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Abstract—In this paper we study a generalization of the sphere
packing bound for channels that are not regular (the size of balls
with a fixed radius is not necessarily the same). Our motivation
to tackle this problem is originated by a recent work by Kulkarni
and Kiyavash who introduced a method, based upon tools from
hypergraph theory, to calculate explicit upper bounds on the
cardinalities of deletion-correcting codes. Under their setup, the
deletion channel is represented by a hypergraph such that every
deletion ball is a hyperedge. Since every code is a matching in the
hypergraph, an upper bound on the codes is given by an upper
bound on the largest matching in a hypergraph. This bound,
called here the generalized sphere packing bound, can be found
by the solution of a linear programming problem.

We similarly study and analyze specific examples of error
channels. We start with the Z channel and show how to exactly
find the generalized sphere packing bound for this setup. Next
studied is the non-binary limited magnitude channel both for
symmetric and asymmetric errors. We focus on the case of
single error and derive upper bounds on the generalized sphere
packing bound in this channel. We follow up on the deletion case,
which was the original motivation of the work by Kulkarni and
Kiyavash, and show how to improve upon their upper bounds
for the single deletion case. Finally, we apply this method for
projective spaces and find its generalized sphere packing bound
for the single-error case.

I. INTRODUCTION

In coding theory, there are many channels, such as the
deletion and Z channels, which are not regular, that is, the size
of balls with fixed radius is not necessarily the same. Usually,
the study of these channels is more challenging since many
lower and upper bounds cannot be applied on these channels
since they require the channel to be regular. One fundamental
example for such a bound is the sphere packing bound, which
asserts that for regular channels an upper bound on a code
correcting t errors is the ratio between the size of the space
and a size of a ball of radius t. In this paper, we study how to
generalize the sphere packing bound in paradigms where the
channels are not regular.

The approach we take in generalizing the sphere packing
bound is inspired by a recent study by Kulrkani and Kiyavash.
They presented a scheme, based upon tools from hypergraph
theory, which gives non-asymptotic upper bounds for deletion-
correcting codes. In this paper, we use results on the general-
ization of their method from [6] in order to provide specific
examples on its application to channels that are not regular.
These examples include the Z channel, non-binary channels
with limited magnitude errors (symmetric and asymmetric),
deletion channel, and finally, projective spaces. When possible
in these examples, we compare the bounds we receive with the
state-of-the-art ones.

Let H = (X, E) be a hypergraph, where X = {x1, . . . , xn}
is its vertex set and E = {E1, . . . , Em} is its hyperedge set.
Let A be the n × m incidence matrix of H, so A(i, j) =
1 if xi ∈ E j. A matching in H is a collection of pairwise
disjoint hyperedges and the matching number of H, denoted

by ν(H), is the size of the largest matching. The dual definition
of a matching is a transversal, which is a subset T ⊆ X that
intersects every hyperedge in E . The transversal number of
H, denoted by τ(H), is the size of the smallest transversal. It
is easy to verify that the size of any transversal gives an upper
bound on the matching number and thus ν(H) 6 τ(H). Every
transversal can be represented by a binary vector w ∈ {0, 1}n

which needs to satisfy AT ·w > 1. However, if the vector w
can have values over R+ and still satisfies the last inequality,
then it is called a fractional transversal. Under this setup, it
is known that ν(H) 6 τ∗(H) 6 τ(H), where τ∗(H) is the
linear programming relaxation of τ(H), defined as

τ∗(H) = min
{ n

∑
i=1

wi : AT ·w > 1, w ∈ Rn
+

}
. (1)

