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Abstract—Partial MDS (PMDS) codes are erasure codes com-
bining local (row) correction with global additional correction
of entries, while Sector-Disk (SD) codes are erasure codes that
address the mixed failure mode of current RAID systems. It
has been an open problem to construct general codes that have
the PMDS and the SD properties, and previous work has relied
on Monte-Carlo searches. In this paper, we present a general
construction that addresses the case of any number of failed disks
and in addition, two erased sectors. The construction requires a
modest field size. This result generalizes previous constructions
extending RAID 5 and RAID 6.

I. INTRODUCTION

Consider an r × n array whose entries are elements in a
finite field GF(2w) [9] (in general, we could consider a field
GF(pw), p a prime number, but for simplicity, we constrain
ourselves to binary fields). The array may correspond to a
stripe on a disk system, where elements co-located in the
same column reside on the same disk, or the elements may
correspond to disk or SSD blocks on a large storage system.
Normally, these arrays are protected using the well known
architectures known as Redundant Arrays of Independent
Disks (RAID) [5]. Recent work has explored two types of
erasure codes that extend RAID and are tailored for these
scenarios: Partial-MDS (PMDS) codes and Sector-Disk (SD)
codes [2], [3], [11], [12].

Both follow the same methodology — m entire columns
of elements are devoted to coding, and each row composes
an [n, n − m, m + 1] MDS code. In the remaining n − m
columns of the array, s more elements are also devoted to
coding. The erasure protection that they provide differentiates
PMDS and SD codes. SD codes tolerate the erasure of any m
columns of elements, plus any additional s elements in the
array. PMDS codes tolerate a broader class of erasures —
any m elements per row, plus any additional s elements.

As their name implies, SD codes address the combination of
disk and sector failures that occurs in modern disk systems.
Column failures occur when entire disks break, and sector
failures can accumulate over time, typically unnoticed until
an entire disk breaks, and the failed sector is required for
recovery. PMDS codes are maximally recoverable for codes
laid out in the manner described above [2]. Maximally recov-
erable codes have been applied to cloud storage systems where
each element resides on a different storage node [7]. The
rows of the array correspond to collections of storage nodes
that can decode together with good performance, while the
extra s elements allow the system to tolerate broader classes
of failures.

We label the codes with (m; s), and illustrate the difference
between PMDS and SD in Figure 1. The figure depicts five
failure scenarios in a 4× 5 array, encoded with a (1; 2) code,
where erased elements are shaded in gray. The left scenario
may be tolerated by both PMDS and SD codes, since each
row is an [5, 4, 2] MDS code. The second two scenarios are
also tolerated by both PMDS and SD codes, because four
erasures are co-located in the same column. The last of these
is an important case, as it is not tolerated by RAID-6, even
though RAID-6 devotes two full columns to coding. The two
right scenarios are PMDS only, as there is one erasure per
row, plus two additional erasures.

PMDS and SD PMDS only

Fig. 1. Five failure scenarios on a 4× 5 array of elements.

The challenge of the current work is to define PMDS and
SD codes for general parameters. The case of (m; 1) PMDS
codes was solved in [2]. In this paper, we address the case of
(m; 2) PMDS and SD codes.

We begin with a formal definition of the two codes.
Definition 1.1: Let C be a linear [rn, r(n− m)− s] code

over a field such that when codewords are taken row-wise
as r × n arrays, each row belongs in an [n, n − m, m + 1]
MDS code. In other words, each row can correct m erasures
independently.

1) C is an (m; s) partial-MDS (PMDS) code if, for any
(s1, s2, . . . , st) such that each sj > 1 and ∑t

j=1 sj = s,
and for any i1, i2, . . . , it such that 0 6 i1 < i2 < · · · <
it 6 r− 1, C can correct up to sj + m erasures in each
row ij, 1 6 j 6 t, of an array in C.

