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(57) ABSTRACT

Rank modulation has been recently proposed as a scheme for
storing information in flash memories. Three improved
aspects are disclosed. In one aspect the minimum push-up
scheme, for storing data in flash memories is provided. It aims
atminimizing the cost of changing the state of the memory. In
another aspect, multi-cells, used for storing data in flash
memories is provided. Each transistor is replaced with a
multi-cell of mm transistors connected in parallel. In yet
another aspect, multi-permutations, are provided. The para-
digm of representing information with permutations is gen-
eralized to the case where the number of cells in each level is
a constant greater than one. In yet another aspect, rank-modu-
lation rewriting schemes which take advantage of polar
codes, are provided for use with flash memory.
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605
600\ ( START )

! /610

Receive data values v = [v,, vy, ,2,] € S
To be stored in data storage containing current values

u = [uy,uy, ", U, ES
i / 615
]Let v be an element of S. |

l / 620

|Let S be a set of symbols in a rank modulation coding scheme. i

l S 625

Let n be a number of ranks in v to be stored in a group of n rank
locations in data storage.
l e 630

Program the group of n rank locations according to the rank modulation
coding scheme and the value v such thatfori =n — 1,n — 2, ,1
The programmed value of a rank location #; is increased until it is
greater than the value of a rank location ¥:+1 by a minimum cell
differentiation amount.
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RANK-MODULATION REWRITING CODES
FOR FLASH MEMORIES

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application Ser. No. 61/608,245 entitled “Compressed
Encoding for Rank Modulation” by Anxiao Jiang, Eyal En
Gad and Jehoshua Bruck filed Mar. 8, 2012 and claims the
benefit of U.S. Provisional Application Ser. No. 61/608,465
entitled “Multi-Cell memories and compressed Rank Modu-
lation” by Anxiao Jiang, Eyal En Gad, and Jehoshua Bruck
filed Mar. 8, 2012 and claims the benefit of U.S. Provisional
Application Ser. No. 61/725,347 entitled “Rank-Modulation
Rewriting Codes for Flash Memories™ by Anxiao Jiang, Eyal
En Gad, Eitan Yaakobie and Jehoshua Bruck filed Nov. 12,
2012. Priority of the filing dates is hereby claimed, and the
disclosures of the prior applications are hereby incorporated
by reference for all purposes.

BACKGROUND

[0002] The present disclosure generally relates to data stor-
age devices, systems and methods. In various examples, data
modulation techniques in data storage devices such as flash
memory devices are described.

[0003] Flash memories are one type of electronic non-vola-
tile memories (NVMs), accounting for nearly 90% of the
present NVM market. See, for example, the Web site of
Saifun Semiconductors Ltd. (available at www.saifun.com)
and Web-Feet Research, Inc. (available at www.web-feetre-
search.com). Today, billions of flash memories are used in
mobile, embedded, and mass-storage systems, mainly
because of their high performance and physical durability.
See, for example, P. Cappelletti et al., Chapter 5, “Memory
Architecture and Related Issues” in Flash memories, Kluwer
Academic Publishers, 1st Edition, 1999), and E. Gal and S.
Toledo, ACM Computing Surveys, 37(2):138-163 (2005).
Example applications of flash memories include cell phones,
digital cameras, USB flash drives, computers, sensors, and
many more. Flash memories are now sometimes used to
replace magnetic disks as hard disks, such as the 64 GB hard
disk by SanDisk (see “SanDisk launches 64 gigabyte solid
state drives for notebook PCs, meeting needs for higher
capacity,” available at the Web site URL of http://biz.yahoo.
com/cnw/070604/sandisk.htm1?.v=1). See also the Web
article on the 256 GB hard disk by PQI (“PQI unveils 256 GB
solid state drive,” available at the URL of vwww.guru3d.com/
newsitem.php?id=5392). Based on the popular floating-gate
technology, the dominance of flash memories is likely to
continue.

[0004] Some problems exist that may limit the improve-
ment of flash memories with respect to their speed, reliability,
longevity, and storage capacity. Flash memories may have a
limited lifetime due to the quality degradation caused by
block erasures; a flash memory can endure only about
10°~10° block erasures before it becomes no longer usable
(see S. Aritome et al., Proceedings of the IEEE, 81(5):776-
788 (1993), and P. Cappelletti et al., ibid. Removing charge
from any single cell for data modification may require the
block to be erased and all the 10° or so cells in it to be
reprogrammed (or programmed to another block). The writ-
ing speed may be constrained by a conservative cell-program-
ming process that is about ten times slower than reading. One
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purpose of such conservative programming is to avoid over-
programming, a serious error that may only be correctable by
block erasure and reprogramming. Data reliability may be
limited by errors caused by charge leakage, disturbs, and the
like. See S. Aritome et al., ibid; P. Cappelletti et al., ibid; and
P. Pavan et al., Proceedings of The IEEE, 85(8):1248-1271
(August 1997). The errors become more common when
multi-level cells are used to increase the storage capacity.

SUMMARY

[0005] In some examples, a minimum push-up scheme to
store data in flash memories is described. In some embodi-
ments, the minimum push-up scheme starts with data values
v=[v,, v, . .., V,|ES,, that are received to be stored in data
storage containing current values u=[u,, u,, . . . , U, ]JES, .
Next, v is defined as an element of S where S is defined as a
set of symbols in a rank modulation coding scheme. Further,
n is defined as a number of ranks in v to be stored in a group
of n rank locations in data storage of the data device. The
group of n rank locations are programmed according to the
rank modulation coding scheme and the value v such that for
i=n-1,n-2, ... 1 the programmed value of a rank location v,
is increased until it is greater than the value of a rank location
v,,, by a minimum cell differentiation amount.

[0006] In some embodiments each of the n rank locations
may comprise a cell of the device data storage. In further
embodiments, each rank location may comprise a plurality of
cells of the device data storage. In other embodiments, each
rank location may comprise an equal number of cells of the
device data storage. In still further embodiments, program-
ming may comprise increasing the value of all cells in the
rank location v, until the value in each of the cells v, is greater
than the value in each of the cells in the rank location v ;. In
other embodiments, the current values of u=[u,, u,, . . .,
u, |ES,, are read from the device data storage before the pro-
gramming of the group of n rank locations with v.

[0007] In another aspect, a new scheme, multi-cells, used
for storing data in flash memories is provided. NAND flash
memory is the most widely used type for general storage
purpose. In NAND flash, several floating gate transistors are
connected in series where we can read or write only one of
them at a time. Each transistor is replaced with a multi-cell of
rn transistors connected in parallel. The control gates, the
sources and the drains of the transistors are connected
together. That way, their current sums together in read opera-
tions, and the read precision increases by m times, allowing
the storages of mg levels in a single multi-cell. In write
operations, the same value is written to all the transistors,
such that the sum of their charge levels provides the desired
total level.

[0008] Insome embodiments processes for manufacturing
and operating a data device are provided. A plurality of tran-
sistors, each of which is capable of storing charge, are dis-
posed on a device. Each of the plurality of transistors com-
prises a gate, a source, and a drain. Connections are formed
between the sources, gates and drains of each of the plurality
of transistors. Each connection is capable of carrying electri-
cal current. Next, data is stored in the plurality of transistors.
The data corresponds to a sum of charges stored in each of the
plurality of transistors. In further embodiments connections
may be formed between the gates of each of the plurality of
transistors.

[0009] In yet further embodiments, a process for operating
a data device is provided. First, a code word is generated that
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has a plurality of symbols selected from a set of symbols.
Each of the plurality of symbols is stored in a data storage
location of the data device. Each data storage location com-
prises a plurality of parallel connected devices. In some
embodiments the plurality of parallel connected devices may
comprise transistors.

[0010] In yet another aspect, multi-permutations, used for
storing data in flash memories is provided. The paradigm of
representing information with permutations is generalized to
the case where the number of cells in each level is a constant
greater than 1, multi-permutations.

[0011] Namely, the states that the cells can take are no
longer permutations of a set, but permutations of a multiset.
For example, if the number of cells at each level is 22, the two
cells in each level do not need to be identical in their analog
values, they just need to be distinguishable with other levels
(but do not need to be mutually distinguishable). Hence, the
encoding and decoding use relative levels, and the scheme has
good resistance to drift; namely, the advantages of the per-
mutation based relative scheme that we described above still
apply.

[0012] The case where the multiplicities of all the elements
in the multiset are equal, is denoted by z. This generalization
becomes interesting especially when z is large, and n is still
much larger than z. In that case (if q is still much larger than
r), it can be proven that the upper bound on the total capacity
is 2q bits per cell, and that there exists a construction that
approaches this bound. The instantaneous capacity of the
construction is approaching 2 bits per cell.

[0013] Insome embodiments, a computer method of oper-
ating a data device where a predetermined rank configuration
(d;,d, ...d,)is defined. Further, d, is the number of cells in
the i? rank. A new multi-permutation is received and defined
by v=[v,, v,, . . ., v,,|ES that fits the predetermined rank
configuration. A process is then initiated in response to
receiving the new multi-permutation, adding charge to each
cell in a plurality of memory locations such that the plurality
of cells represent the new multi-permutation. The process
may be continued.

[0014] In other embodiments, the sequential order of an
initial analog level of a stored value in each cell of a plurality
of cells in a data device is determined. The sequential order is

defined as a value x comprising [{X,, X,, - - -, Xz }> {Xz,15
Xd1+2s cees Xd2+d2}s oo X+Zi:"’1dis X2+2i:1”’1d15 cees X):izl"di}:]'
[0015] In further embodiments, a predetermined rank con-

figuration (d,, d, . . . d,,) is defined, wherein d, is the number
of cells in the i rank. A new multi-permutation is received
and defined by v=[v,, v,, . . ., v,]ES that fits the predeter-
mined rank configuration. The analog levels of cells of a rank
n in v are retained. Finally, the cells of rank i in v for I=n-1,
n-2 ... 1 such that the analog levels of cells in a rank i are
programmed to all be higher than the analog levels of the cells
of rank i+1 in v by at least a minimum rank differentiation.
The process may be continued.

