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Abstract—Motivated by the rank modulation scheme, a recent
work by Sala and Dolecek explored the study of constraint codes
for permutations. The constraint studied by them is inherited by
the inter-cell interference phenomenon in flash memories, where
high-level cells can inadvertently increase the level of low-level
cells. In this paper, the model studied by Sala and Dolecek is
extended into two constraints. A permutation o € S, satisfies
the two-neighbor k-constraint if for all 2 < ¢ < n — 1 either
lo(i = 1) —o(@)] < k or |o(i) —o(i + 1)] < k, and it satisfies
the asymmetric two-neighbor k-constraint if for all 2 <i <n —1,
either (i —1)—o(i) < kor o(i+1)—o (i) < k. We show that the
capacity of the first constraint is (1+¢)/2 in case that k = O(n°)
and the capacity of the second constraint is 1 regardless to the
value of k. We also extend our results and study the capacity of
these two constraints combined with error-correction codes in the
Kendall’s 7 metric.

I. INTRODUCTION

Flash memories are, by far, the most important type of non-
volatile memory (NVM) in use today. Flash devices are em-
ployed widely in mobile, embedded, and mass-storage appli-
cations, and the growth in this sector continues at a staggering
pace. At the high level, flash memories are comprised of blocks
of cells. These cells can have binary values, i.e. they store
a single bit, or can have multiple levels and thus can store
multiple bits in a cell.

One of the main challenges in flash memories is to exactly
program each cell to its designated level. Furthermore, flash
memories suffer from the cell leakage problem, by which
a charge may leak from the cells and thus cause reading
errors [2]. In order to overcome these difficulties, the novel
framework of rank modulation codes was introduced in [4].
Under this setup, the information is represented by permuta-
tions which are derived by the relative charge levels of the
cells, rather than by their absolute levels.

Another conspicuous property of flash memories, resulting
from its rapid growth density, is the appearance of inter-cell
interference (ICI). The level of a cell, called a victim cell might
increase, if its neighbor cells are programmed to significantly
higher levels [6]. The ICI is caused by the parasitic capacitance
between neighboring cells, and in particular, multilevel cell
programming is severely influenced by this effect.

Motivated by the rank modulation scheme and the ICI phe-
nomenon, a recent research by Sala and Dolecek [10] proposed
the study of constrained codes for permutations. Under this
setup, the constraint is invoked over the permutation’s symbols.
In the model studied in [10], the authors explored the constraint
in which the levels difference between adjacent cells is upper
bounded. This constraint prevents the scenario in which a high-
level cell affects its low-level neighbor cell. Namely, let S,, be
the set of all permutations of length n, then it was said that a
permutation o € S, satisfies the single-neighbor k-constraint
if |o; — 0411] < k for all 1 < 4 < n — 1. For example,
the permutation o = [3,1, 2,4, 5] satisfies the single-neighbor
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2-constraint but not the single-neighbor 1-constraint. For any
positive integers k and n, if U, j is the set of permutations
that meet the single-neighbor k-constraint, then the capacity of
this constraint is defined as C1(€) = lim,,_, oo %, where
k = [n®]. The main result from [10] states that for 0 < e <1,
C4(e) = e. All logarithms in this work are taken with base 2.

In this work, the single-neighbor constraint is naturally
extended for two neighbors as it better captures the ICI
phenomenon. This extension is applied both symmetrically and
asymmetrically. In the symmetric version, as proposed in [9],
a permutation satisfies the constraint if the difference between
the level of a cell and the level of one of its neighbors is
bounded by some prescribed value k. In the asymmetric ver-
sion, we will constrain the level difference only for sequences
of the form high-low-high. This constraint is motivated by the
fact that the ICI in flash memories mainly affects sequences of
the form high-low-high and not the other ones. Thus, as in the
single-neighbor constraint, we similarly define the capacity of
these two constraints and show that in the symmetric constraint
the capacity is (1 + €)/2 and in the asymmetric constraint the
capacity equals 1 regardless to the constraint value e.

