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Abstract—The typical paradigm in voting theory involves n
voters and m candidates. Every voter ranks the candidates re-
sulting in a permutation of the m candidates. A key problem is
to derive the aggregate result of the voting. A popular method
for vote aggregation is based on the Condorcet criterion. The
Condorcet winner is the candidate who wins every other candi-
date by pairwise majority. However, the main disadvantage of
this approach, known as the Condorcet paradox, is that such a
winner does not necessarily exist since this criterion does not ad-
mit transitivity. This paradox is mathematically likely (if voters
assign rankings uniformly at random, then with probability ap-
proaching one with the number of candidates, there will not be
a Condorcet winner), however, in real life scenarios such as elec-
tions, it is not likely to encounter the Condorcet paradox. In this
paper we attempt to improve our intuition regarding the gap be-
tween the mathematics and reality of voting systems. We study a
special case where there is global intransitivity between all can-
didates. We introduce tools from information theory and derive
an entropy-based characterization of global intransitivity. In ad-
dition, we tighten this characterization by assuming that votes
tend to be similar; in particular they can be modeled as permu-
tations that are confined to a sphere defined by the Kendalls τ
distance.

I. INTRODUCTION

The problem of rank aggregation appears in many contexts,
such as social choice decisions, web search algorithms, and
voting theory. In the general model, there are n voters and m
candidates. For example, in the context of web search algo-
rithms, each voter can be associated with a ranking of relevant
web pages (i.e., the candidates). There are several models for
the voters to assign their rankings. For example, they can vote
to a single candidate, top k candidates, top and bottom can-
didates etc. Given the n rankings, a central and well studied
goal is to construct a final ranking which best represents the
rankings of the voters. In particular, such a final ranking will
identify a winner aggregate candidate. There are several vot-
ing rules to construct the final ranking such as the plurality,
anti-plurality, Borda, Copeland, Maximin, Dodgson, and more.
For an excellent historic overview on social choice we refer
the reader to [3] and for a nice survey [5].

In this work we solely consider the model where the ranking
of every voter is a full order of the candidates, i.e. a permu-
tation σ in Sm, the set of all m! permutations. The vector of
all rankings is denoted by Σ = (σ1, . . . , σn) ∈ (Sm)n and is
called a profile. The i-th candidate is winning the j-th candi-
date if it is ranked higher by more voters according to pairwise
comparison (for simplicity assume that ties cannot appear). A
natural approach to choose a winner, proposed in 1785 by
Marquis de Condorcet and is called the Condorcet criterion,
is to pick the candidate who is winning every other candi-
date according to this pairwise majority [1]; such a candidate

is called the Condorcet winner. However, a Condorcet win-
ner does not necessarily exist; this is known as the Condorcet
paradox. The paradox states the counter intuitive phenomena
that well defined input rankings may result in the lack of an
aggregate winner, under certain natural definitions in which
such a winner would be expected. More specifically, if the i-th
candidate is winning the j-th candidate and the j-th candidate
is winning the k-th candidate then the i-th candidate is not
necessarily winning the k-th candidate. That is, the Condorcet
criterion does not preserve transitivity. This intransitivity may
introduce a cycle of length three and similarly longer cycles
are defined. One extension of the Condorcet winner is known
as the Smith set [9]. It is said that S is a winning set if ev-
ery candidate in S is winning every candidate not in S, and
the smallest set S which satisfies this condition is called the
Smith set. As opposed to a Condorcet winner, the Smith set al-
ways exist and is unique. A Smith set of size 1 is a Condorcet
winner.

It is known that if the number of voters and candidates
is large and every voter assigns its permutation uniformly at
random from Sm (also known as the impartial culture distribu-
tion), then the probability to have a Condorcet winner (and en-
counter transitivity between the candidates) approaches zero;
see e.g. [7], [8]. However, in real life social choice scenarios
such as elections it is reported and studied that intransitivity is
not likely to happen [10]. For further reading about the Con-
dorcet paradox and its theoretical and practical analysis, we
refer the reader to Chapter 1 in [6].

