
In-Memory Computing of Akers Logic Array
Eitan Yaakobi

Electrical Engineering
California Institute of Technology

Pasadena, CA 91125
yaakobi@caltech.edu

Anxiao (Andrew) Jiang
Computer Science and Engineering

Texas A&M University
College Station, TX 77843

ajiang@cse.tamu.edu

Jehoshua Bruck
Electrical Engineering

California Institute of Technology
Pasadena, CA 91125

bruck@caltech.edu

Abstract—This work studies memories with the goal of explor-
ing the concept of in-memory computing. Our point of departure
is the 1972 classical study on logical arrays by Akers. We demon-
strate a number of new ways for these arrays to simultaneously
store information and perform logical operations. We first gen-
eralize these arrays to non-binary alphabets. We then show how
a special structure of these arrays can both store values and out-
put a sorted version of them. In addition we show how the array
can tolerate or detect errors in the stored information.

I. INTRODUCTION

The common and traditional approach to think about a com-
puter memory is as a device used to store information. In many
cases this is also the correct perspective, especially when stor-
ing digital information. In fact, the so-called von Neumann
architecture consists of two main entities: the processing unit
that executes the logical and mathematical operations, and the
memory that stores the data.

Let us consider here a different but very common type of
memory, namely the human memory. In contrast to computer
architecture where the memory and the compute modules are
separate, such separation can not be identified in our brains. In
fact, most studies in this area report a behavior of the brain’s
memory as a neural network that models an associative mem-
ory [2], [4], [13], [14], [17]. The memory is comprised of
neurons, which both store information and communicate be-
tween them in order to process data. One common model of
such a neural network is the Hopfield network [5]. This last
model was later analyzed by McEliece et al. to show that the
storage capacity of such networks is quite limited [15].

In this work, we take another step toward the study of mem-
ories that can also compute, which we call logical memories.
Our point of departure is the classical study of logical arrays
by Akers in 1972 [1], referred to as Akers logical arrays (or
in short, Akers arrays) here. The atomic unit in Akers arrays
is a cell with three inputs and two outputs, as illustrated in
Fig. 1(a). There are two binary inputs X,Y to the cell and
an additional binary input Z called the control input. There
are two binary outputs from the cell having the same value
f , which equals the majority of X,Y , and Z. An Akers array
is formed by placing the cells in a two-dimensional array, as
shown in Fig. 1(b). The inputs Y to the cells in the left-most
column are all 1s, and the inputs X to the cells in the top
row are all 0s. The output of the whole array is defined as the
output of the cell in the down-right corner, whose value is de-

This work was supported in part by the NSF grants ECCS-0801795, CCF-
1217944, and CIF-1218005, BSF grant 2010075, and NSF CAREER Award
CCF-0747415.

termined by all the control inputs (given as inputs Z’s to the
cells).

(a) cell (b) array

Fig. 1. (a) The structure of a basic cell in the Akers logic array. (b) An
example of a 3× 3 logic array. The array’s output is the output of the cell in
the down-right corner.

We use an Akers array as an illustration of a memory that
can both store information and perform logical operations. Ak-
ers showed that the arrays are computationally universal in
the sense that it can compute any Boolean function [1]. This
demonstrates that information can be stored and computed si-
multaneously. However, a disadvantage of the scheme is that
the number of needed cells can be exponential in the number
of variables. Nevertheless, Akers has presented certain types
of functions, such as symmetric functions, that can be com-
puted more efficiently.

The work by Akers paved the way for more work on such
types of logical arrays. Kukreja and Chen [12] considered
extensions to the model, where again there are three inputs
X,Y, Z and two outputs f1, f2, but with f1 = Y, f2 = X if
Z = 1 and f1 = X, f2 = Y if Z = 0. They also considered
extensions with time delays. Extensions to 3-dimensional ar-
rays were presented in [3], [16]. Additional extensions to
non-binary inputs and for diagnosing erroneous cells were
shown in [7]–[10].

Our main goal in this paper is to build upon the work by Ak-
ers, and demonstrate additional examples of computing with
logical arrays. In Section II, we review the model of the Ak-
ers arrays, and state their useful properties. In Section III, we
generalize these arrays to non-binary symbols. In particular,
we study a special structure of the arrays that can both store
and sort variables. In Section IV, we analyze the number of
Akers arrays that can tolerate a single cell error. Section V
presents how with Akers arrays one can detect errors in the
stored information. In Section VI, we present concluding re-
marks.

