erasures the locations but not
the values are not known, while in stable deletions the values
but not locations are not known. The next lemma establishes a
property claiming that these two models are equivalent.

Lemma 4. A permutation π ∈ Sn suffered t UEs if and only if
its inverse permutation π−1 suffered t SDs.

Proof: Let π = (π1, . . . , πn) and π−1 = (π−1
1 , . . . , π−1

n).
Assume that π suffered t UEs in the positions set I, resulting
in the vector π ′ = (π ′1, . . . , π ′n). Let π ′−1 = (π ′−1

1 , . . . , π ′−1
n−t)

be a length-(n− t) vector which specifies the locations of the
(n − t) non-erased symbols in π ′. For every k ∈ [n] \ I,
π ′k = πk(π(I)) and hence the location of i ∈ [n − t] in π ′

is the location of the symbol ki in π such that i = ki(π(I)).
That is, for i ∈ [n − t], π ′−1

i = π−1
ki

, where i = ki(π(I)).
Therefore, π ′−1 is the vector received from π−1 after having t
stable deletions in the positions set π(I).

To prove the other direction, since (π−1)−1 = π , we can
simply prove that if π suffered t SDs then π−1 suffered t UEs.
If so, assume that π suffered t SDs in the positions set I, result-
ing with the vector π ′ = (π ′1, . . . , π ′n−t), where for i ∈ [n− t],
π ′i = πki , where i = ki(I). Let π ′−1 = (π ′−1

1 , . . . , π ′−1
n) be

a length-n vector which specifies the locations of the symbols
[n] in π ′ or specifies a ? in case that the symbol does not
appear in π ′. That is, for i ∈ π(I) have π ′−1

i =? and
for i /∈ π(I), π ′−1

i = π−1
i (I), or, since π−1(π(I)) = I,

π ′−1
i = π−1

i (π−1(π(I))). Hence, the vector π ′−1 equals the
vector received from π−1 after having t UEs in the positions
set π(I).

As a result of Lemma 4 we conclude the following corollary.

Corollary 5. There exists a t-UE-correcting code of cardinality
M if and only if there exists a t-SD-correcting code of cardinality
M.

To complete this discussion we only need to consider codes
in one of these two models. We will show how codes in the
Ulam distance are necessary and sufficient for codes in the SD
model.
Theorem 6. A code C ⊆ Sn is a t-SD-correcting code if and only
if d◦(C) > t + 1.

Proof: We show that if C is a t-SD-correcting code then
d◦(C) > t + 1. Assume in the contrary that d◦(C) 6 t and let
π ,σ ∈ C be such that d◦(π ,σ) = t′ 6 t. Hence, π and σ have
a common subsequence of length `(π ,σ) = n− d◦(π ,σ) =
n− t′ > n− t and let S be the set of symbols in this common
subsequence. Let Iπ be the positions of the symbols [n] \ S in
π and similarly let Iσ be the positions of the symbols [n] \ S
in σ . Then, if π ′ is the result of t SDs in π in the positions set
Iπ and σ ′ is the result of t SDs in σ in the positions set Iσ , we
get that π ′ = σ ′. Therefore, the code C is not a t-SD-correcting
code, which is a contradiction.

In order to prove the other direction, we show that if
d◦(C) > t + 1 then C is a t-SD-correcting code. Assume in the
contrary that C is not a t-SD-correcting code. Thus, there are
two permutations π ,σ ∈ C and two positions sets I1, I2 ⊆ [n],
each of size at most t, such that if π ′ is the result of stable
deletions in the positions set I1 in π and σ ′ is the result of
stable deletions in the positions set I2 in σ , then π ′ = σ ′. First
we have that |I1| = |I2| and since π ′ = σ ′, π and σ have a
common subsequence of length n − |I1| > n − t. Therefore,
d◦(π ,σ) 6 n− (n− t) = t, in contradiction again.

Lastly in this section we turn to handle the soft-erasure
model. The connection between this model of erasures and the
Kendall’s τ-metric is established in the next theorem.

Theorem 7. Let C ⊆ Sn be a code where dτ (C) > E+ 1 . Then,
C is an E-soft-erasure-correcting code.