Our goal in this work is to shed more light on the Condorcet
paradox. We introduce information-theoretic tools based upon
the entropy measure and the Kendall’s τ distance metric in or-
der to introduce conditions to encounter intransitivity between
the candidates. Since the tools we study in this work measure
the interaction between all the candidates, we study a special
case of intransitivity. We say that a profile Σ has global in-
transitivity if there is a cycle between all m candidates. As
we present, this definition is equivalent to requiring that the
Smith set is the set of all m candidates. Namely, it implies
global contradiction between all candidates and thus it is not
possible to deduce any partition between them for winning
candidates. In analogy to social choice and decision making,
no conclusion can be taken about the candidates.

The rest of this paper is organized as follows. In Section II
we introduce the information-theoretic tools and measures that
will help us in the study of global intransitivity in voting sys-
tems. In Section III, we study basic properties which are de-
rived from these tools. Section IV studies implications when
a global intransitivity is encountered in a voters profile. One
of our claims asserts that if a profile has global intransitivity
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then the sum of Kendall’s τ distances between the rankings
of all candidates is at least m−1

4 n2. In Section V, we show
that if the rankings of all candidates belong to a ball of radius
no greater than dm/2e, according to the Kendall’s τ distance,
then there is no global intransitivity. This bound is tight in the
sense that there is an example of global intransitivity when
the rankings belong to a ball of radius dm/2e+ 1.

II. DEFINITIONS AND BASIC PROPERTIES

Let n be the number of voters and m be the number of can-
didates. Every voter assigns a full ranking of the m candidates,
i.e., a permutation σ ∈ Sm, where Sm is the set of all m! per-
mutations of m candidates. A ranking σ ∈ Sm is denoted by
σ = (σ(1), σ(2), . . . , σ(m)), where for 1 6 i 6 m, σ(i) is
the candidate in the i-th rank. Similarly, σ−1(i) is the rank
of the i-th candidate. We denote i >σ j if σ−1(i) < σ−1(j).
A profile Σ = (σ1, . . . , σn) ∈ (Sm)n is a vector of the rank-
ings of each voter. We say that the i-th candidate is winning
the j-th candidate (or the j-th candidate is losing to the i-th
candidate), and denote it by i→Σ j if

|{` | i >σ`
j}| > |{` | j >σ`

i}| .

A profile Σ has a Condorcet winner if there exists 1 6 i 6
m such that the i-th candidate is winning every other candi-
date. A Condorcet loser is defined similarly. Note that a Con-
dorcet winner and loser do not necessarily exist. The natural
extension of the definition of a Condorcet winner is called a
Smith set [9]. We say that S ⊆ [m], where [m] = {1, . . . ,m},
is a winning set if for every i ∈ S and j ∈ [m] \ S, i is win-
ning j. A winning set of minimum size is called the Smith set.
As opposed to a Condorcet winner, a Smith set always exists
and is unique. If a profile Σ has a Condorcet winner then the
Smith set has a single candidate, the Condorcet winner. A pro-
file Σ will be called transitive if there are no three different
candidates i, j, k such that i→Σ j, j →Σ k, and k →Σ i. It is
called intransitive if it is not transitive. If Σ does not have a
Condorcet winner then it is necessarily intransitive, however if
it has a Condorcet winner it may still be intransitive. A profile
Σ has a cycle of length ` if there are ` different candidates,
j1, j2, . . . , j` such that j1 →Σ j2 →Σ j3 →Σ · · · →Σ j` →Σ

j1. We say that a profile Σ has global intransitivity if it has a
cycle of length m.

Given a profile Σ = (σ1, . . . , σn) ∈ (Sm)n, its probability
ranking matrix PΣ = (pi,j)16i,j6m ∈ [0, 1]m×m is defined to
be a matrix where the probability pi,j for 1 6 i, j 6 m is the
fraction of voters for which the j-th candidate is ranked at the
i-th rank. Note that the sum of every row and every column of
the matrix PΣ is one and thus it is a doubly stochastic matrix.
Based on the probability ranking matrix, the entropy of every
candidate is defined as the entropy of the probabilities of all
its rankings. The candidate entropy of the j-th candidate, is
denoted by HCΣ(j) and is defined to be

HCΣ(j) = H(p1,j , p2,j , . . . , pm,j),

where H defines the binary entropy function. Similarly, the
ranking entropy of the i-th ranking is

HRΣ(i) = H(pi,1, pi,2, . . . , pi,m).