The constraints studied in this paper as well as in [10] are
effective in reducing the errors caused by the ICI. However,
random errors may still happen. While there are several metrics
under which error-correcting codes for permutations were
studied, we choose to focus on the Kendall’s 7 metric due to its
high applicability to the error behavior in the rank modulation
scheme [5]. Hence, we will study codes with minimum distance
according to the Kendall’s 7 distance that yet consist of only
permutations that satisfy the constraints studied in the paper.

The rest of the paper is organized as follows. In Section II,
we introduce the notations and formally define the constraints
studied in the paper. Section III studies the capacity of the
symmetric constraint and Section IV studies the capacity of
the asymmetric constraint. In Section V, we extend our results
and study the capacity of these two constraints combined with
error-correction codes in the Kendall’s 7 metric. Due to the
lack of space, some of the proofs in the paper are omitted.

II. DEFINITIONS AND NOTATIONS

In this section we formally define the constraints studied in
the paper and introduce the notations and tools we will use
to compute their capacity. The set of n elements {1,2,...,n}
will be denoted by [n]. For two integers a,b, a < b, [a,b] is
the set of b — a + 1 elements [a,a + 1,a + 2,...,b]. Let S,
be the set of all permutations on [n], and let S([a, b]) be the
set of all permutations on [a, b]. We denote a permutation o of
length n by o = [0(1),0(2),...,0(n)].

Remark 1. We use permutations of length n in order to
represent the rankings of n flash memory cells in the rank
modulation scheme. Note that there are two alternatives to
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represent the cells ranking by a permutation. The first one
is the method we use in this paper where o(i) corresponds
to the ranking of the i-th cell. In the second approach o(i)
is the index of the cell with the i-th rank. While these two
representations are dual to each other, we chose the first one
for the convenience of describing the constraints in our work.

Definition 1. Let n and k be positive integers such that k < n.
A permutation o € S, is said to satisfy the two-neighbor k-
constraint if for all i, 2 < i < n—1, either |o(i—1)—0(i)| < k
or lo(i) —o(i + 1)| < k. We denote by A, ), the set of all
permutations in S, satisfying the two-neighbor k-constraint. A
two-neighbor k-constrained code is a subset of Ay, .. Finally,
for 0 < e <1, the capacity of the two-neighbor k-constraint,
where k = [n€], is defined as

C(e) = limsup M.
nooo  logmn!

For example, the permutation o = [4,7,5, 3,1, 2, 6] satisfies
the two-neighbor 2-constraint but not the two-neighbor 1-
constraint. Clearly, if £k = n — 1 then A, ; = S,. Note that
the two-neighbor constraint does not distinguish between high-
low-high and low-high-low patterns and thus eliminates them
both. A weaker constraint which may fit better to the inter-cell

interference problem is defined next.

Definition 2. Ler n and k be positive integers such that
k < n. A permutation o € S, is said to satisfy the asym-
metric two-neighbor k-constraint if for all i, 2 <i<n—1,
either o(i—1)—o0(i) <k or o(i + 1) — o(i) < k
The set of all permutations satisfying the asymmetric two-
neighbor k-constraint is denoted by B, . An asymmetric
two-neighbor k-constrained code is a subset of B, ) and
the constraint’s capaci?y, for 0 < € < 1, is defined as
log [Bn k|

C(e) = limsup,,_, ., “logni» where k= [nf].

For example, the permutation [5,3,1,6,4,2] satisfies the
asymmetric two-neighbor 2-constraint but not the asymmetric
two-neighbor 1-constraint. Note that every permutation which
satisfies the two-neighbor k-constraint satisfies the asymmetric
two-neighbor k-constraint as well and thus for any 0 < e < 1,

C(e) < Cle).

Remark 2. We use in the capacity definitions the supremum
limit versions since the limits do not necessarily exist. However,
we shall later see that these limits indeed exist.