Let G = (X, E) be a directed graph which describes an error
channel. The vertex set X is the set of all possible transmitted
words, and the edges set E consists of all pairs of vertices
at distance one. The distance between x, y ∈ X, is the path
metric in G and is denoted by d(x, y). Note that since the
graph is directed, it is possible to have d(x, y) 6= d(y, x).
For every x ∈ X, its radius-r ball is the set Br(x) , {y ∈
X | d(x, y) 6 r} and its degree is degr(x) = |Br(x)|. A
code C ⊆ X is said to be an r-error-correcting code if for
all x, y ∈ C, Br(x) ∩ Br(y) = ∅. We let AG(n, r) be the
largest cardinality of an r-error-correcting code in G of length
n. Given some positive integer r, the graph G is associated
with a hypergraph H(G , r) = (Xr, Er) where Xr = X and
Er = {Br(x) | x ∈ X}. Observing that every r-error-correcting
code C ⊆ X is a matching in H(G , r), the following upper
bound on AG(n, r) was verified in [8],

AG(n, r) 6 τ∗(H(G , r)). (2)
One of the properties shown in [6], asserts that for a regular

and symmetric graph G the bound τ∗(H(G , r)) in (2) coincides
with the sphere packing bound, and therefore the bound
τ∗(H(G , r)) is called the generalized sphere packing bound.

The expression τ∗(H(G , r)) provides an explicit upper
bound on AG(n, r). However, it may still be a hard problem
to calculate this value since it requires the solution of a linear
programming problem that can have an exponential number of
variables and constraints. Clearly, one would aspire to find this
exact value, but if this is not possible to accomplish, it is still
valuable to give an upper bound on τ∗(H(G , r)), which is an
upper bound on AG(n, r) as well. Such an upper bound will
be given by finding any fractional transversal and the goal will
be to find one with small weight.

The rest of the paper is organized as follows. In Section II
we review the definitions and tools from [6] and [8] required
to solve the problems in this paper. In Section III, we study
the Z channel. Our main contribution here is finding a method
to calculate the general sphere packing bound for all radii. In
Section IV we carry a similar task for the limited-magnitude
channel with symmetric and asymmetric errors. We focus only
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on the single error case in both scenarios and find fractional
transversals and corresponding upper bounds. Section V fol-
lows upon the original work of [8], improving the bounds
derived therein for the deletion channel (for the case of a single
deletion). Section VI studies bounds on projective spaces and
gives an optimal solution for the radius-one case. Due to the
lack of space, some of the proofs in the paper are omitted.

II. DEFINITIONS AND PRELIMINARIES

Let G = (X, E), where X = {x1, . . . , xn}, be a directed
graph describing an error channel and H(G , r) = (Xr, Er)
is its associated hypergraph. Our main goal in this work is to
calculate the generalized sphere packing bound stated in (2) for
the examples mentioned in the Introduction. This may not be an
easy task since the linear programming problem (1) calculating
the value τ∗(H(G , r)) may have an exponential number of
variables and constraints. However, some tools, summarized
as follows and given in details in [6], can significantly help in
calculating this bound.

The graph G is called monotone if for every r > 1, x ∈ X
and y ∈ Br(x), degr(y) 6 degr(x). This property is helpful
in giving an explicit construction of a fractional transversal
w = (w1, . . . , wn) where wi =

1
degr(xi)

, which provides the
following upper bound

AG(n, 2r + 1) 6
n

∑
i=1

wi =
n

∑
i=1

1
degr(xi)

.

This bound is called the monotonicity upper bound and is
denoted by MB(G , r).

Lastly, we review a method from [6] that can significantly
reduce the complexity in calculating the linear programming
problem of the value τ∗(H(G , r)). Let us first remind some
tools derived from properties on automorphisms of graphs. Let
G = (X, E) be a directed graph with n vertices. An automor-
phism of a graph G = (X, E) is a permutation π : X → X that
preserves adjacency, i.e., for all (x, y) ∈ X × X, (x, y) ∈ E
if and only if (π(x), π(y)) ∈ E. Let Sn, where |X| = n, be
the set of all permutations of n elements, and Aut(G) be the
set of all automorphisms of G. It is known that Aut(G) is a
subgroup of Sn.