A first observation from the structure of the probability matrix
is that the sum of candidate entropies and ranking entropies
is the same, that is,

m∑
j=1

HCΣ(j) = −
m∑

j=1

m∑
i=1

pi,j log(pi,j) =

m∑
i=1

HRΣ(i).

Thus, we define the profile entropy of Σ to be the sum of
all ranking entropies or candidate entropies and denote it by
H(Σ), where H(Σ) =

∑m
i=1HCΣ(i) =

∑m
j=1HRΣ(j).

Example 1. Assume there are three candidates and six voters
with profile Σ1 = (σ1, σ2, σ3, σ4, σ5, σ6) ∈ (S3)6, where

σ1 = 123, σ2 = 132, σ3 = 213,

σ4 = 312, σ5 = 123, σ6 = 231.

The probability ranking matrix PΣ1
is given by

PΣ1
=

 1/2 1/3 1/6
1/3 1/3 1/3
1/6 1/3 1/2


The candidate and ranking entropies satisfy

HCΣ1
(1) = HCΣ1

(1) = H(1/2, 1/3, 1/6) = 1.459,

HCΣ1
(2) = HRΣ1

(2) = H(1/3, 1/3, 1/3) = 1.585,

HCΣ1(3) = HRΣ1(3) = H(1/6, 1/3, 1/2) = 1.459,

so the profile entropy is H(Σ1) = 4.503. In this example
1 →Σ1 2, 1 →Σ1 3, 2 →Σ1 3 and thus the first candidate is
the Condorcet winner.

We finish this section with another measure which aims to
capture the structure of relations between the different can-
didates. For two permutations σ, π ∈ Sm, dτ (σ, π) is the
Kendall’s τ distance between σ and π, which is the minimal
number of adjacent transpositions to change σ into π. Given
a ranking profile, Σ = (σ1, . . . , σn), the sum

Ψ(Σ) =

n∑
k=1,`=k+1

dτ (σk, σ`)

is called the profile potential of Σ. Finally, for 1 6 i < j 6
m, wi,j is the number of voters who rank the i-th candidate
higher than the j-th candidate and qi,j =

wi,j

n . The profile
potential entropy is defined to be

∑m
i=1,j=i+1H(qi,j).

III. BASIC PROPERTIES

In this section we study some basic properties on the tools
introduced in Section II. We start with a basic observation on
the size of the Smith set and the global intransitivity property.

Lemma 1. The Smith set of a profile Σ is [m] if and only if it
has global intransitivity.

Proof. Assume Σ has global intransitivity then (by definition)
it has a cycle of length m. Assume without loss of general-
ity that the cycle is 1 →Σ 2 →Σ 3 →Σ · · · →Σ m →Σ 1.
Let S be the Smith set of Σ and assume in contradiction that
S 6= [m]. Let i be such that i ∈ S. Since candidate i − 1 is
winning candidate i, we conclude that i − 1 ∈ S. Similarly
i−2 ∈ S and so going on the opposite directions of the cycle
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we get that every candidate belongs to the cycle, which leads
to a contradiction.

Assume now that the Smith set of Σ is [m] and assume in
contradiction that the size of the longest cycle is ` < m,

j1 →Σ j2 →Σ j3 →Σ · · · →Σ j` →Σ j1.

Let S = {j1, . . . , j`} and we distinguish between two cases:
Case 1: There is a candidate i /∈ S which is winning at least
one candidate in S and there is at least one candidate in S
which is winning i. In this case we can find two consecutive
candidates in the cycle, say jk and jk+1 such that i is win-
ning jk+1 and jk is winning i. Then we can extend the cycle
of length `, which leads to a contradiction.
Case 2: Every candidate i /∈ S is either winning all the can-
didates in S or is losing to all the candidates in S. Let W be
the set of all candidates of the first kind, and L the set of the
candidates of the second kind. Note that since the Smith set
is [m] neither of these sets is empty. Furthermore, there is a
candidate ` ∈ L who is winning a candidate w ∈ W ; other-
wise W is the Smith set, in contradiction. Now we can extend
the cycle of length ` with the w-th and `-th candidates.

Next, we turn to evaluate the expected values of the mea-
surements we introduced before. For every 1 6 i 6 m,
HRΣ(i) 6 logm, and thus H(Σ) 6 m logm. The next
lemma states the expected value of the profile entropy un-
der the assumption that every ranking is chosen uniformly at
random from Sm and as a result we deduce that for n large
enough E[H(Σ)] ≈ m logm. We omit the proof of this and
the next lemma due to the lack of space.