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

2369

II. AKERS LOGIC ARRAYS

In this section, we review the structure of Akers logic ar-
rays. Its basic cell unit is shown in Fig. 1(a). The binary in-
put variables X,Y are information that can come from other
cells in the array. The binary control input Z is seen as the
value stored in the cell. The output binary variables of one
cell are used as inputs X,Y to adjacent cells. This forms the
structure of the Akers logic array, as shown in Fig. 1(b). Let
the array have size m × n. The inputs Y to the left-most
column are all 1s, and the inputs X to the top row are all
0s. Given the control inputs Z to every cell, the array per-
forms computing, and its output is that of the cell in the down-
right corner. According to this definition, it is possible to con-
struct a mapping F : {0, 1}m×n → {0, 1} that assigns input
A = (ai,j)m×n ∈ {0, 1}

m×n to an m × n binary array, and
outputs a logic-function value F (A).

Under this array structure, Akers showed that the two inputs
X,Y to every cell always satisfy the property that X 6 Y .
Some basic techniques can be used to calculate the output
of the array. The key is to observe the cell in the upper-left
corner. If its value is 1, then the output of each cells in the
left-most column is 1; thus the left-most column can be re-
moved (without affecting the array’s output). If its value is 0,
then the output of each cell in the top row is 0; thus the top
row can be removed. This process can be repeated until only
a single row or column remains, when computing the final
output becomes straightforward.

Akers also gave another useful tool to determine the output
of an array. A binary array A of size m × n is said to have
a zero path if there exist m positive integers 1 6 j1 6 j2 6
· · · 6 jm 6 n such that a1,j1 = a2,j2 = · · · = am,jm = 0.
That is, a zero path exists if there is a zero in every row with
non-decreasing column indices. Similarly, A has a one path if
there exist n positive integers 1 6 i1 6 i2 6 · · · 6 in 6 m
such that ai1,1 = ai2,2 = · · · = aim,m = 1. Akers showed that
an array has either a zero path or a one path, but not both. The
following lemma gives a tool to calculate the array’s output.

Lemma 1. [1] Given an array A, if A has a zero path; then
F (A) = 0; if A has a one path, then F (A) = 1.

One of the goals of Akers by representing his logic arrays
was to show that every boolean function can be calculated us-
ing this method. Even though the answer is affirmative, the
number of needed cells for this task can be exponential in the
number of variables. However, he showed an efficient imple-
mentation of a special family of functions: the symmetric func-
tions. A boolean function of n variables x1, . . . , xn is called
symmetric if its output is determined solely by the sum of
the n variables,

∑n
i=1 xi. Thus, every symmetric function f

can be characterized by n+1 variables w0, w1, . . . , wn, where
f(x1, . . . , xn) = wk if

∑n
i=1 xi = k. Given such a symmetric

function f , an array Af of size (n+1)×(n+1) is constructed
as follows:

ai,j =

 xi+j−1 if 2 6 i+ j 6 n+ 1
wj−1 if i+ j = n+ 2
xi+j−(n+2) if n+ 3 6 i+ j 6 2n+ 2

An example for an array that calculates a symmetric function
of three variables is shown in Fig. 2(a). Akers showed that the
array Af satisfies F (Af) ≡ f .

(a) Array for symmetric
function

(b) Array for sorting

Fig. 2. (a) An example of an array that calculates a symmetric function
with three variables. (b) An example of an array that sorts the variables
x1, x2, x3, x4.

In particular, it is feasible to calculate the XOR of n vari-
ables x1, . . . , xn. And in this special case, there can be an-
other small improvement that reduces the array size to n×n,
because the XOR of n variables may be considered as a sym-
metric function of the first n − 1 variables, where the values
w0, w1, . . . , wn−1 satisfy wi = xn if i is even and wi = xn
if i is odd (for 0 6 i 6 n− 1).

Another special type of array has a slightly different struc-
ture. This time the array does not have a rectangular shape,
but the upper half array that is formed by the minor diagonal,
as shown in Fig. 2(b). It was shown by Akers that for the n
outputs of the last cell in each row, they are a sorted version of
the input variables x1, . . . , xn. We call such an array A a sort-
ing array of order n. Its cells are (i, j) where i+ j 6 n+ 1,
and the control input of the cell (i, j) is xi+j−1.