In the construction of two-neighbor k-constrained codes we
will use some of the tools from multi-permutations, which
are the natural generalization of permutations. A balanced
multi-set My, = {1™,2™,...,0™} is a collection of the
numbers in [¢], each appears m times. The set of all multi-
permutations over My ., is denoted by F; ,,. This definition
can be extended for multi-sets which are not balanced, how-
ever we will not need this generalization for our purposes.
For a multi-permutation ¢ € P ,,, we distinguish between
appearances of the same number in o according to their
positions in o. By abuse of notation, we sometimes write for
i € [¢,r € [m], 0(j) = i, and j = o~ '(i,) to indicate
that the r-th appearance of ¢ is in the j-th position of o. For
example, if M3 o = {1%,2%,3%} then 0 = [1,3,1,2,3,2] is a
multi-permutation in S3 5, and o(3) = 1, 3 = 0~ 1(12).

III. THE TWO-NEIGHBOR CONSTRAINT

In this section we study the two-neighbor constraint and
in particular find its capacity. This will be done first by
a construction of two-neighbor k-constrained codes which
provides a lower bound on the capacity. The construction is
based upon assigning permutations into a special family of
multi-permutations. Then, we will show how to bound the size
of the set A,, ;, which will result with an upper bound on the
capacity that will coincide with the lower bound.

For a multi-permutation p € Py, and permutations

Y1sY2s---,7e, such that v, € S([(¢ — 1)m + 1,im]) for
i € [f], we define the assignment of the permutations
Y1,72, - - - » e in the multi-permutation p to be the permutation
a = p(v1,72,---,7) € Sem as follows. For all 1 < j < n,

if p(j) = i, then «(j) = ~i(r). For example, let p =
[1,2,1,3,2,3] € P32 and let v1 = [2,1], 72 = [3,4] and
~v3 = [6,5]. Then p(y1,72,73) = [2,3,1,6,4, 5].

Lemma 1. Let pi,p2 € Py and let vi,72,...,7,
01,02, ...,00 where v;,6; € S([(i — 1)m + 1,im], for i € [£].
If o = pi(v1,725---,7e) = p2(01,02,...,0¢), then p1 = po
and ~y; = 0;, for i € [£].

For an even integer m, the set Dy ,, C P, ,, is defined as
follows. A multi-permutation p € Py ,,, belongs to Dy ,, if for
every j, 1 < j <¢m/2, p(2j — 1) = p(2j). For example, the
multi-permutation p = [1,1,2,2,2,2,3,3,1, 1,3, 3] belongs to
D3 4 since p(1) = p(2), p(3) = p(4), and so on. The size of
Dy, is equal to the size of P, 2. In the next construction
we show how to construct two-neighbor constrained codes.

Construction 1. Let n = {(k + 1), where k is an odd
positive integer and { is a positive integer. Let C,%" C S,
be the code consists of all the permutations o € S, of
the form o = p(v1,72,...,7%), where p € Dyjpi1 and
v € S0 = 1)(k+ 1)+ 1,i(k + 1)]) for i € [{]. That is,

p € Dy ry1, and for all i € [{], }

e = {0, LS i P

The correctness of Construction 1 as well as the code
cardinality are proved in the next lemma.

Lemma 2. Let n, k, ¢ be as specified in Construction 1. Then,
the code C%" is a two-neighbor k-constrained code and its

cardinality is oo (%)'(k‘ PN

| nk | = (M)IZ

7 )!

Proof. Let o € C";". Then there exist p € Dyy1, and
Y15Y2y - - -, Yo, Where v; € S([(i—1)(k+1)+1,4(k+1)]), for all
i € [¢], such that o = p(y1,72,...,7). Let 2 < j <n—1 be
an odd integer and assume that p(j) = i, for some i € [¢] and
r € [k + 1]. By the definition of Dy 1, it follows that p(j +
1) = iy41. Hence, o(j) = vi(r) € [((—1)(k+1)+1,i(k+1)]
and similarly o (j+1) = v, (r+1) € [(i—1)(k+1)+1,i(k+1)].
It follows that |0(j) — o(j + 1)| < k. The case of j even is
handled the same with respect to the symbol in position j — 1.
Thus, o satisfies the two-neighbor k-constraint.