Lemma 2. Assume every voter chooses its ranking uniformly at
random from Sm of all permutations. Then, the expected value
of the profile entropy satisfies

m logm−m log(1 + (m− 1)/n) 6 E[H(Σ)] 6 m logm.

In order to perform a similar calculation for the profile po-
tential we first note a basic property: for every profile Σ =
(σ1, . . . , σn), Ψ(Σ) =

∑m
i=1,j=i+1 wi,j(n−wi,j). Hence, we

conclude that the maximum value of the profile potential value
is
(
m
2

)
·
(
n
2

)2
, in case n is even and

(
m
2

)
·
(
n−1

2 ·
n+1

2

)
, in case

n is odd. Using this proposition we can calculate the expected
value of the profile potential.

Lemma 3. The expected value of the profile potential satisfies

E[Ψ(Σ)] =
1

2

(
m

2

)(
n

2

)
.

IV. GLOBAL INTRANSITIVITY

Our goal in this section is to better understand, using the
measures introduced in Section II, the implications of global
intransitivity. In general, we expect to see that global intran-
sitivity implies a larger measure. However, as we shall see, a
large profile measure does not characterize global intransitiv-
ity. For example, it is possible to have a profile with measure
approaching the maximum value and yet without global in-
transitivity. To see this phenomena for the measure of profile
entropy, assume there are n = n′m!+1 voters. Every permuta-
tion σ ∈ Sm has n′ voters which assign the ranking σ. Finally

the last voter assigns the ranking 12 · · ·m. It is straightfor-
ward to verify that this profile has a Condorcet winner and in
particular does not have global intransitivity. Furthermore, if
m is fixed and n is large enough then the entropy of every
ranking and candidate approaches logm, and thus the profile
entropy approaches the maximum value m logm. In the rest
of the section we will be interested to analyze lower bounds
on the profile entropy and profile potential values for profiles
that have global intransitivity.

A. The profile entropy measure

Our first result is in a sense a negative one that shows that
although the profile entropy is a natural measure, it does not
capture global intransitivity well.

Theorem 4. If a profile Σ of m candidates has global intransi-
tivity then H(Σ) > 2. Moreover, there exists a profile Σ of m
candidates with global intransitivity and H(Σ) which asymp-
totically (in n) approaches 2.

Proof. Let us consider the first ranking. Since Σ has global
intransitivity, it cannot have a Condorcet winner and thus
p1,j 6 1/2 for 1 6 j 6 m. Therefore,

HRΣ(1) = H(p1,1, . . . , p1,m) =

m∑
j=1

p1,j log
1

p1,j
>

m∑
j=1

p1,m = 1.

Similarly, there is no Condorcet loser and so HRΣ(m) > 1.
Finally, we get H(Σ) > HRΣ(1) +HRΣ(m) > 2.

To show that this bound is tight we present the following
profile Σ2 with n = 2n′ + 1 voters where n′ of them have
the ranking (1, 2, 3, · · · ,m− 1,m), n′ more have the ranking
(m, 2, 3, · · · ,m−1, 1), and the last voter has the ranking (m−
1,m, 1, 2, · · · ,m− 2). It can be verified that the Smith set of
Σ2 is [m] and in particular there is no Condorcet winner. The
probability ranking matrix is

PΣ2 =



n′

n
0 0 · · · 0 1

n
n′

n

0 n−1
n

0 · · · 0 0 1
n

1
n

0 n−1
n

· · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 n−1
n

0
n′

n
0 0 · · · 1

n
0 n′

n


.

Finally, for n large enough H(Σ2) = HRΣ2
(1)+HRΣ2

(m)+
o(1) which approaches 2 as n increases.

The last result is somehow disappointing. We can find a a
cycle of m candidates where the entropy profile approaches
two, that is, independently with the number of candidates. Our
next step is to draw more connections with the number of can-
didates and in particular with the structure of the cycles be-
tween the candidates. A first observation on the structure of
the cycles is derived as follows. We define a 3-cycle to be a
cycle between three candidates.

Lemma 5. Assume a profile Σ has a cycle of length `, then it
has a 3-cycle. In fact, every candidate in the cycle belongs to at
least one 3-cycle.