III. NON-BINARY AKERS ARRAYS

In this section, we show how to generalize Akers arrays
for non-binary alphabets. Assume that all variables can have
q different values: 0, 1, . . . , q − 1. We define the basic cell’s
output to be the median of its three inputs. That is, in Fig. 1(a)

f = med{X,Y, Z}.

The structure of the array remains the same, except that we
let the input Y to every cell in the left-most column be q− 1.

As a first step, we are interested in finding conditions that
are equivalent to the zero and one paths in order to calcu-
late the array’s output. Let A = (ai,j)m×n be an array in
{0, 1, . . . , q − 1}m×n. ∀ 1 6 i 6 m, let ui be the column in-
dex of the minimum element in the i-th row. That is for all
1 6 j 6 n, ai,ui 6 ai,j . Similarly, for 1 6 i 6 n, let vi be the
row index of the maximum element in the i-th column. We say
that there is a minimum path if 1 6 u1 6 u2 6 · · · 6 um 6 n
and there is a maximum path if 1 6 v1 6 v2 6 · · · 6 vn 6 m.
Note that a zero path and a one path are special cases of a
minimum path and a maximum path, respectively. For nota-
tional convenience, in this section, for a cell in position (i, j),
we denote its inputs by Xi,j , Yi,j and Zi,j = ai,j , respectively,
and denote its output by fi,j .

2013 IEEE International Symposium on Information Theory

2370

Lemma 2. An array cannot have both a minimum path and a
maximum path.

Theorem 3. If an array A has a minimum path, then its output
is F (A) = max16i6m{ai,ui}. If it has a maximum path, then
its output is F (A) = min16j6n{avj ,j}.

Proof: We prove this property for minimum paths by in-
duction on the number of rows. The proof for maximum paths
will be similar by induction on the number of columns.

We prove by induction that for an array A of size m × n
with minimum path 1 6 u1 6 u2 6 · · · 6 um 6 n,
the output of every cell in the bottom row satisfies
fm,j = max16i6m{ai,ui} for j > um, and satisfies
fm,j > max16i6m{ai,ui} for 1 6 j < um. If there is only a
single row, then it is immediate to see that if u1 is the in-
dex of the minimum element in the top row, the output of
the u1-th cell as well as all consecutive cells is a1,u1 and the
output of the preceding cells is at least a1,u1

.
Now assume the claim is true for arrays of size m×n, and

we will prove the correctness for arrays of size (m + 1) ×
n. Let A be such an array with a minimum path 1 6 u1 6
u2 6 · · · 6 um 6 um+1 6 n. According to the induction
assumption, fm,j = max16i6m{ai,ui} =M for j > um, and
fm,j > M for 1 6 j < um. We consider the bottom row,
and distinguish between two cases: 1) am+1,um+1

6 M ; 2)
am+1,um+1

> M .
Case 1: In this case, we have M = max16i6m+1{ai,ui}.

For the first cell in the bottom row, we have Ym+1,1 = q− 1;
and according to the induction assumption Xm+1,1 > M .
Hence fm+1,1 > M . The argument follows to all cell
am+1,j for 1 6 j < um+1. Since Xm+1,j > M and
Ym+1,j > M , we also have fm+1,j > M . Now we con-
sider the cell am+1,um+1 . We have that Ym+1,um+1 > M ,
Xm+1,um+1 = M and Zm+1,um+1 6 M . Therefore,
fm+1,um+1

= M . For all other cells in this row we have for
j > um+1, Ym+1,j = Xm+1,j =M and this fm+1,j =M .

Case 2: Now we have am+1,um+1
= max16i6m+1{ai,ui} =

M ′. Similarly to the proof of the first case, Ym+1,1 = q−1 and
Zm+1,1 > M ′ so fm+1,1 > M ′. For every 1 6 j < um+1,
Ym+1,j > M ′ and Zm+1,1 > M ′ and thus fm+1,j > M ′.
As for the um+1-th cell in this row, Ym+1,um+1

> M ′,
Xm+1,um+1

= fm,um+1
< M ′ and Zm+1,um+1

= M ′. There-
fore, fm+1,um+1 = M ′. For the consecutive cells, for every
j > um+1, we get Ym+1,j = M ′, Xm+1,j = fm,j < M ′ and
Zm+1,um+1

>M ′ and therefore fm+1,j =M ′.
Our next task is to generalize the sorting property for non-

binary symbols, for the sorting arrays defined in Section II.