2) C is an (m; s) sector-disk (SD) code if, for any
l1, l2, . . . , lm such that 0 6 l1 < l2 < · · · < lm 6 n− 1,
for any (s1, s2, . . . , st) such that each sj > 1 and
∑t

j=1 sj = s, and for any i1, i2, . . . , it such that 0 6 i1 <
i2 < · · · < it 6 r − 1, C can correct up to sj + m
erasures in each row ij, 1 6 j 6 t, of an array in C
provided that locations l1, l2, . . . lm in each of the rows
ij have been erased.

In the next section we give a general construction for (m; 2)
PMDS and SD codes. Constructions of (1;2) SD codes were
given in [1] and of (2;2) codes in [3]. These constructions
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are also summarized in [11] and the construction of (3;2) SD
codes was verified for all r, n in GF(28) and for r, n 6 24
in GF(216). Hence, our results generalize those constructions.
We note that we can use an MDS code (like a RS code for
example) over the entire array. This will work for the purpose
of correcting the maximum number of erasures in the array,
but it does not guarantee the first property of PMDS or SD
codes, namely that each row belongs in an [n, n − m, m +
1] MDS code. As such, it would be much more expensive
computationally to encode and decode.

From now on, when we say PMDS or SD codes, we refer
to (m; 2) PMDS or SD codes.

II. CODE CONSTRUCTION

Consider the field GF(2w) and let α be an element in
GF(2w). The (multiplicative) order of α, denoted O(α), is
the minimum ` > 0 such that α` = 1. If α is a primitive ele-
ment [9], then O(α) = 2w− 1. To each element α ∈ GF(2w),
there is an associated (irreducible) minimal polynomial [9]
that we denote fα(x).

Let α ∈ GF(2w) and rn 6 O(α). We want to construct
an SD-code consisting of r × n arrays over GF(2w), such
that m of the columns correspond to parity (in RAID 5,
m= 1, while in RAID 6, m= 2). In addition, two extra
symbols also correspond to parity. When read row-wise, the
codewords belong in an [rn, r(n−m)− 2] code over GF(2w).
Specifically, let C(r, n, m, 2; fα(x)) be the [rn, r(n−m)− 2]
code whose (mr + 2)× rn parity-check matrix is given by

H =


H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

H1 H2 . . . Hr

 (1)

where

H0 =


1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αm−1 α2(m−1) . . . α(m−1)(n−1)

 (2)

and, for 1 6 j 6 r,

Hj=

(
1 αm α2m . . . αm(n−1)

α−(j−1)nα−(j−1)n−1α−(j−1)n−2. . . α−(j−1)n−(n−1)

)
. (3)

We will show under which conditions codes
C(r, n, m, 2; fα(x)) are PMDS or SD. Unless stated
otherwise, for simplicity, let us denote C(r, n, m, 2; fα(x))
by C(r, n, m, 2).

We start by giving some examples.
Example 2.1: Consider the finite field GF(16) and let α be

a primitive element, i.e., O(α) = 15. Then, the parity-check
matrix of C(3, 5, 1, 2) is given by

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α

 .

Similarly, the parity-check matrix of C(3, 5, 2, 2) is given
by 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 α α2 α3 α4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 α α2 α3 α4

1 α2 α4 α6 α8 1 α2 α4 α6 α8 1 α2 α4 α6 α8

1 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α


.

Let us point out that the construction of this type of
codes is valid also over the ring of polynomials modulo
Mp(x) = 1 + x + · · · + xp−1, p a prime number, as done
with the Blaum-Roth (BR) codes [4]. In that case, O(α) = p,
where αp−1 = 1+ α + · · ·+ αp−2. The construction proceeds
similarly, and we denote it C(r, n, m, 2; Mp(x)). Utilizing
the ring modulo Mp(x) allows for XOR operations at the
encoding and the decoding without look-up tables in a finite
field, which is advantageous in erasure decoding [4]. It is well
known that Mp(x) is irreducible if and only if 2 is primitive
in GF(p) [9].