Proof. Let us denote the candidates by 1, 2, . . . , ` and with-
out loss of generality assume there is a cycle of the form
1 →Σ 2 →Σ 3 →Σ · · · →Σ ` →Σ 1. We will show that the
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first candidate belongs to some 3-cycle. If candidate 3 is win-
ning candidate 1, then there is a 3-cycle between candidates
1, 2, and 3. Otherwise, we found a smaller cycle of length
m− 1, 1→Σ 3→Σ · · · →Σ m→Σ 1. We can continue with
the same argument until we reach the case of a four cycle
1 →Σ m − 2 →Σ m − 1 →Σ m →Σ 1, which yields to one
of the following 3-cycles: 1 →Σ m − 2 →Σ m − 1 →Σ 1 or
1→Σ m− 1→Σ m→Σ 1.

In the profile Σ2 given in the proof of Theorem 4, we can
see that indeed every candidate belongs to at least one 3-cycle.
However all 3-cycles are of the form m−1→Σ m→Σ i→Σ

m− 1 or m− 1→Σ 1→Σ i→Σ m− 1, for 2 6 i 6 m− 2.
In particular, it is not possible to find two candidate-disjoint
3-cycles. We will show how the number of candidate-disjoint
3-cycles affects the profile entropy.

Lemma 6. Assume a profile Σ has ` > 2 disjoint 3-cycles be-
tween the m candidates, then H(Σ) > `. Moreover, there is a
profile Σ with ` disjoint 3-cycles between the m candidates in
which H(Σ) approaches ` (with large n).

Proof. Assume candidates i, j, k form a 3-cycle. Let f be the
following function f : {1, . . . ,m}3 → S3, which converts the
three rankings of the candidates i, j, k to a relative ranking be-
tween them as three candidates. Let Xi, Xj , Xk be a random
variable of the ranking of candidate i, j, k, respectively, and
note that HCΣ(i) = H(Xi), HCΣ(j) = H(Xj), HCΣ(k) =
H(Xk). Since f is a one to one function, we have that

H(Xi, Xj , Xk) > H(f(Xi, Xj , Xk)).

The variable f(Xi, Xj , Xk) corresponds to a permutation in
S3. Since there is a cycle between the three candidates, there
is no permutation of f(Xi, Xj , Xk) which appears more than
half of the times. Therefore, similarly to the proof of Theo-
rem 4 we can show that H(f(Xi, Xj , Xk)) > 1. Finally,

HCΣ(i) +HCΣ(j) +HCΣ(k) = H(Xi) +H(Xj) +H(Xk)

> H(Xi, Xj , Xk) > H(f(Xi, Xj , Xk)) > 1.

To conclude, we apply this argument to each one of the ` 3-
cycles and get that the profile entropy is at least `.

To prove that the entropy lower bound is tight, let Σ3 be a
profile with six candidates and n = 2n′ + 1 voters. The first
n′ voters assign the ranking (3, 1, 4, 5, 2, 6), the next n′ voters
assign the ranking (6, 1, 4, 5, 2, 3), and the last voter assigns
the ranking (2, 3, 1, 5, 6, 4). It is possible to verify that there is
a 3-cycle between candidates 1, 2, and 3 and another 3-cycle
between candidates 4, 5, and 6. The entropy sum of the six
candidates satisfies H(Σ) > 1 + 1 = 2, and H(Σ) approaches
2 as n gets large.

In general, this example can be extended for 6m candi-
dates such that the number of disjoint 3-cycles is 2m, which
is maximized, and the profile entropy approaches 2m.

B. The profile potential measure

We now turn to study the profile potential.

Theorem 7. Assume a profile Σ has global intransitivity, then
the profile potential satisfies Ψ(Σ) > m−1

4 n2. Moreover, there

exists a profile Σ with global intransitivity for which Ψ(Σ) <
m−1

4 n2 + n(m− 2).