For the computation of the cardinality of C,”", note that
by Lemma 1 it follows that every choice of p € Dy 41 and
Y15sY2s - - -5 Ye, Where y; € S([(i — 1)(k+ 1) + 1,i(k + 1)]),
for i € [{], generates a different codeword of the form
2(71,792, - - -, ve). Therefore,
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Dk + 1)1
R
==)!

Even though Construction 1 provides two-neighbor con-
strained codes only to the case where & is odd, it can be easily
modified for the case that k is even as well. In any event, we
will not need this modification in order to calculate a lower
bound on the capacity, which is stated in the next theorem.

Theorem 1. For all 0 < e <1, C(e) > %

In order to derive an upper bound on the capacity C(e) we
show an upper bound on the size of A,, .

Lemma 3. For all positive integers n, k such that k < n,
|A",k| < 4nilk%n%+1.

Proof. Let ¢ : Ay, — Z™ be the following mapping. For
a permutation 0 € A, i, (o) = x = (#1,%2,...,%y,) €
Z", where 1 = o(1), and for each i, 2 < ¢ < n, ; =
o(i) — o(i — 1). Clearly, v is an injection and therefore, the
size of the set A, is equal to the size of the image of 1),
Y(Ank) = {¢(o) o € A, k). We will show an upper
bound on the size of ¥(A,, ).

Let x = (o) for some o € A, . For any position j, 2 <

j <n-—1,either |o(j)—o(j—1)| < kor|o(j+1)—0a(j)| < k.
Therefore, at least { J of the n — 1 elements zs, x3,..., T,
are in the range [— k k] \ {0}. Let I C [2,n] be a set with

at least | 251 | elements and let D; be the set of all vectors

2
x € (A, ) for which z; € [k, k] \ {0}, for every ¢ € I and

xj € [-n,n]\ [—k, k], for every j € [2,n]\ I. Then,
[W(An k)| < > Dy (1)

IC[2n), 11> 25 |

For each ¢ € I there are 2k choices for x; and for each
j € [2,n]\ I there are at most 2(n — k) < 2n choices for z;.
Finally, there are n choices for x;. Therefore,

- an) 2] = gntp L= Ll 4

\D;| < n-(2k)L" 2

Since the number of choices for I is less than 2771,
according to (1), the following upper bound on the cardinality
of A, and ¥ (A, i) is derived

2141

Aol = [(An )] < 207020 kLT Il
<4rlpzpatl

As a result of the last lemma we derive the following.

Theorem 2. For all 0 <e <1, C(e) <

The following Corollary, which is an immediate result of
Theorems 1 and 2, summarizes the section’s discussion.

1+e
5 -

Corollary 1. Forall 0 <e <1, C(e) = 1J2re.

IV. THE ASYMMETRIC TWO-NEIGHBOR CONSTRAINT

In this section we find the capacity of the asymmetric two-
neighbor~constraint. Our main result states that for all 0 <
e < 1, C(e) = 1. Since the capacity is at most 1, and the
capacity is nondecreasing when ¢ increases, we will need to
show that C'(0) = 1. This will be done by a construction of
an asymmetric two-neighbor 1-constrained code that confirms
this capacity result.

For a set I, let 17", respectively I, denote the ordering
of all elements in I according to their increasing, respectively
decreasing, order. For the construction of an asymmetric two-
nelghbor 1-constrained code we will need the code CS,T,
where 7’ is even, from Construction 1. Recall that a permuta-
tion € C./7" is of the form

T =p(1,725 e
where p(2i — 1) = p(2i) and v; € S([2i — 1 21}) for all
1<i < L In other words, for every j, 1 < j < L., there
exists 1 <4 < 5  such that {m(2j — 1), 7(2j)} = {22— 1721}.