[0016] Inyetanother aspect, a new data representation and
rewrite model, used for storing data in flash memories is
provided. A construction is illustrated which shows how to
construct rank modulation codes achieving rate approaching
two on each write. This construction takes advantage of the
recently discovered polar codes which were recently used in
the construction of WOM codes.

[0017] Insome embodiments, a computer method of oper-
ating a data device where a data value is received comprising
a plurality of data sets wherein each data set is a set of values
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representing a rank in a plurality of ranks. A new data set for
arank ofa plurality of ranks is received to store in the memory
device wherein the memory device comprises a plurality of
cells. A current state of candidate cells is read within the
plurality of cells wherein candidate cells are used to store the
new data set. A binary representation of the plurality of cells
is created and used to store the new data set. A WOM code is
used to combine the binary representation with the new data
set to create a binary WOM vector. The binary WOM vector
is modified to equal quantities of 1’s and 0’s within the
candidate cells creating a new data vector. The new data
vector is written to the candidate cells. If anew data vector has
been written for each rank of the plurality of ranks the process
may continue. If all of the data vectors have not been written,
then prior steps starting with receiving a new data set may be
repeated until all the new data vectors have been written to the
memory.

[0018] The foregoing summary is illustrative only and is
not intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the fol-
lowing detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG.1 is a representation of a memory cell arrange-
ment using “push to the top” operations in accordance with
the description herein.

[0020] FIG. 2 is a representation of a memory cell arrange-
ment using “minimal push up” operations in accordance with
the description herein.

[0021] FIG. 3 is a representation of a memory cell arrange-
ment using typical “minimal push up” operations in accor-
dance with the description herein.

[0022] FIG. 4 is a representation of a memory cell arrange-
ment depicting arare case of “minimal push up” operations in
accordance with the description herein.

[0023] FIG. 5 is a state diagram for the states of three cells
in accordance with the description herein.

[0024] FIG. 6 is a process that depicts a programming
approach that minimizes the increase of cell levels in accor-
dance with the description herein.

[0025] FIG. 7A is a schematic diagram of a traditional
arrangement of a NAND flash memory structure accordance
with the description herein.

[0026] FIG. 7B is a schematic diagram of a multi-cell
arrangement of a NAND flash memory structure accordance
with the description herein.

[0027] FIG. 8A is a process for manufacturing and operat-
ing a data storage device in accordance with the description
herein.

[0028] FIG. 8B is a process for operating a data storage
device in accordance with the description herein.

[0029] FIG. 9 is a representation of a memory cell arrange-
ment in accordance with the description herein.

[0030] FIG. 10 is a representation of a memory cell
arrangement in accordance with the description herein.
[0031] FIG. 11 is a representation of a memory cell
arrangement in accordance with the description herein.
[0032] FIG. 12 is a representation of a memory cell
arrangement in accordance with the description herein.
[0033] FIG. 13 is a representation of system model for
compressed rank modulation in accordance with the descrip-
tion herein.
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[0034] FIG. 14A is a process for operating a data device in
accordance with the description herein.

[0035] FIG. 14B is a process for reading a data device in
accordance with the description herein.

[0036] FIG. 15A is a process for writing to a data device in
accordance with the description herein.

[0037] FIG. 15B is a process for operating a data device in
accordance with the description herein.

[0038] FIG. 15C is a process for operating a data device in
accordance with the description herein.

[0039] FIG. 15D is a process for operating a data device in
accordance with the description herein.

[0040] FIG. 15E is a process for operating a data device in
accordance with the description herein.

[0041] FIG. 16 is an illustration of a memory device con-
structed in accordance with the present invention.

[0042] FIG. 17 is a block diagram of a computer apparatus
to perform the operations of FIGS. 6, 8A, 8B, 14 and 15 for
communicating with a memory device such as depicted in
FIG. 16.

[0043] FIG. 18 is a block diagram that shows data flow in a
memory device that operates according to the rank modula-
tion scheme described herein.

DETAILED DESCRIPTION

[0044] The contents of this Detailed Description are orga-
nized under the following headings:
[0045] 1. Introduction to Rank Modulation
[0046] II. Permutation “Minimum Push Up”
[0047] A. Rewrite Model and the Transition Graph
[0048] B. Worst-case Decoding Scheme for Rewrite
[0049] TII. Multi-Cells
[0050] A. Multi-Cell Flash Memory
[0051] B. Notations and Model Properties
[0052] C. Upper Bounds
[0053] D. Construction for the Average Case
[0054] E. Existence for the Worst Case
[0055] IV. Multi-Permutations
[0056] A. Compressed Rank Modulation
[0057] 1. Initial Write
[0058] 2. Subsequent Rewrites
[0059] 3. Programming Symmetric Cells
[0060] 4. Rebalancing Permutations
[0061] 5. Record Weights
[0062] V. Rank-Modulation Rewriting Codes
[0063] A. Definitions of the Rewrite Model
[0064] B. Description of the Construction
[0065] C. Polar WOM Codes
[0066] VI. Example Embodiments
[0067] VII. Conclusion
[0068] Subheadings in the description are not listed above
but may be present in the description below.

1. INTRODUCTION TO RANK MODULATION

[0069] The amount of charge stored in a flash memory cell
can be quantized into q=2 discrete values in order to repre-
sent up to log, q bits. (The cell is called a single-level cell
(SLC) if =2, and called a multi-level cell MLC) if ¢>2). The
q states of a cell are referred to as its levels: level 0, level 1, .
.., level g-1. The charge is quantized into discrete levels by
an appropriate set of threshold levels. The level of a cell can
be increased by injecting charge into the cell, and decreased
by removing charge from the cell. Flash memories have a
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property that although it is relatively easy to increase a cell’s
level, it is very costly to decrease it. This results from the
structure of flash memory cells, which are organized in blocks
ofabout 10°~10° cells. In order to decrease any cell’s level, its
entire containing block is erased first (which involves
removal of the charge from all the cells of the block) and after
then it can be reprogrammed. Block erasures are not only
slow and energy consuming, but also significantly reduce the
longevity of flash memories, because every block can endure
only about 10*~10° erasures with guaranteed quality. See, for
example, P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni,
Flash Memories. Kluwer Academic Publishers, 1999. There-
fore, reducing the number of block erasures improves the
longevity of flash memories.

[0070] InMLC flash memory, the process of programming
a cell to a specific level is designed carefully. The target level
is approached from below in order to avoid overshooting of
the cell, which may result in an undesirable block erasure.
Consequently, these attempts use multiple programming
cycles, and they work only up to a moderate number of levels
per cell, e.g. 8 or 16 levels. In order to avoid the problem of
exact programming of a cell level, a framework of the rank
modulation coding was introduced. See, for example, A.
Jiang, R. Mateescu, M. Schwartz, and J. Bruck, Rank modu-
lation for flash memories, IEEE Trans. on Inform. Theory,
vol. 55, no. 6, pp. 2659-2673, June 2009, hereinafter Rank
Modulation for flash memories. The main idea of this coding
scheme is to represent the information by the relative values
of'the cell levels rather than by their absolute values. Given a
set of N cells, their levels induce a permutation which is used
to encode the data. One of the features of the rank modulation
scheme is that in programming, a cell is charged to a higher
level than that of the previous cell in the permutation, and
therefore there is reduced risk of overshooting. Another fea-
ture of representing data by the ranking of the cells, is that the
threshold levels are no longer needed. This mitigates the
effects of retention in the cells (slow charge leakage).
[0071] Rank Modulation for flash memories described
rewriting codes for the rank modulation scheme, in order to
reuse the memory between block erasures. In general, a moti-
vation behind rewriting codes for flash memories is to
increase the number of times data can be rewritten between
two erasure operations while preserving the constraint that
cells only increase their level.

[0072] In rank modulation, a feature is to minimize the
increase in the highest charge level among the cells after a
rewriting operation. An observation is that rewriting of dif-
ferent permutations may increase the highest charge level of
the cells by different magnitudes. For example, assume the
current permutation be (3,1,2), such that the first cell has the
highest level, e.g. its rank is 3, then the third cell (rank 2) and
finally the second cell (rank 1). Now assume the cells are
rewritten and are to represent the permutation (2,3,1). This
can be done by adding sufficient charge to cell 2 such that its
level is greater than the first cell’s level. Now consider a
different case, where the cells need to represent the permuta-
tion (1,2,3). In this case, the level of both cell 2 and cell 3 are
raised to be higher than the level of cell 1, as shown in FIG. 1.
Since some gap may be needed between them, and also some
gap between cell 2 and cell 1, it is possible that the increase in
the level of the highest cell in the second example, may be
twice as much as the increase in the first example.

[0073] A consequence from the previous operation(s) is,
that if every permutation represents different information,
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then the number of rewrites before incurring a block erasure
can vary between different input data sequences. In order to
obtain a large number of rewrites, rewriting codes let multiple
permutations represent the same information (that is, intro-
ducing redundancy). Thus, when a certain data is to be writ-
ten, there would be at least one permutation corresponding to
that data that could be written without increasing the charge
of'the highest cell by a large amount. In Rank Modulation for
flash memories, rewriting codes were studied under a strong
constraint of push-to-the-top operations. In every push-to-
the-top operation, a single cell is set to be the top-charged cell.
This scheme provides easy implementation and fast program-
ing, but it suffers a relatively low rate.