Theorem 4. Let x1, x2, . . . , xn be n non-binary variables, and
let A be a non-binary sorting array constructed with these vari-
ables. The outputs f1,n, f2,n−1, . . . , fn,1 satisfy:

1) {x1, x2, . . . , xn} = {f1,n, f2,n−1, . . . , fn,1} with the
same repetitions, i.e., the two multi-sets are equivalent.

2) f1,n 6 f2,n−1 6 · · · 6 fn,1.

Proof: We prove this property by induction on n. It is
simple to verify the conclusion for n = 1 and 2. Now suppose
that the claim is true for sorting arrays with n − 1 variables;
and we will prove the correctness for n variables.

Let i1, i2, . . . , in−1 be a permutation of the indices
1, 2, . . . , n − 1 such that xi1 6 xi2 6 · · · 6 xin−1

. Ac-
cording to the induction assumption, f`,n−` = xi` for
1 6 ` 6 n − 1. Let us add two more variables xi0 = 0 and
xin = q − 1. Now assume that for some 0 6 k 6 n − 1,
xk 6 xn 6 xk+1. For 1 6 j 6 k, Yj,n+1−j = xij 6 xn,
Xj,n+1−j = xij−1

6 xn and Zj,n+1−j = xn. Thus,
fj,n+1−j = max{xij , xij−1

} = xij . For k + 2 6 j 6 n,
Yj,n+1−j = xij > xk, Xj,n+1−j = xij−1

> xk and
Zj,n+1−j = xk. Thus, fj,n+1−j = min{xij , xij−1} = xij−1 .
Similarly we also get that fk+1,n−k = xn. And we conclude
that the array’s outputs are sorted.

IV. ANALYSIS OF AKERS ARRAYS

In this section, we characterize some properties of Akers
arrays. For simplicity, consider arrays of size n × n. We say
that an array A ∈ {0, 1}n×n is robust (or more specifically,
can tolerate one cell error) if its output does not change its
value even if one of its cells changes its value. Namely, if
we use Ei,j to denote an n × n binary matrix that contains
only one 1 in the (i, j) entry and all 0s elsewhere, then for
every Ei,j ∈ {0, 1}n×n, a robust array A satisfies F (A) =
F (A⊕ Ei,j). (Here “⊕” is the XOR operation.)

Robust arrays are important for fault tolerance in memories.
Note that unlike error-correcting codes, where the reliability
of a codeword is achieved through its distance to other code-
words, here the robustness is achieved through the array’s own
value. Let An ⊆ {0, 1}n×n be the set of all robust arrays of
size n × n. Let CA be the capacity of robust arrays, that is,
CA = limn→∞

log2 |An|
n2 .

We observe that if F (A) = 0, then the array A has a zero
path and in this case, A is robust if and only if it has two
non-intersecting zero-paths. The same analogy applies to ar-
rays with one-paths. Now note that if the first two columns of
an array are all 0s, then it has two non-intersecting zero paths
and thus is robust. So |An| > 2n

2−2n and CA = 1. There-
fore, it is more interesting to evaluate the difference between
log2 |An| and n2, which we denote by rn , n2 − log2 |An|.

Lemma 5. For any array A ∈ {0, 1}n×n, f(A) = 1 − f(AT).
And the number of zero-paths in A equals the number of one-
paths in A

T
.

Lemma 5 shows it is sufficient to count the number of ro-
bust arrays with output 0. We denote this set by A0

n. rn can
be computed using next lemma.

Lemma 6.

|A0
n| =

n∑
q1=2

n∑
q2=q1

· · ·
n∑

qn=qn−1

n∏
i=1

(qi − 1)2n
2−

∑n
i=1 qi .

2013 IEEE International Symposium on Information Theory

2371

Proof: ∀ A ∈ {0, 1}n×n, A ∈ A0
n if and only if A has

two different zero paths. Every zero path can be characterized
by a vector p = (p1, . . . , pn) such that every pi corresponds to
the column index in the i-th row where its value is 0, namely
ai,pi = 0, and 1 6 p1 6 p2 6 · · · 6 pn 6 n.