Every subgroup H of Aut(G) induces a relation RH , which
is an equivalence order, on X where (x, y) ∈ RH if and only
if there exists π ∈ H such that π(x) = y. Let X1, . . . , XnH
be a partition of X into nH equivalence classes according to
H. Let AH be an nH × nH adjacency matrix corresponding to
the subgroup H, such that for 1 6 i, j 6 nH ,

AH(i, j) =
|{(x, y) : y ∈ Br(x) ∩ X j}|

|Xi|
.

The main advantage in this approach is that vertices belonging
to the same equivalence class can be assigned with the same
weight when solving the linear programming in (1). This
simplification can significantly reduce the number of variables
and constraints in the linear programming. This property is
stated in the next theorem from [6].

Theorem 1. Let H be a subgroup of Aut(G) and XH(G) =
{X1, . . . , XnH} is its partition of X into nH equivalence classes.
Then, the generalized sphere packing bound τ∗(H(G , r))
from (1) becomes

τ∗(H(G , r)) = min
{ nH

∑
i=1
|Xi| ·wi : AT

H ·w > 1, w ∈ RnH
+

}
.

(3)

III. THE Z CHANNEL

We let the graph of the Z channel be GZ = (XZ , EZ),
where XZ = {0, 1}n and EZ = {(x, y) : x, y ∈ {0, 1}n, x >
y, wH(x) = wH(y) + 1}, and wH(x) denotes the Hamming
weight of x. So errors can change a 1 to 0 but not vice versa.
Let r be some fixed positive integer. For every x ∈ {0, 1}n,

BZ,r(x) = {y ∈ {0, 1}n : x > y, wH(x)− wH(y) 6 r},
and degZ,r(x) = ∑

r
i=0 (

wH(x)
i ). The hypergraph for this

channel is H(GZ , r) = (XZ,r, EZ,r), where XZ,r = {0, 1}n

and EZ,r = {BZ,r(x) : x ∈ {0, 1}n}. In order to find the value
τ∗(H(GZ , r)), it is required to solve a linear programming
with 2n variables and 2n constraints. However, according to
the automorphism scheme from Theorem 1, it can be reduced
to only n + 1 variables and constraints as follows

τ∗(H(GZ , r))= min
{ n

∑
`=0

(
n
`

)
w` :

min{`,r}

∑
i=0

(
`

i

)
w`−i > 1, 0 6 ` 6 n

}
.

(4)
The goal of this section is to solve the linear programming

problem in (4) by finding the appropriate fractional transversal
that calculates this value for all r 6 20. We note that the special
case of r = 1 is studied in our companion paper [6].
Theorem 2. For all r 6 20, the optimal fractional transversal
w∗ which solves the linear programming in (4) is given by the
following recursive formula

w∗0 = 1, w∗n = w∗n−1 = · · · = w∗n−r+1 = 0, (5)

w∗k =(1−
r

∑
i=1

w∗k+i

(
k + r
r− i

)
)/

(
k + r

r

)
, ∀16 k 6 n− r.

Proof: First, we introduce an explicit formula for w∗ by
w∗0 = 1 and for 1 6 k 6 n,

w∗k = r!k!
n

∑
m=r+k

Dm−k−1
m!

, (6)

where Di is a sequence independent of n and is given by
D0 = D1 = · · · = Dr−2 = 0, Dr−1 = 1,
Di
r!

+
Di−1

(r− 1)!
+ · · ·+ Di−r

0!
= 0 ∀i > r.

The equivalence of the two formulas comes from a couple of
inductions (see [5] for more details.) The proof consists of
two parts, feasibility (transversal property) and the optimality
of our choice. Here, we overview the feasibility proof using
the equivalent formula, but we leave the details along with the
optimality proof in the longer version of the paper [5].

The recursive formula for w∗ gives us the transversal
inequality constraints. So, it suffices to show the non-negativity
of w∗ to prove its feasibility.

A simple induction on m gives |Dm| 6 (2r)m−r+1 for all
r ∈ N. As a result, the growth of Dm is no more than an
exponential function of 2r and moreover, limn→∞ w∗k exists.
Now, the main idea is to look at the first terms in (6) and show
that they cannot be cancelled out by the remaining terms.