Next we give a lemma that is key to proving the conditions
under which codes C(r, n, m, 2) are PMDS or SD.

Lemma 2.1: Let α ∈ GF(2w), rn 6 O(α), 1 6 ` 6 r− 1,
and, if 1 6 m 6 n − 2, let 0 6 i0 < i1 < i2 <
· · · < im 6 n − 1 and 0 6 j0 < j1 < j2 < · · · <
jm 6 n − 1. Consider the (2m + 2) × (2m + 2) matrix
M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; `) given by

1 1 . . . 1 0 0 . . . 0
αi0 αi1 . . . αim 0 0 . . . 0
α2i0 α2i1 . . . α2im 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1
0 0 . . . 0 αj0 αj1 . . . αjm

0 0 . . . 0 α2j0 α2j1 . . . α2jm

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . α(m−1)j0 α(m−1)j1 . . . α(m−1)jm

αmi0 αmi1 . . . αmim αmj0 αmj1 . . . αmjm

α−i0 α−i1 . . . α−im α−n`−j0 α−n`−j1 . . . α−n`−jm


Let

∆(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; `)
= det M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; `).

Then,

∆(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; s; `)

=

(
∏

06u<v6m

(
αiu⊕αiv

)(
αju⊕αjv

))(
α−∑m

u=0 iu⊕α−n`−∑m
u=0 ju

)
.1 (4)

Proof: For simplicity, let us denote

∆=∆(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; `).

1Here and throughout the paper the notation ⊕ denotes the addition or
summation operations.
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Consider the m× (m + 1) matrices

M =


1 1 . . . 1

αi0 αi1 . . . αim

α2i0 α2i1 . . . α2im

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im


and

M′ =


1 1 . . . 1

αj0 αj1 . . . αjm

α2j0 α2j1 . . . α2jm

...
...

. . .
...

α(m−1)j0 α(m−1)j1 . . . α(m−1)jm

 .

For each u, 0 6 u 6 m, let Mu and M′u denote the m×
m Vandermonde matrices obtained from deleting column u
from M and M′ respectively. Also, for 0 6 u, v 6 2m +
1, u 6= v, let X(u,v) be the (2m) × (2m) matrix obtained
from removing columns u and v and the last two rows from
M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; `).

If 0 6 u, v 6 m, u 6= v,

X(u,v) =

(
P 0
0 M′

)
,

where P denotes an m × (m − 1) matrix and 0 are zero
matrices. Notice that X(u,v) has rank smaller than 2m, since
the first m rows have rank smaller than m. Thus,

det
(

X(u,v)
)
= 0 for 0 6 u, v 6 m, u 6= v.

If 0 6 u 6 m and m + 1 6 v 6 2m + 1,

X(u,v) =

(
Mu 0
0 M′v−m−1

)
.

By properties of determinants,

det
(

X(u,v)
)
= (det(Mu))

(
det(M′v−m−1)

)
for 0 6 u 6 m, m + 1 6 v 6 2m + 1. Similarly,

det
(

X(u,v)
)
=
(
det(M′u−m−1)

)
(det(Mv))

for m + 1 6 u 6 2m + 1, 0 6 v 6 m, and

det
(

X(u,v)
)
= 0,

for m + 1 6 u, v 6 2m + 1, u 6= v.
Expanding the determinant ∆ from the bottom row, and

then from the next to bottom row, we obtain

∆ =

 m⊕
u=0

α−iu
m⊕

v=0
v 6=u

αmiv det
(

X(u,v)
)

⊕
(

m⊕
u=0

α−iu
2m+1⊕

v=m+1

αmjv−m−1 det
(

X(u,v)
))

⊕

 2m+1⊕
u=m+1

α−n`−ju−m−1
m⊕

v=0
v 6=u

αmiv det
(

X(u,v)
)