For an array A ∈ A0
n, let p = (p1, . . . , pn) be the left-

most zero-path and q = (q1, . . . , qn) be the second leftmost
zero-path. Hence p < q and in each row, all the entries before
the qi-th entry besides the pi-th entry are 1s. That is, for all
1 6 i 6 n and for all 1 6 j < qi and j 6= pi, we have ai,j =
1. All other entries in each row can have any value. There-
fore, we get |A0

n| =
∑n
q1=2

∑n
q2=q1

· · ·
∑n
qn=qn−1

∏n
i=1(qi −

1)2n
2−

∑n
i=1 qi .

Theorem 7. limn→∞
rn
n = 2.

V. AKERS ARRAY FOR IN-MEMORY ERROR DETECTION

In this section, we study an application of Akers array: In-
memory error detection. The objective is to connect stored
data to in-memory computing elements, so that errors that ap-
pear in data will be detected immediately (and then corrected).
Akers arrays have highly regular structures, which help their
fabrication in memories. And as we have shown, they can real-
ize symmetric functions, such as XOR, relatively efficiently,
which is useful for error detection.

Error detection is an important part of memory scrubbing, a
key function that ensures data reliability in memories. Conven-
tionally, data are stored using an error-correcting code (ECC).
To detect errors, the data need to be read from the memory
into the CPU, and decoding is performed there. Since reading
causes delay and cannot be performed frequently, the ECC is
often designed to tolerate many errors. However, infrequent
reads enhance error accumulation, which increases the chance
the codeword cannot be correctly decoded, and also makes
decoding more time consuming on average. It will be helpful
to have a mechanism for the memory to check the codeword
frequently, and see if it has errors. More specifically, as soon
as one or a few errors appear, we would like the memory
to detect them immediately, then trigger the CPU’s decoding
procedure and have the errors removed from the data. This
will prevent error accumulation and keep the codeword error
free most of the time. Only in the rare event that many errors
appear nearly simultaneously may the error detection mech-
anism fail (because the number of errors exceeds what the
mechanism guarantees to detect). In that rare case, we resort
to the conventional approach, namely, to wait for the CPU to
read the codeword and correct all the errors. The above ap-
proach can significantly increase the time-to-failure for data
storage. With in-memory hardware implementation, the error
detection can be fast, frequent and power efficient. In the fol-
lowing, we study how to use Akers arrays to efficiently detect
errors, given the ECC used to store data.

Let C ⊆ {0, 1}n be an ECC. Let (x1, · · · , xn) ∈ C be
a generic codeword. Let P1, P2, · · · , Pr ⊆ {1, 2, · · · , n}
be its parity-check constraints; specifically, ∀ i = 1, · · · , r,
⊕j∈Pixj ≡ 0. We associate Pi with a weight wi > 0, which

is the cost of realizing the parity-check function ⊕j∈Pixi us-
ing an Akers array. If the Akers array’s output is 1, errors are
detected. Since the Akers array has size |Pi| × |Pi| (as we
showed before), we let wi = |Pi|2.

Our objective is to choose a subset S ⊆ {1, 2, · · · , r} of
parity-check constraints that can detect t errors, where t is
a given parameter. (If i ∈ S, then Pi is chosen.) Given this
constraint, we need to minimize the total weight

∑
i∈S wi.

Let 1 6 i 6 t, and let {j1, j2, · · · , ji} ⊆ {1, 2, · · · , n} with
j1, j2, · · · , ji being i distinct numbers. We call {j1, j2, · · · , ji}
an error pattern of size i. Let Ei be the set of all error patterns
of size i. Clearly, |Ei| =

(
n
i

)
.

Theorem 8. A set of parity-check constraints S ⊆ {1, 2, · · · , r}
can detect t errors if and only if ∀ i ∈ {1, 2, · · · , t} and e ∈ Ei,
there exists s ∈ S such that |Ps ∩ e| is odd.

We can therefore formulate the error detection problem as
the following variation of the weighted set cover problem. Let
E1 ∪ E2 ∪ · · · ∪ Et be a universe of elements. ∀1 6 i 6 r,
we define Qi ⊆ (E1 ∪ E2 ∪ · · · ∪ Et) as a subset that consists
of all the error patterns Pi can detect. That is, for any error
pattern of size k 6 t – say {j1, j2, · · · , jk} ∈ Ek, – it is in Qi
if and only if |Pi∩{j1, j2, · · · , jk}| is odd. If an error pattern
is in Qi, we call it covered by Qi. It is not hard to see that

|Qi| =
t∑

j=1

∑
k=1,3,5,··· ,2·bmin{j,|Pi|}−1

2 c+1

(
|Pi|
k

)(
n− |Pi|
j − k

)
.