Let us first verify the statement w∗k > 0 for k > 3r− 1.

w∗k = r!k!
n

∑
m=r+k

Dm−k−1
m!

= r!k!(
1

(r + k)!
+

n

∑
m=r+k+1

Dm−k−1
m!

)

>
r!k!

(r + k)!
(1−

n

∑
m=r+k+1

(2r)m−r−k

(4r)m−r−k ) =
r!k!

(r + k)!
2−(n−k−r),

which is a positive value. In general, we do not have the proof
for the case when k < 3r− 1. However, for any fixed r we
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can research the feasibility in the following fashion: Given
k < 3r− 1, we look for a number nk such that

nk

∑
m=r+k

Dm−k−1
m!

>
1

(2r)r+k (e
2r −

nk

∑
m=0

(2r)m

m!
),

which means for all n > nk we have
w∗k
r!k!

=
nk

∑
m=r+k

Dm−k−1
m!

+
n

∑
m=nk+1

Dm−k−1
m!

>
nk

∑
m=r+k

Dm−k−1
m!

− 1
(2r)k+r

∞
∑

m=nk+1

(2r)m

m!
=

nk

∑
m=r+k

Dm−k−1
m!

−
e2r−∑

nk
m=0

(2r)m

m!
(2r)r+k > 0;

And then we check the values of w∗k for the finite set of k <
3r− 1 and n 6 nk. We mention that if w∗k > 0 for all n, then
the number nk exists since limnk→∞ ∑

nk
m=0

(2r)m

m! = e2r. As an
example, when r = 2 we have n1 = n2 = 6, and n3 = n4 =
7. Using the above approach, we have verified the feasibility
for all r 6 20. Our calculations also show that nk 6 4r− 1
for all n 6 20.

Lastly, we note that it is possible to verify the optimality
of the weight assignment from (5) for arbitrary r using the
method in Theorem 2.

IV. LIMITED MAGNITUDE CHANNELS

We turn in this section to extend the Z channel for the non-
binary case. In this setup, every symbol can have q values,
0, 1, . . . , q − 1 and we denote [q] = {0, 1, . . . , q − 1}. We
study the limited magnitude model and focus solely on the
single error setup which is carried for two cases. Namely, the
error can be asymmetric or symmetric.

In the asymmetric non-binary channel, the value of every
symbol can only decrease, and we only consider the case where
the values can decrease by one. The corresponding graph is
GA,q = (XA,q, EA,q), where XA,q = [q]n and

EA,q =

{
(x, y) : x, y ∈ [q]n, x > y,

n

∑
i=1

xi =
n

∑
i=1

yi + 1
}

.

Given some x ∈ [q]n, its ball of radius one is described by the
set BA,q,1(x) = {y ∈ [q]n : x > y, ∑

n
i=1 xi 6 ∑

n
i=1 yi + 1},

and degA,q,1(x) = wH(x) + 1. The hypergraph in this case
is H(GA,q, 1) = (XA,q,1, EA,q,1), where XA,q,1 = [q]n and
EA,q,1 = {BA,q,1(x) : x ∈ [q]n}.

According to the above definitions it is immediate to verify
that for all y ∈ BA,q,1(x), wH(y) 6 wH(x) and thus the graph
GA,q is monotone. In the next lemma we state the monotonicity
upper bound for radius one.

Lemma 3. The monotonicity upper bound of the graph GA,q for
r = 1 is given by

MB(GA,q, 1) =
qn+1

(q− 1)(n + 1)
.

The linear programming problem from (1) becomes

τ∗(H(GA,q,1)) = min
{

∑
x∈[q]n

wx : ∑
y∈BA,q,1(x)

wy > 1
}

.