[0074] The work on rank modulation coding for flash
memories paved the way for additional results in this area.
First, error-correcting codes in the rank modulation setup
attracted a lot of attention. See, for example, A. Barg and A.
Mazumdar, “Codes in permutations and error correction for
rank modulation,” /EEE Trans. on Inform. Theory, vol. 56,
no. 7, pp. 3158-3165, July 2010; F. Farnoud, V. Skachek, and
O. Milenkovic, ‘“Rank modulation for translocation correc-
tion,” in Proceedings of the IEEE International Symposiom
on Information Theory Workshop (ISIT), June 2012, pp.
2088-2992; A. Jiang, M. Schwartz, and J. Bruck, “Correcting
charge-constrained errors in the rank-modulation scheme,”
IEEE Trans. on Inform. Theory,vol. 56, no. 5, pp. 2112-2120,
May 2010; 1. Tamo and M. Schwartz, “Correcting limited-
magnitude errors in the rank-modulation scheme,” IEEE
Trans. on Inform. Theory, vol. 56, no. 6, pp. 2551-2560, June
2010. Other variations of rank modulation were studied as
well. A new concept of bounded/local rank modulation was
introduced and its capacity was calculated. See, for example,
7. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded
rank modulation for flash memories,” in Proc. 2009 IEEFE Int.
Symp. Information Theory, June 2009, pp. 1234-1238. Here,
the data is not represented by a single permutation, but rather,
a sequence of permutations of a given size, which may over-
lap, are used to represent the data. Yet another variation,
called partial rank modulation, was introduced. See, for
example, Z. Wang and J. Bruck, “Partial rank modulation for
flash memories,” in Proceedings of the 2010 IEEE Interna-
tional Symposium on Information Theory (ISIT2010), Austin,
Tex. U.S.A., June 2010, pp. 864-868. Now the data is repre-
sented by a single permutation, but only the highest k cell
levels, for some fixed k, may be considered for the informa-
tion representation.

II. PERMUTATION “MINIMUM PUSH UP”

[0075] The costof changing the state in the scheme namely,
the cost of the rewriting step is measured by the number of
“push-to-top” operations that are used, because it represents
by how much the maximum cell level among the n cells has
increased. See, for example, A. Jiang, R. Mateescu, M.
Schwartz, and J. Bruck, “Rank modulation for flash memo-
ries,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659-2673, June 2009. Reducing this cell-level increment
may be performed in one embodiment because the cells have
aphysical limit that upper bounds the cell levels. The less the
cell levels are increased, the more rewrites can be performed
before a block erasure operation is used, and the longer the
lifetime of the memory will be.

[0076] An example is shown in FIG. 1, where the state of
n=4 cells is to be changed from u=[2,1,3,4] to v=[2,1,4,3].
(Here the cells are indexed by 1, 2, . . ., n. And their state is
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denoted by the permutation [u,, u,, . .., w,]ES,,, where cell u,
has the highest charge level and u,, has the lowest charge level.
For i=1, . . ., n, cell v, has rank i). Three “push-to-top”
operations are used, where cell 4, cell 1 and cell 2 are pushed
sequentially. They are represented by the three edges in FIG.
1. The cost of this rewriting is 3.

[0077] Itcanbe seen from the above example, however, that
the “push-to-top” operation is a conservative approach. To
change the state from u=[2,1,3.4] to v=[2,1,4,3], when cell 4
is pushed, the level of cell 4 is pushed to be greater than cell
3.There is no need to make the level of cell 4 to be greater than
the levels of all the other n—1=3 cells (i.e., cells 1, 2 and 3).
Similarly, when cell 1 is pushed, its level is pushed to be
greater than cell 3 and cell 4, instead of cells 2, 3 and 4. So a
more moderate programming approach as shown in FIG. 2
can be taken, and the increment of the cell levels (in particular,
the increment of the maximum cell level) can be substantially
reduced. So, the cost of rewriting can be reduced, which
improves the overall rewriting performance and the longevity
of the memories.

[0078] Described in this disclosure is a programming
approach that minimizes or otherwise reduces the increase of
cell levels as illustrated in FIG. 6. To change the cell state
from U=[u,,u,,...,u,]|ES, o v=v,,V,,...V,]ES,, the cells
are programed based on their order in v, so that every cell’s
level increases as little as possible:

[0079] Fori=n-1,n-2,..., 1 perform:

[0080] {Increase the level of cell v,, to make it greater than
the level of the cell v,,, }.

[0081] Note that in the above programming process, when
cell v, is programmed, cell v,,, already has the highest level
among the cells v,,, v,,,, . . ., v,,. The programming opera-
tion here is referred to as the “minimal-push-up” operation.
(In comparison, if cell v, is programmed to make its level
greater than the maximum level among thecellsv,,...,v, ;,
Vii1s - - - 5 V,,, then it becomes the original “push-to-top”
operation.) The “minimal-push-up” approach is robust, as it
has reduced risk of overshooting. And it reduces increment of
the maximum level of the n cells (e.g., the rewrite cost).

A. Rewrite Model and the Transition Graph

[0082] For coding schemes, a good robust discrete model is
usedfor the rewriting. A discrete model is described herein for
measuring the rewriting cost, which is suitable for both the
“push-to-top” approach and the “minimal-push-up”
approach. To rigorously describe the cost of a rewrite opera-
tion (i.e., a state transition), the concept of virtual levels is
used. Letu=[u,, u,, ..., u,]JES, the current cell state, and let
v=[v,, V5, . .., V,|ES, denote the new state that the cells
change into via increasing cell levels. Let d (u—v) denote the
number of push-up operations that are applied to the cells in
order to change the state from uinto v. Fori=1, 2, ..., d(u—v),
letp,[n]= {1,2,...,n} denote theinteger and let B,< [n]\{p,}
denote the subset, such that the i-th push-up operation is to
increase the p, th cell’s level to make it greater than the levels
ofall the cells in B,. (For example, for the rewriting in FIG. 1,
we have d(u—v)=3, p,=4, B,={1,2,3}, p,=1, B,={2,3,4},
ps=2, B,={1,3,4}. And for the rewriting in FIG. 2, we have
d(u—v)=3, p,;=4, B,=(3). p,=1, B,={3.4}, ps=2, B;={1.3,
4}.) Such push-up operations have reduced risk of overshoot-
ing.

[0083] Forthe current state u, we assign the virtual levels n,
n-1,...,2,1tothecellsu,,u,,...,u,_;,u,, respectively. The

s Vu—1s Vs

greater a cell’s level is, the greater its virtual level is. It is
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noted that when the virtual level increases by one, the increase
in the actual cell level is not a constant because it depends on
the actual programming process, which is noisy. However,
when a cell a is programmed to make its level higher than a
cell b, the difference between the two cell levels will concen-
trate around an expected value. (For example, a one-shot
programming using hot-electron injection can achieve stable
programming performance at high writing speed.) Based on
this, a discrete model for rewriting is provided, which may be
a usable tool for designing coding schemes.

[0084] Consider the ith push-up operation (for i=1, . . .,
d(u—v)), where the level of cell p; is increased to make it
greater than the levels of the cells in B,. For any j€[n], let I,
denote cell j’s virtual level before this push-up operation.
Then after the push-up operation, the virtual level of cell p,
may be

1+ max/;
jeB;

namely, it is greater than the maximum virtual level of the
cells in B, by one. This increase represents the increment of
the level of cell p,. After the d(u—v) push-up operations that
change the state from uto v, for i=1, . . ., n let 1! denote the
virtual level of cell t. The cost of the rewriting process is
described as the increase in the maximum virtual level of the
n cells, which is

max/, —n =1, —n.
ieln] 1

Example 1

[0085] For the rewriting process shown in FIG. 1, the vir-
tual levels of cells 1, 2, 3, 4 change as (3,4,2,1)—(3,4,2,5)—
(6,4,2,5)—(6,7,2,5). Its cost is 3.

[0086] For the rewriting process shown in FIG. 2, the vir-
tual levels of cells 1, 2, 3, 4 change as (3,4,2,1)—(3,4,2,3)—
(4,4,2,3)—>(4,5,2,3). Its cost is 1.

[0087] The model captures the typical behavior of cell pro-
gramming. Yet when the minimal-push-up operations are
used, the number of cells to push may not always be a constant
when the old and new states u, v are given. An example is
shown in FIGS. 3 and 4, where the state changes from u=[1,
2,3,4] to v=[2,1,4,3]. An example programming process is
shown in FIG. 3, where two cells cell 4 and then cell 2 are
pushed up sequentially. (Note that based on the discrete
model, the rewriting cost is 1. This is consistent with the
increase of the maximum cell level here.) But as shown in
FIG. 4, in the rare case where cell 4’s level is significantly
over-raised to the extent that it exceeds the level of cell 1, cell
1 will also be programmed, leading to three minimal-push-up
operations in total. However, we would like to show that
above discrete model is still a robust model for the following
reasons. First, in this paper we focus on the typical (i.e., most
probable) behavior of cell programming, where the rewriting
cost matches the actual increase of the maximum cell level
well. In the rare case where cell levels are increased by too
much, additional load balancing techniques over multiple cell
groups can be used to handle it. Second, the rare case—that a
cell’s level is overly increased—can happen not only with the
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minimal-push-up operation but also with the push-to-top
operation; and its effect on the increment of the maximal cell
level is similar for the two approaches. So the discrete model
still provides a fair and robust way to evaluate the rewriting
cost of different state transitions.

[0088] This disclosure describes codes based on state tran-
sitions using the minimal-push-up operations. Given two
states u=[u(1), u(2), . . ., u(n)]ES,,, and v={v(1), v(2), . . .,
v(n)]ES,, let C(u—v) denote the cost of changing the state
from utov. (Note thatu(-), v(-) are both functions. Letu™,v~"
be their inverse functions.) The value of C(u—v) can be
computed as follows. Corresponding to the old state u, assign
virtual levels n,n-1, . .., 1 to the cells u(1), u(2), . . . , u(n),
respectively. Fori=1, 2, . .., n, let ], denote the virtual level of
cell i corresponding to the new state v. Then based on the
programming process described previously, 1, . . ., 1, can be
computed as follows:

[0089] 1.Fori=l,2,...,n perform:
{luiyens1=1}
[0090] 2. Fori=n-1,n-2,...,1do:

{ysmax{l,;, 1+l L)
Then:
Clu—v)=l .