Then, our objective is to choose a set S ⊆ {1, 2, · · · , r}
with the minimum value of

∑
i∈S wi such that ∪i∈SQi =

∪i∈{1,··· ,t}Ei.
We use a well known greedy approximation algorithm [11]

to solve the above error detection problem (due to its NP hard-
ness). Let U denote the set of error patterns that are uncov-
ered yet. Initially, let U = (E1 ∪ E2 ∪ · · · ∪ Et). Repeatedly
choose a subset Qi ∈ {Q1, · · · , Qr} that minimizes wi

|Qi∩U |
(i.e., the weight wi divided by the number of uncovered error
patterns in Qi) and update U as U−Qi, until all the error pat-
terns are covered. The algorithm has time complexity O(n2t).
For memory scrubbing, t is usually a small constant, so the
complexity is poly(n).

We now analyze the performance of the above algorithm.
Let S∗t be an optimal solution, and let W ∗t =

∑
i∈S∗t

wi be its
weight. Let St be the solution of the above greedy algorithm,
and let Wt =

∑
i∈St wi be its weight. For any positive inte-

ger m, let Hm =
∑m
i=1

1
i be the m-th harmonic number. By

the well known analysis on set covering [11], we see that the
approximation ratio Wt

W∗t
is at most Hmaxi∈{1,··· ,r} |Qi|, which

is O(log n) (with t viewed as a constant).
The practical performance, however, can be substantially

better, especially for low-density parity-check (LDPC) codes.
Let d = maxi∈{1,··· ,r} |Pi|; namely, d is the maximum cardi-
nality of a parity-check constraint.

Theorem 9.
Wt

W ∗t
6
Wt

W1
·Hd.

2013 IEEE International Symposium on Information Theory

2372

Proof: We have Wt/W
∗
t 6 Wt/W

∗
1 = (Wt/W1) ·

(W1/W
∗
1) 6 (Wt/W1) ·Hd.

Theorem 10. Wt

W∗t
6 Wt

dn .

A more refined upper bound than Theorem 10 is presented
below. Consider irregular LDPC codes. For i = 2, 3, · · · , d,
let ρi denote the fraction of parity-check constraints of car-
dinality i. (So for i = 2, 3, · · · , d, there are rρi parity-check
constraints of cardinality i.) Let γ be the smallest integer in
{2, 3, · · · , d} such that

∑γ
i=2 iρi >

n
r .

Theorem 11.
Wt

W ∗t
6

Wt

r
∑γ−1
i=2 i

2ρi + γ2dn−r
∑γ−1
i=2 iρi
γ e

.

Proof: Let S∗1 = {i1, i2, · · · , ik} be an optimal solu-
tion for t = 1. For j = 1, 2, · · · , k, define Ui , {1, · · · , n}−
∪j−1z=1Piz . (By default, let U1 = {1, · · · , n}.) ∀ j = 1, 2, · · · , k
and z ∈ Pij ∩ Uj , define pz ,

|Pij |
2

|Pij∩Uj |
> |Pij | and call it

the price of the zth codeword bit. It is not hard to see that
W ∗1 =

∑
j∈S∗1

wj =
∑n
j=1 pj . For j = 2, 3, · · · , d, there

are rρj parity-check constraints of cardinality j, and they can
make less than or equal to rρj · j codeword bits have price j
(where the equality holds only if all the rρj parity-check con-
straints of cardinality j are selected in the optimal solution and
the sets of codeword bits they cover are mutually disjoint).
So it is not difficult to see that W ∗t > W ∗1 =

∑n
j=1 pj >∑γ−1

j=2 (j · rρj) · j+γ2d
n−r

∑γ−1
j=2 jρj

γ e, which leads to the final
conclusion.

We verify the above upper bounds in practice through ex-
periments with LDPC codes. Some typical results are shown in
Fig. 3, for t = 2. The x-axis of the figure represents the rates of
LDPC codes, and the y-axis represents the upper bounds to the
approximation ratio Wt/W

∗
t . Here codes of length n = 1200

and 9 different rates are shown (with rates 0.5, 0.67, 0.75, 0.8,
0.83, 0.86, 0.875, 0.889 and 0.9, respectively), using (3, 6)-,
(3, 9)-, (3, 12)-, (3, 15)-, (3, 18)-, (3, 21)-, (3, 24)-, (3, 27)-,
(3, 30)-regular LDPC codes, respectively. The curve at the top
is the worst-case upper bound Hmaxi∈{1,··· ,r}|Qi|. The curve
at the bottom corresponds to the two practical upper bounds
in Theorem 9 and Theorem 10. (We take the minimum of
the two.) For each code rate, 50 codes were constructed, and
a 100% confidence interval is shown. (Each interval is very
small and seems like a point in the figure.) It can be seen that
the actual approximation ratio in practice is much better than
the worst-case approximation ratio.