However, it can be significantly simplified according to the
automorphism tools summarized in Theorem 1. For every per-
mutation σ ∈ Sn we define a permutation πσ = [q]n → [q]n
such that for all x ∈ [q]n, (πσ (x))i = xσ(i). Hence, the set
HA = {πσ : σ ∈ Sn} is a subgroup of Aut(GA,q) which
partitions [q]n into n∗ = (n+q−1

q−1 ) equivalence classes

X =

{
Xi : i = (i0, . . . , iq−1) > 0,

q−1

∑
j=0

i j = n
}

,

where Xi = {x ∈ [q]n : x−1( j) = i j, 0 6 j 6 q− 1}, and
x−1( j) = |{1 6 k 6 n : xk = j}|. We denote the set I to be
I = {i : i = (i0, . . . , iq−1) > 0, ∑

q−1
j=0 i j = n} and define an

n∗× n∗ matrix AH such that its entries are the vectors (i, j) ∈
I× I. We assign the values AH(i, i) = 1 and AH(i, j) = ik
if there exists 1 6 k 6 q − 1 such that jk = ik − 1 and
jk−1 = ik−1 + 1 and for all ` ∈ [q] \ {k, k− 1}, j` = i`. All
other values in the matrix AH are assigned with the value 0.
Thus, we can state the following theorem.

Theorem 4. The generalized sphere packing for H(GA,q,1) is
given by

τ∗(H(GA,q,1))=min
{

∑
i∈I
|Xi|·wi : AT

H ·w>1, w=(wi)i∈I∈Rn∗
+

}
.

We finish this section by showing an improvement upon the
suboptimal monotonicity upper bound from Lemma 3. In the
fractional transversal notation of Theorem 4, if one applied
the monotonicity upper bound, then the fractional transversal
assignment would be wi = 1/(n− i0 + 1) for i ∈ I. However,
under this assignment almost all of the constraints hold with
strict inequality. We show that it is possible to reduce the
weights in this assignment without violating the constraints.

Theorem 5. The vector w = (wi)i∈I given by

wi =
1

n− i0 + 1 + i1−1
2(n−i0)

,

if i0 6= n and otherwise wi = 1 is a fractional transversal for
τ∗(H(GA,q,1)) as stated in Theorem 4.

Table I summarizes the upper bounds results we derived in
this section for q = 3. The first column is the monotonicity
upper bound. The second column is the improvement in Theo-
rem 5 over the monotonicity upper bound. The last column
is the value of the generalized sphere packing bound from
Theorem 4, which we solved numerically.

TABLE I
ASYMMETRIC ERRORS: UPPER BOUNDS COMPARISON FOR q = 3

n MB Theorem 5 GSPB
5 60 60 55
6 156 154 144
7 410 402 381
8 1093 1071 1021
9 2952 2888 2770

10 8052 7877 7591

We omit the details and results of the symmetric channel
due to the lack of space.

V. THE DELETION CHANNEL

In this section we shift our attention to the deletion channel,
which was the original usage of the generalized sphere packing
bound in [8]. We will only focus on the single deletion case and
our main result will be an explicit expression of a fractional
transversal which improves upon the one from [8].

We first introduce the graph for the deletion channel. How-
ever, note that this graph is different than the ones studied so
far. Specifically, a length n vector which suffers a single dele-
tion will result with a vector of length n− 1. To accommodate
this structure, the vertices in the graph are defined to be both
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vectors of length n and n− 1, so the graph is GD = (XD , ED),
where XD = {0, 1}n ∪ {0, 1}n−1 and

ED = {(x, y) ∈ {0, 1}n × {0, 1}n−1 :
y = (x1, . . . , xi , xi+2, . . . , xn) for some 1 6 i 6 n}.

For any x ∈ {0, 1}n, its radius one ball is the set
BD,1(x) = {y ∈ {0, 1}n−1 : (x, y) ∈ ED}, and for
x ∈ {0, 1}n−1, BD,1(x) = ∅. However, since the length-n
vectors do not participate in the balls we can eliminate them
in the hypergraph construction. Thus the hypergraph here is
H(GD , 1) = (XD,1, ED,1), where XD,1 = {0, 1}n−1 and
ED,1 = {BD,1(x) : x ∈ {0, 1}n}. The generalized sphere
packing bound in this setup becomes

τ∗(H(GD , 1))=min
{

∑
z∈{0,1}n−1

wz : ∑
y∈BD,1(x)

wy > 1, ∀x ∈ {0, 1}n
}

.