It can be seen that 0=C(u—v)n-1. An example of the rewrit-
ing cost is shown in FIG. 5.

[0091] The following theorem provides an equivalent defi-
nition of the cost. According to the theorem, the cost is equal
to the maximal increase in rank among the cells. Theorem 1.

Clu—v) = r_nfl}]g(v*(i) — ().
[0092] Proof: Assume by induction on k that

b =n+1—k+ max (i—u'((@)).
iclk, ....n]

[0093] Inthe base case, k=n, and 1,,,,—,,, 1-n+max,cp,,
A(i—u~(v(i)))=14n-u~"(v(n)). This is the result of the pro-
gramming process. Now assume that the expression is true for
k. For k-1, by the programming process,

Lg—ny =max{lyg, + 1, n+1 - uw (v(k = 1))}
= max{n +1—k+ max (—u'@O)N+1Ln+l-u(vk- 1))}
ielk, ... ]
[0094]

by the induction assumption

=n+l-(k=1) +max{_ max ](i— W), k-1 - (k- 1))} =

n+l—(k=D+ max (i—ut(v(@))
ielk-1,...n]

and the induction is proven.
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[0095] Now 1, is assigned in the definition of the cost:

Clu—v)=lyy—-n
=pn+l-14+ max (-u'(()-n
iell, ... n]

= r.n;n}c(v’%i) —u (@)

[0096] Codes for rewriting data based on the “push-to-top”
operation have been studied. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no.
6, pp. 2659-2673, June 2009. Since the “minimal-push-up”
approach has lower rewriting cost than the “push-to-top”
operation, rewrite codes can be constructed with higher rates.
[0097] In order to discuss rewriting, a decoding scheme is
defined. It is often the case that the alphabet size used by the
user to input data and read stored information differs from the
alphabet size used as internal representation. In one embodi-
ment, data is stored internally in one of n! different permuta-
tions. Assume the user alphabet is Q={1, 2, . . ., q}. A
decoding scheme is a function D:S,—Q mapping internal
states to symbols from the user alphabet. Suppose the current
internal state is uES,, and the user inputs a new symbol a€Q.
A rewriting operation given o is now defined as moving from
state uES,, to state v&S,, such that D(v)=a. The cost of the
rewriting operation is C(u—v).

[0098] Next, the transition graph G,=(V,,, A,) is defined as
a directed graph with V=S, i.e., with n! vertices represent-
ing the permutations in S,,. There is a directed edge u—v if
and only if C(u—v)=1. Note that G,, is a regular digraph.
Given a vertex €V, and an integer r<{0, 1, . . ., n~1}, the
ball B, .(u) is defined as B, (W)={vEV, ICu—=v)=r}.

Theorem 2.

[0099]
1B, (u)=r1(r+1)""

[0100] Proof: Induction is used on n. When n=2 the state-
ment is trivial. (So is it when n=r+1, where IB,,, ,(0)I=(r+1)
1.) Now the statement is assumed to be true for n=n_, and
consider n=ny+1 and n>r+1. Letu=[u(1),u(2), . .., un)|<s,,
and without loss of generality (w.l.0.g.) let u(l)=n. Let v=[v
1), v(2), . .., vIEB, (). Let i=[u(2), u(3), . . ., u()]
€S, ;, and let ¥ S,_; be obtained from v by removing the
element u(1)=n. By Theorem 1, the first element in u, namely
u(1)=n, can take one of the first r+1 positions in v. Given that
position, there is a one-to-one mapping between pushing-up
the remaining n-1 elements from u to v&S,, and pushing-up
those n-1 elements from Gt to ¥€S,,_,, and C(1—¥)=C(u—=v)
r. So the following results: |B, (u)l=r+D)IB,_, ()= . . .
=+ 1Y e D) =t (1Y

[0101] Note that given u, I{v&S |v'(i)-u()I=r for
1=i=n}is the size of the ball under infinity norm. Whenr=1,
that size is known to be a Fibonacci number. See, for example,
T. Kleve, “Spheres of permutations under the infinity norm
permutations with limited displacement,” University of Ber-
gen, Bergen, Norway, Tech. Rep. 376, November 2008.
[0102] In addition, we note that IBn,l(u)IZZ”"l. Therefore,
the out-degree of each vertex in G, is 2”~1. In comparison,
when we allow only the “push-to-the-top” operation, IB,, ; (u)
I=n. Hence we get an exponential increase in the degree,
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which might lead to an exponential increase in the rate of
rewrite codes. In the next section we study rewrite codes
under a worst-case cost constraint.

B. Worst-Case Decoding Scheme for Rewrite

[0103] Described herein are codes where the cost of the
rewrite operation is limited by r.

[0104] 1.The case of n=4

[0105] The case of r=1 is evaluated first. The first non-
trivial case for r=1 is n=3.

[0106] However, for this case the additional “minimal-
push-up” transitions do not allow for a better rewrite code. An
optimal construction for a graph with only the “push-to-top”
transitions has been discussed. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no.
6, pp. 2659-2673, June 2009. That construction assigns a
symbol to each state according to the first element in the
permutation, for a total of 3 symbols. This construction may
also be optimal for a graph with the “minimal-push-up” tran-
sitions.

[0107] For greater values of n, in order to simplify the
construction, we limit ourselves to codes that assign a symbol
to each of the n! states. We call such codes full assignment
codes. Note that better codes for which not all the states are
assigned to symbols might exist. When all of the states are
assigned to symbols, each state must have an edge in A , to at
least one state labeled by each other symbol. We define a set
of vertices D in G,, as a dominating set if any vertex not in D
is the initial vertex of an edge that ends in a vertex in D. Every
denominating set is assigned to one symbol. Our goal is to
partition the set of n! vertices into the maximum number of
dominating sets. We start by presenting a construction for
n=4.

[0108]

[0109] Divide the 24 states of S, into 6 sets of 4 states each,

where each set is a coset of {(1,2,3,4)), the cyclic group
generated by (1,2,3,4). Here (1,2,3,4) is the permutation in the
cycle notation, and ((1,2,3,4))=([1,2,3.4],[2,3,4,1],[3.4,1,2],
[4,1,2,3]7. Map each set to a different symbol.

Construction 1.

[0110] Theorem 3. Each Set in Construction 1 is a Domi-
nating Set.
[0111] Proof: Let I, be the identity permutation, g=(1,2,3,

4) and G=(g) . For each hES ,, hG is a coset of G. For each
v=[v(1),...,v(n)]EhG and each u=[u(1), . . ., u(n)]ES, such
that u(1)=v(1), u has an edge to either v or v¥g. For example,
in the coset I G=G, for v=I, and u€s,, such thatu(l)=v(1)=1,
ifu(2)is2or3,uhasanedgetol ~[1,2,3,4], and ifu(2)=4,u
has an edge to 1,%g=[4,1,2,3]. Since G is a cyclic group of
order 4, for every u€S,, there exists vehG such thatu(1)=v(1),
and therefore hG is a dominating set.

[0112] Fork [n] and BES,, define:

Prefy(B)={tls=tu for lu|=k and sEB}
where t, u are segments of the permutation s. For example,
Pref;({[1,2,3,4,5], [1,2,3,5.4], [1,3,2,4,51)={[1,2],[1,3]}.
[0113]

size.

A lower bound is provided to a dominating set’s
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[0114] Theorem 4. If D is a dominating set of G,,, then

[0115] Proof: Each p,EPref;(S,) is a prefix of 3 different
prefixes in Pref,(S,). For example, for n=5, [1,2] is a prefix of
111,2,3],11,2,4],[1,2,5]}. Each v D dominates 2" ~> prefixes in
Pref,(8,,). For example, for n=4, every permutation that start
with [1,2], [1,3], [2,1] or [2,3] has an edge to [1,2,3,4]. This
set of prefixes can be partitioned into sets of two members,
each sharing the same prefix in Pref;(S,,). For one such set
B,={p,,.1:P2,»}» and p, denotes the only member of Pref,(B,).
Since D is a dominating set, all of the members of Pref,(S,,)
are dominated. Therefore, the third prefix p, ;&B, such that
{ps}=Pref;({B,,p,,}) is dominated by some u€D, u=v.
Moreover, u dominates also one of the prefixes in B,. There-
fore, at least half of the prefixes in Pref,(S, ) that v dominates
are also dominated by at least one other member of D. X,
denotes the set of prefixes in Pref,(S,,) that are dominated by
v and not by any u=v such that u€D, and Y, denotes the
prefixes in Pref,(S,) that are also dominated by at least one
suchu=v. Also defined is X=2 _,IX |andY=2 ,,|Y,|. Ithas
been shown that IX | =2"3; so X=2"">IDI. In addition, IX, |+
IY,|=2""2, and so X+Y=2""2IDI. By the definition of

Y
Yo, [vep ¥l = 5,

because every element in the above union of sets appears in at
least two of the sets. So:

n!
3= [Prefy(Sy)l
Y
=|Uyep Xl +Usep Yol = X + 5
=X +2"73D| - X
2

X
=5+ 273D < (274 + 273)D|

=3.2"D|
[0116] Therefore
D=
[0117] Using the above bound, the rate of any full assign-

ment code € is

1 8
RE) =< 1—10g2§ bits per cell.
n

For the case of n=4, |DI=4. Therefore Construction 1 is an
optimal full assignment code.
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2. The case of n=5

In the case of n=5, a dominating set comprises of at

[0118]

[0119]
least

5!
T35 10 members.

An optimal full assignment code construction is presented
with dominating sets of 10 members.

[0120] Construction 2. Divide the 120 states of S into 12
sets of 10 states each, where each set is composed of five

cosets of { (4,5)) , and two permutations with the same parity
are in the same set if and only if they belong to the same coset

of {(1,2,4,3,5)) . Map each set to a different symbol.