Proof: Assume to the contrary that C is not an E-
soft-erasure-correcting code. Then, there exist two permuta-
tions π ,σ , and two soft-erasures eπ = (eπ1 , . . . , eπt), eσ =
(eσ1 , . . . , eσt) of erasure-weights at most E such that the vectors
received after each of the two soft-erasures are the same. Let
Iπ1 , . . . , Iπt be the sets of erasures in π and similarly, Iσ1 , . . . , Iσt
are the sets of erasures in σ . First note that Iπj = Iσj for
1 6 j 6 t, since otherwise the received vectors, as a result
of the soft-erasures, are not the same. From the same reason,
the symbols in each of the t groups are the same for π and
σ and the order of all other symbols in π and σ is the same.
Therefore, there can be only ∑

t
`=1 (

eπ`
2) pairs of symbols that π

and σ do not agree on. However, that means that the Kendall’s
τ distance between π and σ is at most ∑

t
`=1 (

eπ`
2) 6 E, which

is a contradiction.

IV. NEW CODES FOR THE ULAM METRIC

In this section, we present new codes for the Ulam metric.
In the first subsection, we introduce some notation, tools, and
codes that will be used in the following subsection to describe
the code construction for the Ulam metric. We proceed by
describing a code over Sn that can correct a prescribed number
of stable deletions. As a consequence of Theorem 6, these codes
are also suitable for the Ulam metric. Lastly, we will comment
on how our construction improves upon the state of the art codes
for this metric from [5]. For the remainder of this section, we
use the terms deletion(s) and stable deletion(s) interchangeably.

2014 IEEE International Symposium on Information Theory

2761

4

Furthermore, we use the terms erasure(s) and stable erasure(s)
interchangeably as well.
A. Notation and Auxiliary Codes

For a sequence π with elements from the set [n]∪{?} and for
s ∈ [n], let D(π , s) be the result of removing all occurrences of
the symbol s in π . If s is not contained in π , then D(π , s) = π .
More generally, for I ⊂ [n], D(π , I) is the result of removing
all symbols from I in π . Notice that in this case, the set I
contains the symbols to be deleted and not the locations of
those symbols. For I ′ ⊂ [n], let σ = Er(π , I ′) be the result
of substituting the elements of I ′ in π with the symbol ?.

The following code can determine the locations of deletions
given that the locations of the deletions satisfy certain con-
straints, that will be explained later. For the remainder of this
section, we assume that n, ` are positive integers where n > `
and `|n. We define

CL
`,n = {π ∈ Sn : i ∈ [n], πi ≡ i− 1(mod`)}.

For σ = (σ1, . . . ,σn) ∈ Sn, the vector σ(mod`) =
(σ ′1, . . . ,σ ′n) is defined by σ ′i = σi(mod`) for 1 6 i 6 n.
Thus, for any codeword π ∈ CL

`,n, the vector π(mod`) is a
periodic sequence of length n and period ` where each period
is (0, . . . , `− 1).

We now describe a decoding algorithm DL
`,n for the code

CL
`,n. We note that although the map DL

`,n is not formally a
decoder, with a slight abuse of notation it will be referred to as
such and the procedure below will be referred to as a decoding
algorithm. Suppose that π ∈ CL

`,n is the stored codeword and
σ is the retrieved word, where σ = D(π , I) with I ⊂ [n],
|I| = t < n. The input to DL

`,n is σ .
1) Initialize j = 0 and let ζ(1) = (σ , 0).
2) Let j = j + 1.
3) Let i j be the smallest i, where 1 6 i 6 n− t + j, such

that ζ(j)
i 6≡ i− 1(mod`) and ζ(j)

i 6=?. If no such symbol
exists, go to step 5).

4) Let ζ(j+1) be the result of inserting the symbol ? into ζ(j)

at position i j. Go to step 2).

5) Define π̂ = (ζ
(j)
1 , . . . ,ζ(j)

n−t+ j−1).
Example 3. Suppose n = 12 and ` = 3 and let
π = (3, 7, 5, 9, 1, 8, 6, 4, 2, 12, 10, 11) ∈ CL

3,12 and let
I = {1, 3, 8, 11}. Then, σ = (7, 5, 9, 6, 4, 2, 12, 10). In this
case, ζ(1) = (7, 5, 9, 6, 4, 2, 12, 10, 0), ζ(2) = (?, 7, 5, 9,
6, 4, 2, 12, 10, 0), ζ(3) = (?, 7, 5, 9, ?, 6, 4, 2, 12, 10, 0),
ζ(4) = (?, 7, 5, 9, ?, ?, 6, 4, 2, 12, 10, 0), and ζ(5) = (?, 7, 5,
9, ?, ?, 6, 4, 2, 12, 10, ?, 0), and π̂ = (?, 7, 5, 9, ?, ?, 6, 4, 2,
12, 10, ?).