(7)
For a vector x ∈ {0, 1}n, we denote by ρ(x) the number of

runs in x. For example, if x = 001010010, then ρ(x) = 7. It
is easily verified that for x ∈ {0, 1}n, degD,1(x) = ρ(x), [8].
It is also known that the number of length-n vectors with 1 6
ρ 6 n runs is 2(n−1

ρ−1).
In the structure of GD, it is not possible to indicate whether

the graph GD satisfies the monotonicity property. However,
there is still a similar property to the monotonicity one.
Namely, for every y ∈ BD,1(x), where x ∈ {0, 1}n, ρ(y) 6
ρ(x) = degD,1(x). This property was established in [8] and
thus a choice of a fractional transversal (wx)x∈{0,1}n−1 , was
given by wx = 1/ρ(x). The corresponding upper bound, which
we call here the monotonicity upper bound, was calculated
in [8] to be 2n−2

n−1 .
It is possible to verify that for the last fractional transversal

many of the constraints in the linear programming in (7) hold
with strong inequality, which implies that a better one could
be found. This will be the focus in the rest of this section.

For a vector x, let µ(x) be the number of middle runs (i.e.,
not on the edges) of length 1 in x. We call these runs middle-1-
runs. For example, for x = 001010010, µ(x) = 4. First notice
that if ρ(x) > 2 then 0 6 µ(x) 6 ρ(x) − 2. Let Nn(ρ,µ)
denote the number of vectors of length n with ρ runs and µ
middle-1-runs. For ρ = 1 and µ = 0, we have Nn(1, 0) = 2.
For 2 6 ρ 6 n and 0 6 µ 6 ρ− 2, the value of Nn(ρ,µ) is
stated in the next lemma. For all other values of ρ and µ the
value of Nn(ρ,µ) is zero.

Lemma 6. For 2 6 ρ 6 n and 0 6 µ 6 ρ− 2,

Nn(ρ,µ) = 2
(
ρ− 2
µ

)(
n− ρ+ 1
ρ−µ − 1

)
.

Next, the main result in this section is proved.

Theorem 7. The vector w = (wx)x∈{0,1}n−1 defined by

wx =

{
1

ρ(x) if µ(x) 6 1
1

ρ(x)

(
1− µ(x)

ρ(x)2

)
otherwise

is a fractional transversal.
Proof: Let x be a length-n binary vector with ρ runs and

µ middle-1-runs. We need to show that ∑y∈BD,1(x) wy > 1. It
can be verified that this claim holds for ρ = 1, 2, 3 or µ = 0, 1
and thus we assume for the rest of the proof that ρ > 4 and
µ > 2. Note that for a fixed ρ, wx is decreasing when µ
increases.

If a vector y ∈ BD,1(x) is received by deleting a middle-
1-run bit then ρ(y) = ρ − 2 and µ − 3 6 µ(y) 6 µ − 1.
Otherwise, ρ(y) = ρ and µ(y) 6 µ+ 1 or ρ(y) = ρ− 1 and
µ(y) 6 µ, however, the worst case in terms of the value of
wy is achieved for ρ(y) = ρ and µ(y) = µ + 1. Therefore,

∑
y∈BD,1(x)

wy >
µ

ρ− 2

(
1− µ − 1

(ρ− 2)2

)
+

(ρ−µ)

ρ

(
1− µ + 1

ρ2

)
= 1 +

2µ
ρ(ρ− 2)

− µ(µ − 1)
(ρ− 2)3 −

µ + 1
ρ2 +

µ(µ + 1)
ρ3 ,

and thus it is enough to show that for 4 6 ρ, 2 6 µ 6 ρ− 2,
2µ

ρ(ρ− 2)
− µ(µ − 1)

(ρ− 2)3 −
µ + 1
ρ2 +

µ(µ + 1)
ρ3 > 0,

or
2

ρ(ρ− 2)
− 1
ρ2 >

µ − 1
(ρ− 2)3 +

1
µρ2 −

µ + 1
ρ3 .