VI. CONCLUSIONS

This paper studies the concept of in-memory computing
through the study of Akers arrays. Generalized Akers arrays
for sorting high-alphabet symbols are presented. The capac-
ity of robust Akers arrays that tolerate one error is analyzed.
And Akers arrays’ application to in-memory error detection
is studied. A number of important open problems still exist.
In particular, it is interesting to understand the information

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

U
pp

er
 B

ou
nd

 to
 A

pp
ro

xi
m

at
io

n
R

at
io

Code Rate

The bound in practice
The worst case bound

Fig. 3. Comparison between the upper bounds in practice and the worst-case
upper bound to the approximation ratio Wt/W ∗

t , for t = 2.

theoretic bounds to the performance of in-memory computing
using Akers arrays and similar regular-structured arrays. They
remain as our future research directions.

REFERENCES

[1] S. B., Akers, “A rectangular logic array,” IEEE Transactions on Com-
puters, vol. C-21, no. 8, pp. 848–857, August 1972.

[2] S. Amari, “Neural theory of association and concept formation,” Biol.
Cybern, vol. 26, pp. 175–185, 1977.

[3] J. B. Bate and J. C. Muzio, “Three cell structure for ternary cellular ar-
rays,” IEEE Trans. Computers, vol. C-26, no. 12, pp. 1191–1202, 1977.

[4] G. E. Hinton and J. A. Anderson, eds., Parallel Models of Associative
Memory, Hillsdale, NJ: Erlbaum, 1981.

[5] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
pp. 2554–2558, 1982.

[6] S. N. Kukreja and I. Chen, “Combinational and sequential cellular struc-
tures,” IEEE Trans. Computers, vol. C-22, no. 9, pp. 813–823, 1973.

[7] N. Kamiura, Y. Hata, F. Miyawaki, and K. Yamato, “Easily testable
multiple-valued cellular array”, Proc. 22nd Int. Symp. on Multiple-valued
Logic, pp. 36–42, 1992.

[8] N. Kamiura, Y. Hata, and K. Yamato, “Design of repairable cellular
array on multiple-valued logic”, IEICE Trans. Inf. & Syst., vol. E77-D,
no. 8, pp. 877–884, 1994.

[9] N. Kamiura, Y. Hata, and K. Yamato, “Design of fault-tolerant cellular
arrays on multiple-valued logic”, Proc. 24th Int. Symp. on Multiple-
Valued Logic, pp. 297–304, 1994.

[10] N. Kamiura, H. Satoh, Y. Hata, and K. Yamato, “Design in Fault Iso-
lating of Ternary Cellular Arrays Using Ternary Decision Diagrams”,
Proc. 3rd Asian Test Symposium, pp. 201–206, 1994.

[11] J. Kleinberg and E. Tardos, Algorithm Design, 1st ed., Chapter 11.3,
Pearson Education Inc., 2006.

[12] S. N. Kukreja and I. Chen, “Combinational and sequential cellular struc-
tures,” IEEE Trans. Computers, vol. C-22, no. 9, pp. 813–823, 1973.

[13] W. A. Little, “The existence of persistent states in the brain,” Math.
Biosci., vol. 19, pp. 101–120, 1974.

[14] W. A. Little and G. L. Shaw, “Analytic study of the memory storage
capacity of a neural network,” Math. Biosci., vol. 39, pp. 281–290, 1978.

[15] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh,
“The capacity of the Hopfield associative memory,” IEEE Trans. on In-
formation Theory, vol. 33, no. 4, pp. 461–482, 1987.

[16] D. M. Miller and J. C. Muzio, “A ternary cellular array,” Proc. Int. Symp.
on Multiple-Valued Logic, pp. 469–482, 1974.

[17] G. Palm, “On associative memory,” Biol. Cybern, vol. 36, pp. 19–31,
1980.

2013 IEEE International Symposium on Information Theory

2373