Proof. Let us first consider a cycle between three candidates.
Assume without loss of generality that candidate 1 is winning
candidate 2, candidate 2 is winning candidate 3, and candidate
3 is winning candidate 1. Assume also that w1,2 = n/2 + a
and w2,3 = n/2 + b, where a, b > 0. Therefore, we have that
a+ b 6 w1,3 6 n/2 and thus

w1,2(n− w1,2) + w2,3(n− w2,3) + w1,3(n− w1,3)

= (n/2)2 − a2 + (n/2)2 − b2 + w1,3(n− w1,3)

> (n/2)2 − a2 + (n/2)2 − b2 + (a+ b)(n− (a+ b))

> n2/2 + n(a+ b)− 2(a+ b)2

= n2/2 + 2(a+ b)(n/2− (a+ b)) > n2/2,

where the last inequality follows from a+ b 6 n/2.
The proof for arbitrary m holds by induction. The base for

three candidates was proved above. Assume the claim is true
for m− 1 candidates and we will prove the correctness for m
candidates. Let the cycle between the m candidates be 1→Σ

2 →Σ · · · →Σ m →Σ 1. We distinguish between two cases:
1. there is a cycle of between m − 1 candidates, and 2. we
cannot find a cycle between m− 1 candidates.

Case 1: Assume without loss of generality that these are the
first m−1 candidates. According the induction assumption and
Proposition ??

∑m−1
i=1,j=i+1 wi,j(n−wi,j) >

m−2
4 n2. Accord-

ing to Lemma 5, the m-th candidate belongs to a 3-cycle and
assume it includes the k-th and `-th candidates. As proved in
the beginning of this proof, wk,`(n−wk,`)+w`,m(n−w`,m)+
wk,m(n − wk,m) > n2/2, and since wk,`(n − wk,`) 6 n2/4,
we have w`,m(n − w`,m) + wk,m(n − wk,m) > n2/4. To-
gether we conclude that Ψ(Σ) =

∑m
i=1,j=i+1 wi,j(n − wi,j)

is at least
m−1∑

i=1,j=i+1

wi,j(n− wi,j) + w`,m(n− w`,m) + wk,m(n− wk,m)

>
m− 2

4
n2 +

n2

4
=
m− 1

4
n2.

Case 2: If there is no cycle between any m− 1 candidates,
then for 1 6 i 6 m, i + 2 →Σ i (in case an index is greater
than m we take its residue mod(m) as a number between
1 and m). Therefore, we get m different cycles of length 3,
i →Σ i + 1 →Σ i + 2 →Σ i, and thus Wi = wi,i+1(n −
wi,i+1)+wi+1,i+2(n−wi+1,i+2)+wi,i+2(n−wi,i+2) > n2/2.
Finally, we conclude with the following

Ψ(Σ) >
1

2

m∑
i=1

Wi >
1

2
·m · n

2

2
>
m− 1

4
n2

To show that the lower bound is tight we present the fol-
lowing example. Assume a profile Σ with n = 2n′ + 1 vot-
ers and m candidates. The first n′ voters have the ranking
σ1 = (1, 2, . . . ,m), the next n′ voters have the ranking σ2 =
(m, 1, 2, . . . ,m− 1), and the last voter has the ranking σ3 =
(m − 1,m, 1, . . . ,m − 2). There is a cycle between these m
candidates and thus the profile has global intransitivity. It can
be verified that the profile potential satisfies Ψ(Σ) < m−1

4 n2+
n(m− 2).

It can be shown that the example profile presented in the
proof of Theorem 7 has profile potential entropy approaching
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m − 1. Similarly to the proof of Theorem 7 it is possible to
show that if a profile has global intransitivity then its profile
potential entropy is at least m− 1. We omit the details due to
the lack of space.

V. RANKINGS IN A BALL

In this section we study a special case where the voters can
choose their rankings only within a special set, which is ball
of a prescribed radius according to the Kendall’s τ distance.
The goal is to study the largest radius of a ball such that there
is no global intransitivity for any profile. The motivation to
restrict the profile rankings to belong solely to a ball comes
from the distance-based models for ranking data [4]. Under
such models, the probability of each ranking is a function of
some center permutation and the distance from this center.

The problem we study here is a variation of the Condorcet
domain problem. A Condorcet domain is a set S ⊆ Sm of
permutations such that every profile Σ ∈ Sn has a Condorcet
winner. The problem of finding the largest size of a Condorcet
domain is fascinating by itself and in fact is still an open prob-
lem for arbitrary m; see e.g. [2], [7]. However, this problem
is out of the scope of this paper.