[0121] Let g,=(4,5) and g,=(1,2.4,3,5). An example of a
dominating set where each row is a coset of g, and each
column is a coset of g, is:

[1,2,3,4,5],[1,2,3,4,5]
[2,4,5,3,1],[2,4,5, 1, 3]
4,3,1,5,2],[4,3,1,2,5]
[3,5,2,1,4],[3,5,2,4, 1]
[5,1,4,2,3],[5,1,4,3,2]

[0122] Theorem 5. Each set D in Construction 2 is a domi-
nating set.
[0123] Proof: Each coset of {g,) dominates 4 prefixes in

Pref,(S;). For example, the coset (g, ) ={1,~[1,2,3,4,5].g,=
[1,2,3,5,4]} dominates the prefixes {[1,2], [1,3],[2,1], [2,3]}.
Each coset representative is treated as a representative of the
domination over the 4 prefixes in Pref;(s;) that are dominated
by the coset. According to the construction, a set of represen-
tatives in D that share the same parity is a coset of { ,) ,* Let

one of the cosets of { g,) in D be called C. For each v C, the
subset {v,g,*v} represents a domination over a single disjoint
prefix in Pref,(Ss). For example, for v=I, the subset {I,7[1,
2,3,4,5],2,%1,7(2,4,5,3,1]} represent a domination over the
prefix [2]. Since I{ g,) I=5, C represents a complete domina-
tion over Pref,(S;), and therefore D is a dominating set.

[0124] The rate of the code may be

1
R= glogzlz =0.717 bits per cell

[0125] Recall that optimal codes with “push-to-top” opera-
tions use only n symbols for n cells. Therefore, a rate
improvement of

1
(glogzlz]

T =54.4%
(glogZS) -1

may be achieved.
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[0126] 3. The case of r=2

[0127] When the cost constraint is greater than 1, the con-
structions studied above can be generalized. For a construc-
tion for the case r=n—4, the construction begins by dividing
the n! states S, into

n!
120

sets, where two states are in the same set if and only if their
first n-5 elements are the same. The sets are all dominating
sets, because we can get to any set by at most n-5 “push-to-
top” operations. Each of these sets to 12 sets of 10 members
is further divided, in the same way as in Construction 2,
according to the last 5 elements of the permutations. By the
properties of construction 2, each of the smaller sets is still a
dominating set. The rate of the code is

'
R= ;logz% bits per cell.

[0128] An example method 600 of operating a data device
is illustrated in FIG. 6. Method 600 may include one or more
operations, actions, or functions as illustrated by one or more
of blocks 605, 610, 615, 620, 625, 630 and 635. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation.
[0129] At block 605 the process can be started. Block 605
can be followed by block 610, where data values V [vy, v,, .
., v, JES can be received and are to be stored in data storage
containing current values u=[u,, u,, . . ., u,|]ES. Block 610
can be followed by block 615, where v can be defined as an
element of S. Block 615 can be followed by block 620, where
S can be defined as a set of symbols in a rank modulation
coding scheme. Block 620 can be followed by 625, where n
can be defined as anumber of ranks in vto be stored in a group
of n rank locations in data storage of the data device. Block
625 can be followed by block 630, where the group of n rank
locations can be programmed according to the rank modula-
tion coding scheme and the value v such that for i=n-1, n-2,
..., 1 the programmed value of a rank location v, is increased
until it is greater than the value of a rank location v,,, by a
minimum cell differentiation amount. Block 630 can be fol-
lowed by block 635, where the process may be continued.
[0130] In some embodiments each of the n rank locations
may comprise a cell of the device data storage. In further
embodiments, each rank location may comprise a plurality of
cells of the device data storage. In other embodiments, each
rank location may comprise an equal number of cells of the
device data storage. In still further embodiments, program-
ming may comprise increasing the value of all cells in the
rank location v, until the value in each of the cells v, is greater
than the value in each of the cells in the rank location v,, ;. In
other embodiments, the current values of u=[u;, u,, . . .,
u, |ES are read from the device data storage before the pro-
gramming of the group of n rank locations with v.

III. MULTI-CELLS

[0131] We can store log,q bits on a flash cell with q levels.
That way, each time we want to update the data on the
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memory, we would have to erase the whole block. We call this
representation method “the trivial scheme”. We could also
use a bit more sophisticated update schemes. For example, we
could store only 1 bit in each cell, according to the parity of
the level of the cell. If the cell is in level 3, for example, it
stores the value 1. Using this scheme, we can update the data
g-1 times before a block erasure will be required. We call this
scheme “the parity scheme”. Update schemes like the parity
scheme can be especially useful for enterprise applications of
flash memory, where the endurance of the memory becomes
a major design concern. Update schemes are also known as
write once memory (WOM) codes. See, for example, A. Fiat
and A. Shamir, “Generalized “write-once” memories,” IEEE
Trans. on Inform. Theory, vol. IT-30, no. 3, pp. 470-480, May
1984; F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” /EEE
Trans. on Inform. Theory,vol.45,no. 1, pp. 308-313, January
1999; R. L. Rivest and A. Shamir, “How to reuse a “write-
once” memory,” Inform. and Control, vol. 55, pp. 1-19, 1982.
[0132] While the values of the cells in the relative scheme
don’t need to be quantized, discrete levels can be used for
analysis to simplify the calculations. This is to allow a more
easy and useful analysis, and because there should still be a
certain charge difference between the cells in order to avoid
errors. When the cells have q levels, the data can be stored on
a set of q cells according to their relative levels. In other
words, log,(q!) bits can be stored on q cells, or each cell can
be used to store (1/q)log,(q!) bits. If q is large, the capacity of
the trivial scheme described above. However, various update
schemes described herein can be employed that may use
relative levels, such as n cells of q levels, where n<q. As
described further below, a high total capacity can be achieved
with update schemes that use relative cell’s levels. More
specifically, some described examples may achieve an instan-
taneous capacity of n bits and a total capacity of (q—1)n bits
using relative cell’s levels.

[0133] Update schemes with high total capacity can
become useful when q has a high value.

[0134] However, in practical flash memory devices, q may
have a moderately small number. Various example methods
described herein may achieve high values of q with the exist-
ing cell technology. The main idea is to combine several
floating gate transistors into a virtual cell, which we call a
multi-cell.

[0135] A. Multi-Cell Flash Memory

[0136] NAND flash memory is a widely used type of
memory for general storage purposes. In NAND flash, several
floating gate transistors are typically coupled in series (see
FIG. 7A), where read or write operations occur one at a time.
The present disclosure proposes to replace various transistors
with a multi-cell of m transistors that are coupled together in
parallel, with commonly controlled gates, as shown in FIG.
7B. In read operations, the currents of the transistors sum
together, and the read precision may increase by in times,
allowing to store mq levels in a single multi-cell. In write
operations, the same value can be written into all of the
transistors coupled together with a common gate, such that
the sum of their charge levels gives the desired total level. The
resulting error rates of read and write operations of the con-
figuration in FIG. 7B are substantially the same as those error
rates found in a traditional flash cell.

[0137] Ifdatais stored by n transistors that form n/m multi-
cells of mq levels each, and if the trivial scheme is used, an
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instantaneous and total capacity of (n/m)log,(mq) bits results
that is less than the nlog,q bits would result using traditional
cells. However, if an update scheme such as the relative
schemes presented in the present disclosure, then a total
capacity may approach n(q-1) bits both with multi-cells and
with traditional cells. In order to use a permutation of cell’s
levels, the number of levels in each should be at least the
number of cells. To approach a total capacity of n(q-1) bits
with permutations, the number of updates the scheme can
take should be greater than the number of cells we use. By
using multi-cells, the number of updates may increase at the
expense of the instantaneous capacity, and the total capacity
is approached faster.

[0138] B. Notations and Model Properties

[0139] In order to allow easy and fair analysis, discrete
levels for the cell’s charge values can be utilized. In practice
there is generally no need for threshold levels, and analog
values can be used for the cell’s charge values. For example,
letc=(c,, Cs, ..., c,), withc,&{0, 1, ..., g-1} as the state of
an array of n flash cells, each cell having q discrete levels,
where c;=c, for all i=j. The n variables may induce a permu-
tation such as o=[0(1), 0(2), . . ., o(n)]ES,,, where s,, denotes
the set of all permutations over [n]={1, 2, . . ., n}. The
permutation o may be uniquely defined by the constraints
Coiy>Coy for all 1>, 1.e., when c is sorted in ascending order
as ¢, <c,<...<c, , then o(i)=j, for all 1=i=n.

[0140] To change the permutation from o to o', the cells can
be programmed based on their order in o', so that each cell’s
level may increase as little as possible. For example, let ¢'=
(c';,c'5, ..., c',) denote the new cell’s levels to be set. Initially
C'o1y"961 1y and then, for =2, 3, . . ., 0, ¢ 5g)manfeo'1).C'or
a-n+1}, Given two cell states ¢ and ¢', let cost (c—¢") denote
the cost of changing the cell state from ¢ to ¢'. The cost can be
defined as the difference between the levels of the highest
cell, before and after the update operation. Namely, cost
(c=C")=C"510n=Com)- As illustrated by this example, the cost
may be a function of 6= and ¢*~*, where o~" is the inverse of
the permutation o. See, for example, E. En Gad, A. Jiang, and
J. Bruck, “Compressed encoding for rank modulation,” in
Proceedings of the 2011 IEEE Int. Symp. on Inform. Theory,
1SIT2011, St. Petersburg, Russia, August 2011, pp. 884-888.
The cost can be written as:

cost(o- - o) = r_n[a)]((o"l H-oL@).