Construction 2. Let r be an integer, 1 < r < % If r is even, let
the code C,. C Sy, be defined as follows. A permutation o € S,
belongs to C, if there exists a partition of the set [r —1,n] into
r nonempty sets I, I, ..., I., and a permutation w € C.V'y |
such that '

o=[I{, I*7(1),7(2),15 1% . .., (r — 3),m(r — 2), 17 ,, 1>

For an odd r, let the code C,. C S, defined in a similar
way. A permutation o € S, belongs to C, if there exists a

partition of the set [r,n] into v nonempty sets I, I, ..., I,
and a permutation 7 € C;"Y' | such that
o= [11/712\7W(1)3ﬂ(2)713/(7[4>3 s 77T(T - 2)371-(7‘ - 1)717/(]

Finally, let C2%Y™ C S,, be thLe /c?de

Uc

Example 1. For n = 14 and r = 5, let I, = {5,8,10},
I, = {6,12}, Iy = {7,15}, I, = {9,13}, Is = {11,14}
be a partition of [5,14] into 5 nonempty sets and let m =
[4,3,1,2]. Note, that # = p(y1,72), where p = [2,2,1,1],
m = [1,2] € S([1,2]), and v2 = [4,3] € S([3,4]), hence,
m is a codeword in Cif’lm. The permutation o € Cs of
the form o = [I{,L* w(1),n(2),I5 , 1,*, 7(3),7(4),1] is
o = 1[5,8,10,12,6,4,3,7,15,13,9,1,2,11, 14]. Note, that o
can also be obtained from other partitions such as I, =
{5,8,10,12}, I, = {6}, and I; = I, for all 3 < i < 5.

asym __
Cr

A position 7, 2 < ¢ < n — 1, is called a valley in a
permutation o € S,, if 0(i — 1) > (i) and 0(i) < o(i + 1).
For example, in the permutation o = [4,7,5,6,1,2,3], the
third and fifth positions are valleys. The next lemma will be
used in proving the correctness of the construction, which will
be proved next.

Lemma 4. Let m be an integer, 0 < m < "T_Q. Then, every

permutation o € Copy1 U Copqo has exactly m valleys.

Lemma 5. For all n > 1, the code CZ*Y™ is an asymmetric
two-neighbor 1-constrained code.

Proof. Let o € C2*¥™ and let m be the number of valleys in .
By Lemma 4 it follows that o € Coy,41 U Coppq2. According
to Construction 2, it follows that there exists a permutation
7 € Csp'y such that the valleys of o are the positions i where
o(1) = m(j), for some 1 < j < 2m, and «(j) is odd. It
follows that either o(i —1) = o(i)+1oro(i+ 1) = o(i) + 1.
Then the valleys in o do not violate the asymmetric two-
neighbor 1-constraint and therefore o satisfies the asymmetric

two-neighbor 1-constraint. O
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Next, we will analyze a lower bound on the cardinalities
of the codes from Construction 2. First, we use the following
observation.

Lemma 6. For all n > 1, let 0 € C2°Y"™ and let m be the
number of valleys in o. Then there exist at most 2™+ different
ways to obtain o as described in Construction 2.

For two positive integers ¢, r, where r < ¢, the number of
partitions of /¢ elements into r nonempty sets is denoted by
S(¢,r) and is known as the Stirling number of the second
kind.

Lemma 7. For all n > 1, the cardinality of the code C3*¥™

satisfies

L)

ds(o-2 5 )55

r=
Proof. For every m, 0 < m < "22, we compute a lower
bound on the size of Ca;y,41UCopio. There are r!S(n—2m,r)
choices for the partition Iy, I5,...,I., where » = 2m + 1 or
r = 2m+ 2, and there are m!- 2™ choices for the permutation

m € Copm,1. The expression

N3

casrm|

[Cm4+1)1S(n—2m,2m+1)+ (2m+2)!S(n—2m, 2m+2)m!2™

counts codewords in Coy,q1 U Coppto and by Lemma 6 each
codeword in Ca,, 41 U Capyo is counted at most 2F! times.
Hence, the size of Coyyq1 U Copqo is at least

|
[(2m+ 1)IS(n — 2m, 2m + 1) + (2m + 2)1S(n — 2m, 2m + 2)}%

By Lemma 4 it follows that the sets Coyyq1 U Coppto and
Comr41 U Comr g are disjoint if m’ # m, and therefore

|Ca8”m|>z r'S(n—Q{ 1J7T‘> VglJ!.