The function f (µ) = µ−1
(ρ−2)3 + 1

µρ2 − µ+1
ρ3 in the range 2 6

µ 6 ρ− 2 is maximized either when µ = 2 or µ = ρ− 2 and
thus we need to show that

2
ρ(ρ− 2)

− 1
ρ2 >

1
(ρ− 2)3 +

1
2ρ2 −

3
ρ3 ,

and
2

ρ(ρ− 2)
− 1

ρ2 >
ρ− 3

(ρ− 2)3 +
1

(ρ− 2)ρ2 −
ρ− 1
ρ3 ,

which holds for all ρ > 4.
For a vector x with ρ runs and µ middle-1-runs, we denote

its weight by w(ρ,µ). From Lemma 6 and Theorem 7 we
conclude with the following upper bound on τ∗(H(GD , 1)).

Theorem 8. The value τ∗(H(GD , 1)) satisfies

τ∗(H(GD , 1)) 6 2 +
n−1

∑
ρ=2

ρ−2

∑
µ=0

Nn−1(ρ,µ)w(ρ,µ).

Table II summarizes the results in this section. MB cor-
responds to the equivalent of the monotonicity upper bound
from [8]. The second column is our upper bound from
Theorem 8. The column titled GSPB [8] is the exact value
of τ∗(H(GD , 1)) from (7), which this linear programming
problem was numerically solved in [8] for n 6 14. Since
this linear programming has a large number of constraints and
variables it is numerically hard to solve it for larger values of n.
The last column LB corresponds to the lower bound, which is
the best known construction of single-deletion codes from [9].

TABLE II
DELETION CHANNEL COMPARISON

n MB [8] Theorem 8 GSPB [8] LB [9]
5 7 7 6 6
6 12 12 10 10
7 21 20 17 16
8 36 35 30 30
9 63 61 53 52
10 113 109 96 94
11 204 197 175 172
12 372 358 321 316
13 682 657 593 586
14 1260 1212 1104 1096
15 2340 2251 ? 2048
16 4368 4202 ? 3856
17 8191 7882 ? 7286
18 15420 14845 ? 13798
19 29127 28059 ? 26216
20 55188 53202 ? 49940
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VI. PROJECTIVE SPACES

In this section, we explain an example where there is no
monotonocity property, yet we benefit from the graph automor-
phisms and we simplify the linear programming again. Koetter
and Kschischang [7] modeled codes as subsets of projective
space Fn

q , the set of linear subspaces of Fn
q , or of Grassmann

space G(n, k), the subset of linear subspaces of Fn
q having

dimension k. Subsets of Fn
q are called projective codes and

similarly to previous sections, it is desired to select elements
with large distance from each other.

Let us first introduce the graph GP = (XP, EP) for projective
codes, where XP is the set of all linear subspaces in Fn

q and

EP ={{x, y} : x⊂ y or y⊂x, and |dim(x)− dim(y)| = 1},

and using the path distance dP(x, y) defined on the graph GP
we define

BP,r(x) = {y ∈ XP : dP(x, y) 6 r}.

The corresponding hypergraph is H(GP, r) = (XP,r, EP,r),
such that XP,r = XP and EP,r = {BP,r(x) : x ∈ XP}. The
generalized sphere packing bound becomes

τ∗(H(GP, r))=min
{

∑
x∈XP

w(x) :∀x ∈XP, ∑
y∈BP,r(x)

wy>1, wx>0
}

.