[0141] In other words, the cost is the L., quasimetric.
Example 1
[0142] Letc=(0,1,2,3). So 0=[1,2,3,4]. Now let o'=[3,1 4,

2]. The levels of the cells to represent o' can be increased as
follows: set ¢';=c,=2; ¢',=max{c,, ¢';+1}=max {0,3}=3; and
¢',=4 and ¢',=5. The cost of the update can be determined as
¢';—¢,=5-3=2. The cost can also be calculated directly from
the permutations: o~'=[1,2,3,4], and ¢""'=[2,4,1,3]. Since
o '-0"'=[-2,2,1] and the maximum is 2, so this is the cost.
[0143] The set of all the values that the data can take can be
denoted as D. An update scheme, or update code, £ may
include a decoding function f and an update function g. The
decoding function f:S,—D may identify the permutation
0ES,, as a representation of the data f(o)ED. The update
function (which may represent an update operation), g:S, x
D—=S,,, may identify the current permutation o€S,, and the
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update can change the data to dED, and the update code can
change the permutation to g(o,d), where f(g(o,d)) may be
equal to d. Note that if f(0)=d, then g(o,d)=0, which corre-
sponds to the case where w the stored data does not need to
change.

[0144] Letc,(€ )be the instantaneous capacity of an update
code € . The instantaneous capacity can be defined as C,(
€ )=(1/n)log|DI, where the binary logarithm can be usedr. Let
t,,(€ ) be the maximal number of updates that € can support
for all update sequences. The worst-case total capacity per
level can be defined as ¢, (€ )=t, (€ )C,(€ )/(q—1). Similarly,
t,(€) can be defined as the average number of times the
memory can be modified before a block erasure is required,
where we assume that in each update, the data value can be
uniformly distributed, C,(€ )=t (€ )C,(€ )/(q-1) can be the
average total capacity per level of the update code, and see
that lim,, ,,_...Co(€ )=C,C (c)/E(cost), where E(cost) is the
expectation of the cost.

[0145] Finally, for a fixed oS, set

B, (0)={0’ES,Icost(c—0")=r}, k,,=IB, (0)l.

We note thatk,, , is independent of ©. It was shown in [2] that
k,, =+ D+

[0146] C. Upper Bounds

[0147] Inthis section, a bound is derived for C, ¢ and C_(
€), when q and n are large numbers, and q is much greater
than n. In addition, a bound for C,(€ ) is derived in the cases
where C, (€ ) and C_(€ ) are asymptotically optimal.
[0148] 1. Worst Case
[0149] To derive a bound, k,, ,, the size of the ball of radius
r can be used. To guarantee that the cost of each update
operation is no more than r, IDI=k,, .. Otherwise, to write the
data state d, there is no guarantee that there is a permutation in
B,, (o) thatrepresents d. The resulting instantaneous capacity
can be determined as (1/n)log(k,, ). Let K, =lim,,_,..(1/n)log
(k, ). By setting C,(€ )<K,, we cannot guarantee to write
more than (q-n)/r times, so C, (€ )=t,(€ YC,(€ )/(q-1)is less
than K /r. In the following K /r is decreasing in r, which
means that K, is an upper bound to the worst case total
capacity.
[0150]
[0151]

Lemma 1. K,/r is strictly decreasing inr when r=1.
Proof:

(1/nn)logk, = (L/nnlog((r + Ly "D+ DY)
= (1 /nr)(nlog(r+ 1) —(r+ 1))
=(1/Ploglr+1)—(r+1)/(nr)

- (1/Plog(r+1),n - o

[0152] So K,/r=(1/r)log(r+1). On the other hand,

log((r + 272 (r + 2)1)

(1 (ot + D))loghys = ry

< (1/(r+ 1)log(r+2)

So
Kt /r+ D)= (1/(r+ D)logr+2) < (1/rloglr+ 1) <K, /r

[0153] So K, /r is strictly decreasing.
[0154] It also follows that when C (€ ) is asymptotically
optimal, C,(C ) is bounded by K, as well. And when C,(€ ) is
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asymptotically optimal, t, (€ )is optimal, since r=1. As noted,
both upper bounds are determined as K. We can calculate K,
quickly: K,=lim,,__(1/n)log 2""'=1. In section 6 we show
that there exists a code that approaches both of the bounds.

[0155]

[0156] We now find a bound for the average case. Sincet,,(
€)<t,(C), the average total capacity is at least that of the
worst case. In the following theorem we show that, asymp-
totically, the average total capacity is also bounded by K, .

[0157] Theorem 1. Let € be a permutation based update
code. Then lim,,,, ,,_...C(€ )=K,. Proof: Let r be the largest
integer such that lim,_,.C,(€)>K,. Therefore, lim,_.C,
€)=K, .. Let dED be a data state that needs to be stored, and
o€S,, the current permutation of the cells. Since f(0) is the
decoding function, let f-!(d) be the set of permutations that
are decoded to d. We start by bounding E(cost), the expected
cost of an update:

2. Average Case

n-1
E(cost) = Z iPr{cost = i} = (r + 1)Pr[cost = r + 1}
=0
= ¢+ DPrS ) N Byl = )
= (r+ D - PHdk, .}
= (r+ 1)(1 = kg, / D)

= (r+ D1 = 2&CitE)

Col@) = 1 E)CHE) (g- 1) =
(g=mCE)/ (g - DE(cost) = Ci(&) /[ + {1 - 276~4(ED))
Since lim, o /(@)K 1,
. - . (k-G (E ) _
q/ﬂrﬁlx Call) = q/ﬂrﬁlx K,+1/((r+ 1)(1 -2 ( ( JJ)) N

K /(r+ 1) = K

where the last step is due to Lemma 1.
Once lim

[0158] ign—Cal€ ) 15 optimized, we also want
to optimize C,(€ ). We now derive an upper bound for that
case.

[0159] Theorem 2. Let € be a permutation based update
code. If C (€)=K, when g/nn—sco, then lim,_, . C/
€)=K,

[0160] Proof: Set r as before. Therefore, lim,_, . C/
C)=K,,,. Ifrzl, lim,, ..C(C)=K,, /(t+1)<K,, since
K, /ris strictly decreasing, and we have a contradiction, since
C,(€ ) doesn’tapproach K, . Sor=0, and therefore lim,,_, ..C,(
C)H)=K,.

[0161] Weseethatonce C,(€ )is asymptotically optimal, t,
€) is asymptotically optimal as well.

[0162]

[0163] We now present a code that achieves both bounds
with efficient decoding and update procedures. For conve-
nience, we assume that both log n and n/log n are integers.

[0164] Let each data state be a factorial number (also
known as a reflected inversion vector) with n/log n digits,
d=(dy, ..., d,,0g »_1)- The i-th digit from the right in a factorial
number has base i, which means that the digit is less than i.
Therefore, the base of digit d, is n/log n—i.

D. Construction for the Average Case

10
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[0165] We can see that the instantaneous capacity of the
code is asymptotically optimal. That is because:

G(E€) =(1/mlogD|

=(1/n)log((n/logm) )
n
nlogn

=

(logn — log(2logn))

=1-log(2logn)/logn - 1,n = o

[0166] Construction 1. Permutation Based Update Code.
Decoding:
[0167] The decoding function, f(0), can be used to decode

a permutation a to o data state d. The permutation a can be
written as a sequence of log n permutations, 0={g,, o, . . .,
Oyog n_1})» €ach taken over n/log n cells. For the purpose of
decoding, we first represent the permutations as factorial
numbers. Namely, for each permutation g, its factorial is
VAVL0),V/D),...,V,m/logn-1)), with V (i)~ {klk>i and
ok)>c,()}. In other words, each element is the number of
elements following the element in the permutation that are
greater than it.

[0168] The decoding function may be composed of a
sequence of digit functions 1, f), . . ., 1, ,,_ 1, €ach decoding

a different digit. Fach digit function

{01 ,éq_i}l"“—){o, L, ... ,L—1—i}

can be used to decode the digit d, according to the vector
VIO Vo®), V,(0); . . -, Vg oo (W} Together, f{o)=f(V)=(f,
(V(0), £,(V(1)), . . ., 704 n1 (V(0/log n-1)). Bach function
f(V(1)) can take the value of the sum of the digits with index
i in the log n factorial numbers. The sum can be taken as a
modulo of the base of the digit, (n/log n-i):

fl-V(i)ZEjzolog -l V{{)mod(»/log n—i)

[0169] Update:

The update function, g(o, d), updates the permutation o into
a permutation o', such that f(o0')=d. The function takes place
sequentially from d, to d, ;. ,,_,- The update function is
described by the following algorithm:

[0170] 1:Seto'=o, V', the factorial number of o', and start
with digit d, i.e. i=0.

[0171] 2:Identify a sequence s=(Sg, S, - - - ; S75g . Of logn
bits, such that if, for each f, we perform the transposition (i,
i+s;) on o', then f,(V'(i))=d,. If such a sequence is found,
perform the transpositions according to s and repeat phase 2
for the next digit, d,, ;.

[0172] 3: If there is no binary sequence s such that f,(V'(i))
=d,, identify a ternary sequence of length log n, i.e., s £{0,1,
2}, such that £,(V'(i))=d,. If such a sequence is identified, the
transpositions can be performed according to s and repeat
phase 2 for the next digit.

[0173] 4: If there is still no appropriate binary sequence s,
anarbitrary index j is selected, and update o, to an appropriate
o', such that f{V"')=d.
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Example 2

[0174] Letn=16. Let 0,7[1,2,3,4] for j=0,1,2,3. For each ,
V,(0)=3, since there are 3 elements following the element 1 in
o, that are greater that 1. Now we decode the data from the
permutations. f,(V(0))=3+3+3+3 mod(4-0)=0, so d,=0.
Similarly, d,=2x4 mod(4-1)=2, d,=4 mod 2=0 and d,=0.
Note that d, ;¢ ,,_,=0.

[0175] Wenow assume that we want to update the data state
to d=(2,2,0,0). We start with encoding d,=2. We look for a
binary sequence s such that f, (V'(0))=2. We notice that for
eachj, if s =0, then V',(0)=3, and if s =1, then V',(0)=2. So we
can choose, for example, the sequence s=(1,1,0,0), and get
f,(V'(0)=2+2+3+3 mod 4=2. In the same way we can encode
each digit in the data state.