Finally, the next theorem, which is a direct result of
Lemma 7 and a lower bound on the Stirling numbers of the
second kind, highlights the result of this section.

Theorem 3. Forall 0 <e <1, é(e) =

O

V. THE CAPACITY OF ERROR-CORRECTING CONSTRAINED
CODES

The two-neighbor constraint and the asymmetric two-
neighbor constraint were proposed to combat errors that are
caused by the inter-cell interference in flash memory cells.
However, constrained codes should also be restricted to have
error-correction capabilities, which is the topic of this section.
A similar problem for the one-neighbor constraint was studied
in [9].

Given a permutation o = [0(1),0(2),...,0(n)] € S,, an
adjacent transposition is an exchange of two adjacent elements
o(i),0(i+1), in o, for some 1 < i < n— 1. The result of such
an adjacent transposition is the permutation [o(1),...,0(i —
1),0(i+1),0(i),0(i4+2),...,0(n)]. The Kendall’s T distance
between two permutations o, 7w € S,,, denoted by dx (o, 7), is
the minimum number of adjacent transpositions required to
obtain the permutation 7 from the permutation o.

For two permutations o,m € S,, the inversion distance,
denoted by dj(o,7), between o and 7 is the Kendall’s
distance between their inverses, i.e.,

di(o,m) =dg (o™, 7 1),
Even though this distance was studied before, see e.g. [3], we
are not aware of any formal name for this metric and thus
call it here the inversion distance. In this section we study
the capacity of the constraints in this paper combined with a
requirement of a minimum inversion distance.

Remark 3. We study the inversion distance and not the
Kendall’s T one since, according to our representation of the
cells ranking in a permutation, this metric fits better with
the error behavior in flash memory cells. The motivation in
studying codes in the Kendall’s T metric originated from the
observation that cells with adjacent levels may interchange
their rankings [5]. Therefore, codes in the Kendall’s T metric
should be invoked over the inverses of the permutations. How-
ever, in order to study these codes with constrained codes, one
should take the inversion distance applied for the permutations.

Let E(n, k,d) be the maximum size of a code in A,, j with
minimum inversion distance d. For 0 < e; < land 0 < ey < 2,
let k = [n°'] and d = [n2], and define the capacity of two-
neighbor k-constrained codes with minimum inversion distance
d by
log E(n, k,d)

0(61,62) = lim logn'

n—oo

We will compute this capacity in terms of €; and e by
following some of the methods used in [1] and later in [10].
We distinguish between three cases:

1) 0<e<land0<¢ <1,

2) 1<ea<l4e,and 0<¢ <1,

3) 1461 <ea<2and 0<¢ <1.

For ¢ € S, the ball in S,
defined by

Br(n,o,r)%

of radius r centered at o is

f{?r €Sy : di(o,m) <r}.

The size of the ball B;(n, o, r) does not depend on ¢ and thus
we denote it by br(n,r). For 0 € A, j, the ball in A, , of
radius r centered at o is defined by

Br(An k.o, T)déf{w €Any + di(o,m) <7}

A code in A,, ;; with minimum inversion distance d can be
constructed by a greedy approach which leads to the following
Gilbert-Varshamov type of lower bound.

Lemma 8. For every 1 <k <n, 1 <d< ( ) the following
lower bound on E(n,k,d) holds
Enk,d) > —————.
(n7 ) ) — b[(n,d* 1)
The next theorem is a combination of results from [1], [7],
and [8].

Theorem 4. Let 1 = O(n%), where 0 < § < 2. Then there
exist constants c¢1 and co such that

c1n
ect

b[(’I’L,’I“) S{ , ’571)71

(can

0<d<1,
1<é<2.