Assume x1 and x2 are elements in XP of the same dimension
k. There exists an injective linear transform T : Fn

q → Fn
q

mapping the basis of x1 into a basis for x2. Note that x ⊆ y if
and only if T (x)⊆T (y). Hence, all such linear transforms are
automorphisms on GP, which means for any x1, x2 ∈ XP of
the same dimensions, there exists an automorphism mapping
between them. Therefore, they lie in a same equivalence class.
So we assign the same transversal weight to all the subspaces
with the same dimension. We also need to find the size and
the distribution of elements in BP,r(x). The general formula is
given in [4] but we only study the case r = 1. Given x with
dimension k in XP, there are [ k

k−1]2 = 2k − 1 subspaces of
dimension k− 1 in BP,1(x), where[

n
m

]
2
=

(2n − 1)(2n−1 − 1) · · · (2n−m+1)

(2m − 1)(2m−1 − 1) · · · (21 − 1)

is the number of subspaces of dimension m in a space of
dimension n. There are also 2n−2k

2k = 2n−k − 1 subspaces of
dimension k+ 1 in BP,1(x) that include x. Therefore, there are
(2k − 1) + (2n−k − 1) + 1 elements in BP,1(x). So,

τ∗(H(GP, r)) = min
{ n

∑
k=0

wk

[
n
k

]
2

: ∀ 0 6 k 6 n (8)

wk + (2k − 1)wk−1 + (2n−k − 1)wk+1 > 1, wk > 0
}

.

It is shown that there exist automorphisms which map a fixed
subspace of dimension k to a fixed subspace of dimension n− k
(see [3].) So, subspaces of dimension k and n− k are also in
the same equivalence classes and we assign the same weights
to them. Also note that [nk]2 = [ n

n−k]2. Hence we benefit from
a very nice symmetry and we set wk = wn−k to halve both
the number of constraints and the parameters in the linear
programming. The optimal transversal weights we found for
n 6 11 are listed in Table III.

It is interesting to see that wb n
2 c = 0 for all n > 2, which is

no surprising since [ n
b n

2 c
]
2

is the largest coefficient in the cost

TABLE III
PROJECTIVE CODES: UPPER BOUNDS AND WEIGHTS FOR r = 1

n w∗0 , w∗1 , · · · , w∗b n
2 c

GSPB [1]

2 1, 0 1 -
3 1, 0 2 -
4 0.83, 0.17, 0 6 6
5 0.67, 0.34, 0 22 20
6 0, 0.30, 0.07, 0 132 124
7 0, 0.29, 0.15, 0 834 776
8 1, 0, 0.14, 0.03, 0 9460 9268
9 1, 0, 0.13, 0.07, 0 116656 107419

10 1, 0, 0, 0.066, 0.016, 0 2566390 -
11 1, 0, 0, 0.065, 0.032, 0 62462160 -

function. This leads us to a greedy approach of starting from
the middle, which has the highest impact on cost function;
minimizing it, i.e. wb n

2 c = 0; and then moving toward the tails
where we pick the least possible value to satisfy the constraints.
We call it the greedy weight assignment, which is expressed
as

w∗[ n
2 ]
= 0, and for all k: 0 6 k < bn

2
c,

w∗k = max{
1− w∗k+1 − (2n−k−1 − 1)w∗k+2

2k+1 − 1
, 0}, (9)

w∗k = w∗n−k, and if w∗0 = w∗1 = 0, then w∗0 = 1.

It is clear that the greedy output has the transversal property
and lies in the feasible set. In fact, w∗ for k < b n

2 c is given
by

w∗k =


1

2k+1−1
if k ≡ bn/2c − 1 mod 4

2
2k+2−1

if k ≡ bn/2c − 2 mod 4
0 otherwise,

with the only exception of

w∗k =


1

2(2k+1−1)
if k = n

2 − 1
2k+3−3

(2k+1−1)(2k+2−2)
if k = n

2 − 2

for n even. The following theorem also shows the optimality
of the greedy assignment in our scheme (See [5] for the proof.)

Theorem 9. Let GP be the associated graph with projective code
when Fn

q is the space and w∗ be as defined in (9), then

τ∗(H(GP, r)) =
n

∑
k=0

w∗k

[
n
k

]
2
.
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