[0176] Weremember that the cost ofupdateisthe L., quasi-
metric: cost (0—>0")=max,c,,(07' (1)-0"'(i). Therefore, if
all the digits are updated by phase 2, the cost of the update
operation is 1. The number of binary sequences of length log
n is n, and therefore the algorithm can check all of them in
polynomial time. In order to avoid the calculation of the sum
for each sequence, the algorithm can use a binary reflected
Gray code, and calculate only the difference of one transpo-
sition in each step.

[0177] Ifatleastone digit is updated by phase 3, the cost of
the update is 2. The running time of the algorithm remains
polynomial in that case. If the algorithm reaches phase 4, the
cost can be determined as n/log n-1, but the running time
remains polynomial, since we can choose the elements of V',
quickly. Since all the steps in the update algorithm take poly-
nomial time, the worst-case complexity is polynomial in n.
[0178] We now analyze the expected cost of update. We
assume that o and d are drawn according to uniform distri-
butions, and start with calculating the probability that the cost
is greater than 1. For every binary sequence s, Pr(f,(V'(i)=d,)
is at least log(n)/n, since the base of d; is at most n/log n. So the
probability that s is not good is at most 1-(log n/n). s can take
one of n values, and for each different value that probability is
independent. Therefore, the probability that there is no good
sequence s is at most (1-(log n/n))”. That probability is inde-
pendent for different digits of d. Therefore, by the union
bound, the probability that at least one digit is updated
according to phase 3 is at most (n/log n)(1-(log n/n))”. This is
the probability that the update cost will be greater than 1.
Slmllarly, the probability that the update cost is greater than 2
is at most (n/logn)(1-(logn/n))® ~ , since phase 3 uses ternary
sequences. We now show that the expected cost of the update
algorithm is approaching 1:

nflogn—1

Z iPr(cost = i) <

i=0

E(cost) =

1Pr(cost = 1) + 2Pr(cost = 2) + (n/logn)Pr(cost > 2) <
1+2(n/logn)(1 — (logn/m)Y* + (n* [logn)(1 — (logn /m))*@#" <

1 + 2n/logn)exp(—logn) + (n° [log mexp(—n'°%*logn) - 1, n > oo

[0179] So C(€)=t,C.(€ )/(q-1)—1 when g/n,n—>00, and
the code approaches the bounds for the instantaneous and the
average total capacity.

[0180] E. Existence for the Worst Case

[0181] In this section we show that there exists a code such
that C(€), C,,€ ) both approach K, when g/n,n—>co.
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[0182] Theorem 3. There exists a permutation based update
code €, such that C,(€), C, (€ )—K, for g/n,n—>co.

[0183] Proof

Let IDI=k, /n“e, where € is a positive constant. In the
following we show that there exists a {D,n} code with worst
case update cost of 1. We first calculate the instantaneous
capacity of the code:

Gi(£) = (1/mlogD|

=(1/mlogk,1 — (1/n)(1 +8)logn - Ki, n = o

So the instantaneous capacity of such a code is asymptotically
optimal. If we show that the worst-case cost is 1, it follows
that the worst-case total capacity is also asymptotically opti-
mal.

[0184] Suppose if {'(d)},_,"”" is a partition of S, i.e
1 d)Nf!(d)=a, d=d'; and U ,_, P'T-1(d)=S,. We now show
that there exists a partition of S,,, such that for any o€S,, and
any dED, there exists a vector o’&f!(d), such that cost
(0—0")=1. We use a random coding method. With every
0€S,,, we connect a random index vy, which is uniformly
distributed over the data set D, and all these random indices
are independent. Then if {f-'(d)} ._,'”" forms a random par-
tition of S,,. Fix dED and o€S,,, then

PHf M) N By (o) = O} =

= [L - 1/|D[*! exp{~ky1 /1DI}
1+x}

Pri¥ oB, (o), 1, #d}

=exp{—n

Therefore,
PriddeD and o €S,,st. fHd) N B, (0) =0} <
|D||S,lexp{—n'™*} < 2"ntexp{-n'**) <

expin(l +lnn—n)} > 0, n >

This implies that when n is sufficiently large, there exists a
partition of S,, such that the cost of each update is 1.

[0185] FIG. 8A depicts a process 800 for manufacturing
and operating a data device. Process 800 may include one or
more operations, actions, or functions as illustrated by one or
more of blocks 805, 810, 815, 820, 825 and 830. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The pro-
cess starts with block 805. In block 810 a plurality of transis-
tors each of which is capable of storing charge are disposed on
a device. Each of the plurality of transistors comprises a gate,
a source, and a drain. In block 815 connections are formed
between the sources of each of the plurality of transistors.
Each connection is capable of carrying electrical current. In
block 820 connections are formed between the drains of each
of the plurality of transistors. Each connection is capable of
carrying electrical current. In block 825 data is stored in the
plurality of transistors. The data corresponds to a sum of
charges stored in each of the plurality of transistors. In block
830 the process may continue. In some embodiments connec-
tions may be formed between the gates of each of the plurality
of transistors.

[0186] FIG. 8B depicts a process 850 for operating a data
device. Process 850 may include one or more operations,
actions, or functions as illustrated by one or more of blocks
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855, 860, 865 and 870. Although illustrated as discrete
blocks, various blocks may be divided into additional blocks,
combined into fewer blocks, or eliminated, depending on the
particular implementation. The process starts with block 855.
In block 860 a code word is generated that has a plurality of
symbols selected from a set of symbols. In block 865 each of
the plurality of symbols is stored in a data storage location of
the data device. Each data storage location comprises a plu-
rality of parallel connected devices. In block 870 the process
may be continued. In some embodiments the plurality of
parallel connected devices may comprise transistors.

IV. MULTI-PERMUTATIONS

[0187] We further generalize the paradigm of representing
information with permutations to the case where the number
of cells in each level is a constant greater than 1, multi-
permutations.

[0188] Namely, the states that the cells can take are no
longer permutations of a set, but permutations of a multiset.
For example, if the number of cells at each level is 2, the two
cells in each level do not need to be identical in their analog
values, they just need to be distinguishable with other levels
(but do not need to be mutually distinguishable). Hence, the
encoding and decoding may use relative levels, and the
scheme has good resistance to drift; namely, the advantages of
the permutation based relative scheme that we described
above still apply. Another example is the case where the
number of levels is 2, and there are many cells in each level.
In this case, the multi-permutations are balance binary
sequences.

[0189] We consider the case where the multiplicities of all
the elements in the multiset are equal, and denote it by z. This
generalization becomes interesting especially when z is large,
and n is still much larger than z. In that case (if q is still much
larger than n), we can prove that the upper bound on the total
capacity is 2q bits per cell, and that there exists a construction
that approaches this bound. The instantaneous capacity of the
construction is approaching 2 bits per cell. These results can
be proved using similar techniques to those we used in the
theorems described in this paper. Since the cost of each
update is at least 1, the number of updates is at most q—1. We
note that when the number of updates is at most q-1, it
follows that the total capacity of an update scheme, even
without relative levels, is no higher than 2q bits per cell, and
that there exists a code that achieves this bound. See, for
example, F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” /EEE
Trans. on Inform. Theory, vol. 45, no. 1, pp. 308-313, January
1999. However, our generalization makes a stronger claim—
that there exists a code that uses multisets (relative levels) and
achieves the total capacity of 2q bits per cell. It is still an open
problem to find a construction that achieves 2q bits per cell.
[0190] A. Compressed Rank Modulation

[0191] We will focus on the new multi-permutations
scheme introduced above, which we call Compressed Rank
Modulation. Before we do that, let us first review the terms in
the original rank modulation scheme. There are n cells, whose
analog levels can be denoted by ¢,, ¢c,, . . ., ¢,. (For flash
memories, the analog level of a cell may correspond to its
charge level or threshold-voltage level. For phase-change
memories and memristors, the analog level of a cell may
correspond to its resistance level.) They induce a permutation
[X1s X, - . ., X, ] of the set {1,2, ..., n}, such that
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For i=1, 2, . . ., n, the x,-th cell is said to have rank i. An
example is shown in FIG. 9, where n=4 cells induce the
permutation [4,2,1,3].

[0192]

[0193] Cell programming is efficient and robust. We can
program cells from the lowest level to the highest level,
without the risk of overshooting, and there may be no
need to accurately control the level of any cell.

[0194] The state of the cells can be read in a simple way.
For the n cells, their ranks can be determined by sorting.
That is, we just need to measure the order of the cell
levels. There may be no need to measure the exact value
of the cell levels.

[0195] We now introduce the new scheme called, Com-
pressed Rank Modulation. Let n and d;, d,, . . . , d,, be
parameters that are positive integers. Thereared, +d,+. .. +d,
cells, whose analog levels are denoted by ¢, €5, . . ., €414 .
..+d . They are assigned n different ranks based on their analog
levels, where the d, cells of the lowest analog levels are
assigned rank 1, the next d, cells are assigned rank 2, . . ., and
the top d,, cells are assigned rank n. An example is shown in
FIG. 10, where n=3, d,=d,=d;=2, and the induced permuta-
tion is [{4,5}, {2,3}, {1,5}]

(namely, cell 4 and cell 6 have rank 1 (the lowest rank), cell 2
and cell 3 have rank 2 (the middle rank), and cell 1 and cell 5
have rank 3 (the highest rank)).

Rank modulation may have two advantages:

[0196] Another example is as follows:
Example 3
[0197] Let n=3, d,=2, d,=3, d,=4. We assign 2,_,” d,=9

cells to n=3 ranks, such that d, cells are assigned to rank 1, d,
cells are assigned to rank 2, and d; cells are assigned to rank
3. For example, the following permutation is valid:

[0198] [{1,5}, {2,3,8}, {4,6,7,9}].