Let b(π , I , `) be equal to 1 if there exists a subset of `
symbols from I that appear consecutively in π . Otherwise,
b(π , I , `) = 0. If b(π , I , `) = 1, then let `(π , I) be
the set of symbols that constitute the first occurrence of a
subset of ` symbols from I that appear consecutively in π .
If b(π , I , `) = 0, then let `(π , I) = ∅. For example, let π
be as in Example 3, then, b(π , {3, 7, 5, 8, 6, 4}, 3) = 1 and
3(π , {3, 7, 5, 8, 6, 4}) = {3, 5, 7}.

The following claim follows from the decoding algorithm
for CL

`,n. For a sequence x with symbols from [n] ∪ {?} let |x|
denote the length of x.
Claim 8. For positive integers n, `, suppose π ∈ CL

`,n, I ⊂ [n],
and σ = D(π , I). If b(π , I , `) = 0, then DL

`,n(σ) = Er(π , I).
Otherwise, |DL

`,n(σ)| < |π | = n.

In words, if the longest maximal substring deleted from π has
length less than `, that is b(π , I , `) = 0, then the output of the
decoder is π with symbols of I replaced by ?, which provides
the locations of the deleted symbols. Otherwise, the decoder
returns a sequence with length shorter than the length of π .

For our code construction in the next subsection we will
use two more codes which are described as follows. The first
code is a code capable of correcting a single stable deletion
over permutations. Let CE

n′ ⊆ Sn′ be a code that can correct
a single stable deletion from [9] and let DE

n′ be a decoder for
this code [9]. The decoder DE

n′ operates as follows. Suppose
σ = D(π , s), where π ∈ CE

n′ . The output of DE
n′(σ) is the

ordered triplet (s, s′, s′′) where s is the symbol deleted from π
to obtain σ , s′ is the symbol immediately before s in π , and s′′

is the symbol immediately after s in π . If s is the final symbol
in π , then s′′ = 0 and similarly if s is the first symbol in π ,
then s′ = 0.

The second code will be a code in the Hamming metric. Let
CH

d,n ⊆ Sn be a code with minimum Hamming distance d. From
Theorem 3, there exists a decoder DH

d,n : ([n] ∪ {?})n → Sn

for CH
d,n that can correct up to d− 1 stable erasures, where the

location of the erasures are represented by the symbol ?.

B. Code Construction
Using the tools from the previous subsection, we now present

a code capable of correcting 2`− 1 stable deletions. The idea
will be to combine the constraints for the codes CL

`,n, CE
n/`, and

CH
3`−2,n. For a permutation π ∈ Sn and an integer 0 6 i 6

`− 1, let ππ≡`i be the subsequence of π that only contains the
symbols from the set {s ∈ [n] : s ≡ i(mod`)}. For integers
m, n, k, and x ∈ [n]m, let (x− k)/` = (y1, . . . , ym) be such
that for 1 6 i 6 m, yi = b(xi − k)/`c.
Construction 1. For positive integers n, ` where n > ` and `|n,
let CU

2`,n ⊆ Sn be the code consisting of all permutations π ∈ Sn
that satisfy the following conditions:

1) π ∈ CH
3`−2,n

2) π ∈ CL
`,n, and

3) (ππ≡`i − i)/` ∈ CE
n/` for 0 6 i 6 `− 1.

We will show that the code CU
2`,n has Ulam distance at least 2`

by showing that it can recover from any m = 2`− 1 deletions.
Suppose σ = D(π , I) ∈ [n]n−m where I ⊂ [n], |I| = m, and
π ∈ CU

2`,n.
We first outline the decoding procedure. We will first attempt

to determine the locations of the deletions using the decoder
DL

`,n. From Claim 8, DL
`,n can determine the locations of all the

deletions except if b(π , I , `) = 1. Recall that if b(π , I , `) = 1,
then there was a substring deleted from π whose length is at
least `. In this case, the decoder CE

n/` is used to determine
the location where the substring (of length at least `) was
deleted from π and the locations of the remaining deletions
are discovered with the aid of DL