⊕
(

2m+1⊕
u=m+1

α−n`−ju−m−1
2m+1⊕

v=m+1

αmjv−m−1 det
(

X(u,v)
))

=

(
m⊕

u=0
α−iu

m⊕
v=0

αmjv det(Mu)det(M′v)

)

⊕
(

m⊕
u=0

α−n`−ju
m⊕

v=0
αmiv det(Mv)det(M′u)

)

=

(
m⊕

u=0
α−iu det(Mu)

)(
m⊕

u=0
αmju det(M′u)

)

⊕
(

m⊕
u=0

α−n`−ju det(M′u)

)(
m⊕

u=0
αmiu det(Mu)

)
.

(5)

Let

W0 =



1 1 . . . 1
αi0 αi1 . . . αim

α2i0 α2i1 . . . α2im

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im

αmi0 αmi1 . . . αmim



W1 =



1 1 . . . 1
αi0 αi1 . . . αim

α2i0 α2i1 . . . α2im

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im

α−i0 α−i1 . . . α−im



W ′0 =



1 1 . . . 1
αj0 αj1 . . . αjm

α2j0 α2j1 . . . α2jm

...
...

. . .
...

α(m−1)j0 α(m−1)j1 . . . α(m−1)jm

αmj0 αmj1 . . . αmjm



W ′1 =



1 1 . . . 1
αj0 αj1 . . . αjm

α2j0 α2j1 . . . α2jm

...
...

. . .
...

α(m−1)j0 α(m−1)j1 . . . α(m−1)jm

α−m`−j0 α−m`−j1 . . . α−m`−jm


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Notice that, by properties of determinants and of Vander-
monde determinants,

det(W0) =
m⊕

u=0
αmiu det(Mu) = ∏

06u<v6m
(αiu ⊕ αiv )

det(W1) =
m⊕

u=0
α−iu det(Mu) = α−∑m

u=0 iu ∏
06u<v6m

(αiu ⊕ αiv )

det(W ′0) =
m⊕

u=0
αmju det(M′u) = ∏

06u<v6m
(αju ⊕ αjv )

det(W ′1) =
m⊕

u=0
α−m`−ju det(M′u)=α−m`−∑m

u=0ju ∏
06u<v6m

(αju⊕ αjv).

So, (5) becomes

∆ =

(
det(W0) det(W ′0)
det(W1) det(W ′1)

)
=

(
∏

06u<v6m

(
αiu ⊕ αiv

) (
αju ⊕ αjv

))

·det
(

1 1
α−∑m

u=0 iu α−m`−∑m
u=0 ju

)
and (4) follows.

Lemma 2.1 is valid also over the ring of polynomials
modulo Mp(x), p prime, where rn < p. Let us illustrate
it with an example for m= 1 and m= 2.

Example 2.2: Let m= 1, then

M(i0, i1; j0, j1; r; n; `)

=


1 1 0 0
0 0 1 1

αi0 αi1 αj0 αj1

α−i0 α−i1 α−n`−j0 α−n`−j1


and

∆(i0, i1; j0, j1; r; n; s; `)

=
(

αi0 ⊕ αi1
) (

αj0 ⊕ αj1
) (

α−i0−i1 ⊕ α−n`−j0−j1
)

.

If m= 2, Lemma 2.1 gives

M(i0, i1, i2; j0, j1, j2; r; n; `)

=



1 1 1 0 0 0
αi0 αi1 αi2 0 0 0
0 0 0 1 1 1
0 0 0 αj0 αj1 αj2

α2i0 α2i1 α2i2 αj0 αj1 αj2

α−i0 α−i1 α−i2 α−n`−j0 α−n`−j1 α−n`−j2


and

∆(i0, i1, i2; j0, j1, j2; r; n; s; `)

=
(

αi0 ⊕ αi1
) (

αi0 ⊕ αi2
) (

αi1 ⊕ αi2
) (

αj0 ⊕ αj1
)

(
αj0 ⊕ αj2

)(
αj1 ⊕ αj2

)(
α−i0−i1−i2 ⊕ α−n`−j0−j1−j2

)
.