We relax the requirement of having a Condorcet winner and
ask that there will not be global intransitivity. A ball with ra-
dius r and center σ ∈ Sm is the set Br(σ) = {π | dτ (σ, π) 6
r}. We define R(m) to be the largest radius such that for any
ball BR(m)(σ), every profile Σ ∈

(
BR(m)(σ)

)n
does not have

global intransitivity.
Theorem 7 already gives us an example where the permu-

tations of the profile Σ can be located inside a ball of ra-
dius m − 1, centered in σ2 and yet there is a cycle between
all m candidates. Therefore, R(m) < m − 1. On the other
hand, if R(m) = b(m − 1)/4c then for every pair of permu-
tations σi and σj in the profile Σ, dτ (σi, σj) 6 (m − 1)/2
and thus the profile potential in this case satisfies Ψ(Σ) 6(
n
2

)
(m− 1)/2 < m−1

4 n2. Therefore, according to Theorem 7
the there is no global intransitivity. Hence, we conclude so far
that

⌊
m−1

4

⌋
6 R(m) 6 m − 2. We will now show how to

close on this gap and obtain

Theorem 8. For all m > 3, R(m) = dm/2e.

We first prove a lower bound and then an upper bound.

Lemma 9. For all m > 3, R(m) > dm/2e.

Proof. Due to the lack of space we show the proof only
for odd values of m. The proof for even values will follow
similar guidelines. Without loss of generality assume that the
center of the ball is the identity permutation π = 123 · · ·m.
Let Σ = (σ1, . . . , σn) be a profile in Bm+1

2
(π) and assume

in contradiction that the Smith set of Σ is [m]. Let us assume
for now that the cycle between the m candidates is the fol-
lowing m→Σ m−1→Σ m−2→Σ · · · →Σ 2→Σ 1→Σ m.
For 1 6 i 6 m − 1, let wi+1,i = |{σ | i+ 1 >σ i}|, and
wi,i+1 = |{σ | i >σ i+ 1}| . Note that wi+1,i + wi,i+1 = n.
Then, this cycle results with the following m− 1 inequalities:
wi+1,i > wi,i+1, for 1 6 i 6 m− 1. In particular, we get that

∑m−1
i=1 wi+1,i >

∑m−1
i=1 wi,i+1 = n(m − 1) −

∑m−1
i=1 wi+1,i,

and therefore,
m−1∑
i=1

wi+1,i > n(m− 1)/2. (1)

For any permutation σ, let wσ = |{1 6 i 6 m− 1 | i+ 1 >σ
i}|. Then,

∑m−1
i=1 wi+1,i =

∑n
`=1 wσ`

. It can be shown that if
dτ (π, σ`) 6 m+1

2 then wσ`
6 m−1

2 . Therefore,
m−1∑
i=1

wi+1,i =

n∑
`=1

wσ`
6 n(m− 1)/2,

in contradiction to (1). The proof for other types of cycles is
very similar and thus we omit the details.

Lemma 10. For all m > 3, R(m) 6 dm/2e.
Proof. We will show an example of a ball with radius
dm/2e+ 1 and a profile Σ with rankings only from this ball
such that its Smith set is [m].

We assume the center of the ball is the identity permuta-
tion π = 123 · · ·m and its radius is dm/2e+ 1. Due to space
limitations, we present here a proof for the case m = 9 which
exhibits the intuition of the proof for general m (which fol-
lows very similar lines). In the following profile, we underline
consecutive locations in the permutations that are subject to
transpositions. The pattern of the subsets of indices that are
subject to transpositions should be clear from the example.

σ1 = 3, 2, 1, 5, 4, 7, 6, 9, 8 σ2 = 1, 4, 3, 2, 6, 5, 8, 7, 9

σ3 = 2, 1, 5, 4, 3, 7, 6, 9, 8 σ4 = 1, 3, 2, 6, 5, 4, 8, 7, 9

σ5 = 2, 1, 4, 3, 7, 6, 5, 9, 8 σ6 = 1, 3, 2, 5, 6, 8, 7, 6, 9

σ7 = 2, 1, 4, 3, 6, 5, 9, 8, 7

In this example, the distance between every σi and 123456789
is at most 6 = d 9

2e + 1, and there is a cycle 9 →Σ 8 →Σ

7, . . . , 2→Σ 1→Σ 9.
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