We are now in a position to compute the capacity C(eq, €2)
for the first case.

Theorem 5. For 0 < e1,e2 <1, Ceg,€2) = % + <.

Proof. Since E(n,k,d) C A, it follows that
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log E(n, k,d) < log | A k|
logn! logn! ’
and hence from Corollary 1, C(e1,e2) < Cler) = § + <.
By Lemma 8 and Theorem 4 there exists a constant ¢ such
that log E(n, k, d) - log|A, k| loge™
logn! logn!  logn!’
Then, Cl(e1,e2) > C(er) = 1 + <, and thus,
0(61762)2%—"—%. O]

Before proceeding to the second case, let us introduce
some more tools that we will use in solving this case. Let
H,=1{1,2,...,n}". For x,y € H,, the Manhattan distance
between x and y, dps(x,y), is defined as

n

def
dur(x,y)= Z i — yil-
i=1
The next lemma was proved in [3].
Lemma 9. For every o,m € S,

1
id]\/[(O', ) <dj(o,7) < dp(o,7).

The definition of the two-neighbor k-constraint can be
trivially extended to H,. A vector x € H,, satisfies the two-
neighbor k-constraint if either |x; —x;—1| < k or |z;41 —x;| <
k, for all 2 < i <n —1. Let A, ; be the set of all elements
of H,, that satisfy the two-neighbor k-constraint.

For a subset S C H,, and x € S, the Manhattan ball in S
of radius r centered at x is defined by

def
BM(S,X,T):{YES d]\/f(XaY) ST}
Combining the previous results along with the sphere pack-

ing upper bound and Gilbert-Varshamov lower bound provides
us with the following lemma.

Lemma 10. For every 1 <k <n, 1 <d < (3),

|-An kl
E(n,k,d) < — y =
mine a,, , {|Bu (An s %, [ 451}
and A
E(n,k,d) > i

maxxeA",k{\BM(Amk, X, 2d — 1)|} '

In order to apply the upper bound from Lemma 10, we state
in the next lemma a lower bound on the size of a Manhattan
ball in A,, ;.

Lemma 11. Let k = [n€] and r = [n’], where 0 < € <
1,0 < § < 2. Then there exists a constant ¢ such that

(ﬁ;) Jd<di<l+e<?
min {| By (An i, %, 7)|} > i\
xEAn 1 (n‘s 1+)2,1+e§6<2.

C

We are ready to prove the capacity for the second case.

Theorem 6. For 0 < e <land1l < ey <1+e€q,
3 €
C(er,e2) = 3 + 51 — €s.
Proof. Let k = [n®] and d = [n®]. By Lemma 8 and
Theorem 4 it follows that there exists a constant ¢ such that

log E(n, k,d) S log [Ank| log ¢"nle2—1n

log n! log n! log n!
Therefore,
1 € 3 €
Cler,e2) > §+§1+1—62:§+§1—62_

Similarly, by Lemmas 10 and 11 it follows that

ne2—1 n
log E(n. k) _ logldnel 198 (%)

log n! log n! logn!
and hence, 1 e
Cle1,€2) < B + 5 +1—es.
Together we get, C(e1,€3) = % +9 -2 0

Due to the lack of space we skip the details of the third case
and thus summarize with the following corollary.

Corollary 2. Let 0 <¢1 <1 and 0 < ey < 2. Then

%‘i‘%a 0S62§17
0(61,62): %"’%_62, 1<€2§1+€1,
17%, 146 <ey <20

Lastly, we report on similar results for the asymmetric
constraint. Let C'(€1, €2) be the capacity of an asymmetric two
neighbor k-constrained code with minimum inversion distance
d, where &k = [n“*] and d = [n°2]. Following the same
technique used in [1] we have

Theorem 7. Let 0 < e¢; <1 and 0 < €3 < 2. Then

~ 1 0<e <1

0(61,62): ’ =2 ="

2— €9, 1<e <2
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