In the next section we study codes C(r, n, m, 2; fα(x)) and
C(r, n, m, 2; Mp(x)) as SD and PMDS codes.

III. CONSTRUCTION OF SD AND PMDS CODES

Let us start with our main result for SD codes.
Theorem 3.1: The codes C(r, n, m, 2; fα(x)) and
C(r, n, m, 2; Mp(x)) are SD.

Proof: Assume that m columns have been erased and
in addition we have two random erasures. Assume first that
these two random erasures occurred in the same row ` of the
stripe. The rows that are different from ` are corrected since
each one of them has m erasures, which are handled by the
horizontal code, that is, each horizontal code is given by the
parity-check matrix H0, which is the parity-check matrix of
a RS code that can correct up to m erasures [9]. Thus, we
have to solve a linear system with m + 2 unknowns. Without
loss of generality, assume that the erasures in row ` occurred
in locations i0, i1, . . . , im, im+1, where 0 6 i0 < i1 < · · · <
im < im+1 6 n. According to the parity-check matrix of
the code as given by (1), (2), and (3), there will be a unique
solution if and only if the (m + 2)× (m + 2) matrix

1 1 . . . 1 1
αi0 αi1 . . . αim αim+1

α2i0 α2i1 . . . α2im α2im+1

...
...

. . .
...

...
αmi0 αmi1 . . . αmim αmim+1

α−n`−i0 α−n`−i1 . . . α−n`−im α−n`−im+1


is invertible. By taking α−n` in the last row as a common
factor, and by multiplying each column j, 0 6 j 6 m + 1,
by αij , this matrix is transformed into a Vandermonde matrix,
which is always invertible in a field and also in the ring of
polynomials modulo Mp(x) [4].

Consider now the case in which the two random failures
occur in different rows. Specifically, assume that columns
i0, i1, . . . , im−1 were erased, where 0 6 i0 < i1 < . . . <
im−1 6 n− 1, and in addition, entries (`, t) and (`′, t′) were
erased, where t, t′ 6∈ {i0, i1, . . . , im−1} and 0 6 ` < `′ 6
r − 1. Again, using the parity-check matrix of the code as
given by (1), (2), and (3), there will be a unique solution if
and only if the (2m + 2)× (2m + 2) matrix

1 . . . 1 1 0 . . . 0 0
αi0 . . . αim−1 αt 0 . . . 0 0
α2i0 . . . α2im−1 α2t 0 . . . 0 0

...
. . .

...
...

...
. . .

...
...

α(m−1)i0 . . . α(m−1)im−1 α(m−1)t 0 . . . 0 0
0 . . . 0 0 1 . . . 1 1
0 . . . 0 0 αi0 . . . αim−1 αt′

0 . . . 0 0 α2i0 . . . α2im−1 α2t′

...
. . .

...
...

...
. . .

...
...

0 . . . 0 0 α(m−1)i0 . . . α(m−1)im−1 α(m−1)t′

αmi0 . . . αmim−1 αmt αmi0 . . . αmim−1 αmt′

α−n`−i0 . . . α−n`−im−1 α−n`−t α−n`′−i0 . . . α−n`′−im−1 α−n`′−t′


is invertible. Taking α−n` as a common factor in the last row,
we obtain the matrix

M(i0, i1, i2, . . . , im−1, t; i0, i1, i2, . . . , im−1, t′; r; n; `′ − `)
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as defined in Lemma 2.1, whose determinant, by (4), is given
by

∆(i0, i1, i2, . . . , im−1, t; i0, i1, i2, . . . , im−1, t′; r; n; `′−`)

=

(
∏

06u<v6m−1

(
αiu ⊕ αiv

)2
)

·
(

∏
06u6m−1

(
αiu ⊕ αt

) (
αiu ⊕ αt′

))
· α−∑m−1

u=0 iu
(

α−t⊕ α−n(`′−`)−t′
)

.