`,n. Finally, using DH
3`−2,n the

values of the deleted symbols are recovered.
We now turn to formally define the decoding procedure. We

refer to the decoding map for CU
2`,n as DU

2`,n : [n]n−m → Sn.
The input to the map is σ and the output is an estimate π̂ of
the codeword π ∈ CU

2`,n. The decoder is presented in Alg. 1,
where we use the following notation. Let s′, s′′ ∈ [n]. For a
vector σ ∈ [n]n−m, we refer to the set of symbols in σ that are

2014 IEEE International Symposium on Information Theory

2762

5

between the symbols s′, s′′, exclusive, as σ [s′, s′′]. If s′ = 0,
thenσ [s′, s′′] is the set of symbols that appear before the symbol
s′′ in σ . Similarly, if s′′ = 0, then σ [s′, s′′] is the set of symbols
that appear after the symbol s′ in σ .

Algorithm 1: DU
2`,n : [n]n−m → Sn

input : the retrieved permutation σ = D(π , I)
output: estimate of π , π̂

1 σ (1) ←− DL
`,n(σ);

2 if |σ (1)| = n then
3 σ (4) ←− σ (1);
4 else
5 k←− min{x ∈ Z` : |σσ≡`x| = n

` − 1} ;
6 (s, s′, s′′)←− DE

n/`

(
(σσ≡`k − k)/`

)
;

7 S = σ [` · s′ + k, ` · s′′ + k];
8 σ (2) ←− D(σ , S);
9 σ (3) ←− result of inserting ` · s + k between ` · s′ + k

and ` · s′′ + k in σ (2);
10 σ (4) ←− DL

`,n(σ
(3));

11 end
12 π̂ ←− DH

3`−2,n(σ
(4));

Theorem 9. The code CU
2`,n has Ulam distance at least 2`.

Proof: The result is proven by showing that the output π̂
of Alg. 1 equals π . In this proof, let A = `(π , I). Suppose
that at step 2, we have |σ (1)| = n. Then, from Claim 8, we
have σ (1) = Er(π , I) and A = ∅. In step 12, since π belongs
to a code with minimum Hamming distance 3`− 2, and |I| =
2` − 1 6 3` − 2, the values of the deleted symbols can be
recovered. Thus, when |σ (1)| = n, we have that π̂ = π .

We now suppose that |σ (1)| = n− `, which is the only other
possibility for if A 6= ∅, then |A| = `. Since 2`− 1 elements
are deleted from π , by the pigeon hole principle, there exists
k such that |σσ≡`k| = n

` − 1 (the algorithm arbitrarily picks
the smallest possible value for k in step 5). The deleted symbol
from ππ≡`k, that is the only deleted symbol that is equal to

k(mod`), is ` · s + k, where (s, s′, s′′) = DE
n/`(

σσ≡`k−k
`). For

simplicity of presentation, in the algorithm and in this discussion
we ignore the possibility that s′ = 0 or s′′ = 0; these cases can
be handled similarly.

Since the ` symbols of A are consecutive in π , there is one
element of A that is equal to k(mod`). But since ` · s + k is
the only deleted element from π that is equal to k modulo `,
we have ` · s + k ∈ A. This in turn implies that the symbols
of A are located between the symbol ` · s′ + k and the symbol
` · s′′ + k in π . So the size of the set S in step 8 is at most
(2`− 1)− ` = `− 1, where 2`− 1 is the number of symbols
between ` · s′ + k and ` · s′′ + k in π and ` is the number of
symbols in A. Hence, |σ (2)| = n− |I| − |S| 6 n− (3`− 2).

In step 9 of the algorithm, ` · s + k is inserted in its correct
position. So now there are only 3`− 3 elements missing from
σ (3) compared to π . In other words, there is a set I ′ such that
σ (3) = D(π , I ′), where |I ′| 6 3`− 3. Since ` · s+ k /∈ I ′, we
have b(π , I ′, `) = 0. Hence, by Claim 8, σ (4) = Er(π , I ′) at
step 10. The decoder DH

3`−2,n can recover π from σ (4) in step
12 since |I ′| 6 3`− 3 and the minimum Hamming distance of
the code CU

2`,n is 3`− 2.

We illustrate Algorithm 1 with the following example.
Example 4. Suppose π = (9, 7, 8, 6, 1, 11, 3, 10, 2, 12, 4, 5) ∈
CU

6,12 so that ` = 3. Suppose σ = D(π , I) =
(9, 7, 11, 3, 2, 12, 5) where I = {1, 4, 6, 8, 10}. We will show
that, if Algorithm 1 is invoked with σ as input, then π̂ = π .

At step 1, we have σ (1) = (9, 7, 11, 3, ?, 2, 12, ?, 5). Then
since |σ (1)| = 9 < 12, we proceed to step 5. At step 5,
k = 0 since |σσ≡30| = |(9, 3, 12)| = 4 − 1. Then at step 6,
we the output of DE

4 would be (s, s′, s′′) = (2, 3, 1). At step
7, the set S = σ [9, 3] = {7, 11}. Notice that |S| = 2 in this
case. After the elements from the set S are removed from σ ,
at step 8 we have σ (2) = (9, 3, 2, 12, 5). At step 9, we insert
the symbol 6 into σ (2) giving that σ (3) = (9, 6, 3, 2, 12, 5).
At step 10, σ (4) = (9, ?, ?, 6, ?, ?, 3, ?, 2, 12, ?, 5). Since there
are 6 total erasures and DH

7,12 is the decoder for a code with
Hamming distance 7, the output of DH

7,12 at step 12 will be
π̂ = (9, 7, 8, 6, 1, 11, 3, 10, 2, 12, 4, 5) = π as desired.

We now briefly compare a code created according to Con-
struction 1 to the codes from [5]. A code CU

2`,n with Ulam
distance 2` requires interleaving ` subsequences as a conse-
quence of item 1) in Construction 1. We note that, if the codes
from [5] were adopted, then constructing a code with Ulam
distance 2` would require interleaving at least 2(` − 1) + 1
subsequences. Because Construction 1 requires the interleaving
of fewer subsequences, it can be shown that for large n Con-
struction 1 produces codebooks with much higher cardinalities
than the codes presented in [5]. A more rigorous comparison
between the code constructions are left for an extended version
of the paper. ACKNOWLEDGMENT

The work of Eitan Yaakobi, Farzad Farnoud, and Jehoshua Bruck
was supported in part by Intellectual Ventures, an NSF grant
CIF-1218005, and the U.S.-Israel Binational Science Foundation,
Jerusalem, Israel, under Grant No. 2010075. Ryan Gabrys was sup-
ported by the SMART scholarship.

REFERENCES
[1] A. Barg and A. Mazumdar, “Codes in permutations and error correction

for rank modulation,” IEEE Trans. on Information Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[2] W.A. Beyer, M.L. Stein, and S.M. Ulam, “Metric in Biology, an Introduc-
tion,” Preprint LA-4973, Univ. of Calif., Los Alamos, 1972.

[3] M. Deza and T. Huang, “Metrics on permutations, a survey,” J. Combin.
Inf. Syst. Sci., vol. 23, pp. 173–185, 1998.

[4] R. Gabrys, E. Yaakobi, F. Farnoud, F. Sala, L. Dolecek, and J. Bruck,
“Single-deletion-correcting codes over permutations,” submitted to IEEE
International Symposium on Information Theory, Honolulu, HI, Jun.-Jul.
2014.

[5] F. Farnoud (Hassanzadeh), V. Skachek, and O. Milenkovic, “Error-
correction in flash memories via codes in the Ulam metric,” IEEE Trans.
Information Theory, vol. 59, no. 5, pp. 3003–3020, May 2013.

[6] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Information Theory, vol. 55, no. 6,
pp. 2659–2673, Jun. 2009.

[7] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained errors
in the rank-modulation scheme,” IEEE Trans. on Information Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[8] M. Kendall and J.D. Gibbons, Rank Correlation Methods. New York:
Oxford Univ. Press, 1990.

[9] V. I. Levenshtein, “On perfect codes in deletion and insertion metric,”
Discretnaya Mathematika, vol. 3, no. 1, pp. 3–20, 1991.

[10] G.M. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(Corresp.),” IEEE Trans. Information Theory, vol. 30, no. 5, pp. 766–769,
Sep. 1984.

[11] R.R. Varshamov and G.M. Tenengolts, “Codes which correct single asym-
metric errors,” Avtomatika i Telemekhanika, vol. 6, no. 2, pp. 288–292,
1965.

[12] H. Zhou, A. Jiang, and J. Bruck, “Systematic error-correction codes for
rank modulation,” Proc. IEEE International Symposium on Information
Theory, pp. 2978–2982, Cambridge, MA, Jul. 2012.

2014 IEEE International Symposium on Information Theory

2763