For simplicity, redefine `←`′ − `, hence, 1 6 ` 6 r − 1.
Each binomial

(
αiu ⊕ αiv

)
,
(
αiu ⊕ αt) and

(
αiu ⊕ αt′

)
above

is invertible, so it remains to be proven that
(

α−t⊕ α−n`−t′
)

is invertible. If it is not, n`+ t′ − t ≡ 0 (modO(α)). But

0 < n`+ t′ − t 6 n(r− 1) + t′ − t
= nr−

(
n− (t′ − t)

)
6 nr− 1 < O(α),

so, n`+ t′ − t 6≡ 0 (modO(α).
Next, let us prove a similar result for PMDS codes. In fact,

codes C(r, n, m, 2; fα(x)) and C(r, n, m, 2; Mp(x)) are not
PMDS, but we will obtain PMDS codes with a modification
that requires a larger field or ring. Let

N = (m + 1)(n−m− 1) + 1 (6)

α ∈ GF(2w) and rN 6 O(α). As in the case of SD codes,
we construct a PMDS code consisting of r × n arrays over
GF(2w), such that m of the columns correspond to parity and
in addition, two extra symbols also correspond to parity. When
read row-wise, the codewords belong in an [rn, r(n−m)− 2]
code over GF(2w). Specifically, let C ′(r, n, m, 2; fα(x)) be
the [rn, r(n−m)− 2] code whose (mr+ 2)× rn parity-check
matrix is given by H′, which is identical to H in (1), except
for the bottom two rows are defined as:(

H′1 H′2 . . . H′r
)

where, for 1 6 j 6 r,

H′j =
(

1 αm α2m . . . αm(n−1)

α−(j−1)N α−(j−1)N−1 α−(j−1)N−2. . . α−(j−1)N−(n−1)

)
.

As before, the construction is also valid over the ring of
polynomials Mp(x), p prime, in which case we denote the
codes C ′(r, n, m, 2; Mp(x)). Let us give an example.

Example 3.1: Let n= 5, m= 1 and r = 3. According to (6),
N = (2)(3) + 1= 7. Thus, we need O(α) > rN = 21. For
instance we may consider the field GF(32) and α primitive
in GF(32), i.e., O(α) = 31 > 21 (we can also handle
r = 4 in this example). Thus, the parity-check matrix of
C ′(3, 5, 1, 2; fα(x)) is given by

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α30 α29 α28 α27 α24 α23 α22 α21 α20 α17 α16 α15 α14 α13

 .

Theorem 3.2: The codes C ′(r, n, m, 2; fα(x)) and
C ′(r, n, m, 2; Mp(x)) are PMDS.

Theorem 3.2 is proven similarly to Theorem 3.1. For
reasons of space, we omit the proof here.

IV. CONCLUSION

We have described a construction for SD codes and PMDS
codes where the number of additional sectors, s equals two.
The minimal field size required by the construction for SD
codes is only the total number of sectors in the array, and in
the case of PMDS codes, at most of quadratic order in the
total number of sectors.

Further results, not described in detail due to the space limit,
are a construction for (m; s) SD codes restricted to not having
two of the s erased sectors in the same disk, and a construction
for (m; s)-like PMDS codes with extra redundancy of order
O(s log s).

As related work, let us mention a recent paper [6] that gives
constructions of (1; s) PMDS codes trying to minimize the
size of the field. In fact, (1; s) PMDS, called Maximally Re-
coverable codes in [6], satisfy also the requirements of Locally
Repairable codes [10], [13]. Additionally, the recently-defined
STAIR codes relax the failure-coverage of SD codes in order
to allow for general constructions [8].
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