[0199] The main advantage of Compressed Rank Modula-
tion, compared to rank modulation, is that cells of the same
rank can be programmed to very close analog levels. In the
original rank modulation, in order to tolerate noise, we want
there to be a sufficiently large gap between every two analog
cell levels. In the compressed rank modulation, however, for
cells of the same rank, their analog levels can be arbitrarily
close. (And when we program cells, we would like to make
cells of the same rank to have very close analog levels, so that
the gap between the analog cell levels of different ranks can
be large.) This way, we can pack more cells into the group of
cells that use rank modulation. And the storage capacity can
be increased.

Example 4

[0200] This Example illustrates that the compressed rank
modulation can improve the storage capacity. In this example,
cells of the same rank can be programmed to arbitrarily close
analog levels (just for the sake of explanation). For cells of
adjacent ranks, in this example, the gap between their analog
levels can be assumed to be A.

[0201] Consider the compressed rank modulation with n=3
and d,=d,=d,=2. The rank modulation can represent
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[0202] For fair comparison, for the original rank modula-
tion scheme, consider 6 cells that we partition equally into 2
groups, where every group employs the rank modulation
scheme. Since each group can represent 3!=6 symbols, the
two groups can together represent 6x6=36<90 symbols. So
the compressed rank modulation achieves higher storage
capacity.

[0203] The compressed rank modulation scheme may have
the advantages of the original rank modulation scheme:

[0204] Cell programming is efficient and robust. When
programming cells, we program them from the lowest
rank to the highest rank, without the risk of overshoot-
ing. Note that for cells of the same rank, the order of their
analog levels does not matter. There is no need to accu-
rately control the analog level of any cell.

[0205] The state of the cells can be read in a simple way.
All we need is still just sorting. The d, cells of the lowest
analog levels have rank 1, the next d, cells have rank 2,
and the top d,, cells have rank n.

[0206] We emphasize again that for cells of the same rank,
their analog levels can have arbitrary orders. That makes
programming simple. For example, the examples in FIGS. 11
and 12 may induce the same permutation as the example in
FIG. 10. Of course, given the permutation [{4,6}, {2,3},
{1,5}], we prefer to program it as FIG. 10 or FIG. 12 instead
of FIG. 11, in order to have larger gaps between the analog
cell levels of different ranks.

[0207] 1. Initial Write

[0208] In this section, we discuss how to write data in the
compressed rank modulation scheme.

[0209] For flash memories (or PCMs, etc.), when data are
written to cells for the first time, typically, all the cells are in
the same initial state. (Typically, they all have the lowest
analog levels.) So given a permutation [{X,,X,, . . ., Xy, gy
Xdl+2s LR Xd1+d2}s e X1+2i:1"’1d1-s X2+2i:1"’sdis s XEH"di 5
we can program the cells from the lowest rank to the highest
rank, in the following way:

[0210] 1. Let A>0 be a parameter we choose. Let cells of
rank 1—namely, the x,th cell, the x,th cell, . . . , the x, th
cell—retain their analog levels.

[0211] 2.Fori=2,3,...,n,do:

[0212] Program the cells of rank i such that their analog
levels are all higher than the analog levels of the cells of
rank i-1 by at least A.

[0213] Itis easy to see that the above programming method
has little to no risk of overshooting, and enables cells to be
programmed efficiently without the need to accurately con-
trol analog cell levels. It is especially useful for flash memo-
ries, where cell levels can only be increased before the very
costly block erasure operation is taken.

[0214] 2. Subsequent Rewrites

[0215] After data are written into cells, there are at two
scenarios where it may be necessary to program the cells
again. In the first scenario, the value of the data needs to be
changed. In the second scenario, the analog cell levels of the
cells are disturbed by noise, and cells need to be repro-
grammed to ensure data reliability. If various cells need to be
reprogrammed by increasing cell levels (which is performed
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for flash memories and sometimes also for PCMs), the cells
can be programmed with the following method.

[0216] Let(cy, €5 - - s Cypugs . . . 4+a,) denote the initial
analog levels of the cells. Let [{x,, X5, . . ., Xy pdiets Xaa2s -
X ts - Wiz gy Ko gy -5 X g} denote the
new permutation we need to program into the cells, and let
(/€ s Copuar . .. +a) denote the new analog cell levels
to be set. We can program the cells from the lowest rank to the
highest rank as follows:

[0217] 1. Let A>0 be a parameter we choose. For cells of
rank 1-—namely, the x,th cell, the x,th cell, . . . , the x; th
cell—they can either retain their analog levels, or be pro-
grammed slightly such that their analog levels become close
to each other.

[0218] 2.Fori=2,3,...,n,do:

[0219] Program the cells of rank i such that their analog
levels are higher than the analog levels of the cells of
rank i-1 by at least A. In addition, if desirable, we can
also make their analog levels be close to each other.

[0220] It can be seen that the programming method is
essentially the same as the one for the initial write. It also
avoids overshooting programming errors, and is robust and
efficient.

[0221] 3. Programming Symmetric Cells

[0222] For some memories (such as phase-change memo-
ries and memristors), their cell levels can be both increased
and decreased without block erasures. In such a symmetric
case, it becomes even easier to program cells for the com-
pressed rank modulation scheme. Those skilled in the art will
understand how to program cells for this case.

[0223] 4. Rebalancing Permutations

[0224] A compressed rank modulation code has

(dl+d2+...+dn](d2+d3+...+dn] (dn,1+dn]
d d [

permutations. We can directly use them to encode data, either
with a one-to-one mapping or with an error-correcting code.
In the following, we describe two additional methods for
encoding data, which can be especially useful if the number
of'cells d,+d,+ . .. +d,, is large.

[0225] Suppose the inputdatais a vector (v,,V,, ..., V.,
L +a)E{0,1,. .., n-1}4%* - % where each integer v, can
independently be any integer in the alphabet {0, 1, ...,n-1}.
(Note that coding schemes for such vectors have been exten-
sively studied in the past.) We would like to change it into a
“similar” permutation so that we can store it using the com-
pressed rank modulation scheme, and use a small amount of
metadata to remember how the change happened.

[0226] Thekey is to rebalance the vector in an efficient way
so that it becomes a permutation with the required weight
distribution (d,, d,, . . ., d,)). The approach is illustrated with
the following example.

Example 5

[0227] Let n=4 and d,=d,=d,=d,, =5. Suppose we have a
codeword of (d, +d,+d;+d,)log,n=40 bits:

[0228] 1001001101101101111110010110111100
0001 10

Such a codeword can be easily converted to a vector (v, v, .
<5 V20)E{0,1,2,3}%° with the simple mapping: 00—0,01—>1,
10—2,11—3,andget21031231332112330012
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(Certainly, we may also choose to use a Gray code for the
mapping. But that is not related to our discussion here.)
[0229] To get a permutation where each of the n=4 ranks
has S cells, we can do it in three steps. First, we transform it
to a codeword where the number of Os or 1s equals the number
of'2s or 3s. By inverting the first i=1 cell (where we change 0
to 3, change 1 to 2, change 2 to 1, and change 3 to 0), we get
11031231332112330012

which has 10 Os or 1s, and 10 2s or 3s.

[0230] The subsequence that contains Os or 1s in the above
codewordis 1101111001

[0231] To make it balanced, we invert the first is i=2 cells
(where we change 0 to 1, and change 1 t0 0), and get 00 1 1
1001

[0232] The subsequence that contains 2s or 3s in the above
codewordis 3233322332

To make it balanced, we invert the first i=1 cell (where we
change 2 to 3, and change 3 t0 2), and get 2233322332
[0233] We merge the above two subsequences based on
their original positions, and get0002123133211233
0012

We can now store it as a compressed rank modulation code,
where each of the n=4 ranks has cells.

[0234] The additional information about the inverting
namely, i=1, is =2 and i=1—can be stored as meta-data in
additional cells (possibly using compressed rank modulation
aswell). (Note that in the above example, the mapping used in
inverting cell levels is not unique. For example, we can
change 0 to 2 instead of 3, or change 1 to 3 instead of 2, etc.
(The key is to switch {0,1} with {2,3} when inverting cells.))
[0235] So we can see that it is feasible to represent existing
codes e.g., BCH codes, Reed-Solomon codes, LDPC codes,
and other codes—with compressed rank modulation. The
system model is shown in FIG. 13.

[0236] 5. Record Weights

[0237] We now discuss an alternative approach. Suppose
the input data is a vector (Vi, Va, . . ., Vagay dﬁ)E{O, 1,...
,n—1}2%+ - +4, where each integer v, can independently be
any integer in the alphabet {0,1...,n-1}.Fori=0, 1, ...n-1,
let d,,, denote the number of entries in the vector that are
equal to i; that is, d,, ,=I{jll =j=d,+d,+ . . . +d,, v~i}l. We
record the weight distribution (d,, d,, . . ., d,,) as metadata.
And then, we can store the vector directly as a compressed
rank modulation permutation. (If any of the d,”s happens to be
0, the compressed rank modulation scheme can be extended
easily to cover this case.)

EXAMPLES

[0238] FIG.14A depicts a process 1400 for operating a data
device. The process 1400 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1405, 1410, 1415, 1420, and 1425. Although illus-
trated as discrete blocks, various blocks may be divided into
additional blocks, combined into fewer blocks, or eliminated,
depending on the particular implementation. The process
starts with block 1405. In block 1410 a predetermined rank
configuration (d,, d, . . . d,) is defined, wherein d, is the
number of cells in the i” rank. In block 1415, a new multi-
permutation is received and defined by v=[v,, v,, ..., Vv, ]ES
that fits the predetermined rank configuration. In block 1420
a process is initiated in response to receiving the new multi-
permutation, adding charge to each cell in a plurality of

Sep. 26, 2013

memory locations such that the plurality of cells represent the
new multi-permutation. In block 1425 the process may be
continued.

[0239] FIG. 14B depicts a process 1450 for reading a data
device. The process 1450 starts with block 1455. In block
1460 the sequential order of an initial analog level of a stored
value in each cell of a plurality of cells in a data device is
determined. The sequential order is defined as a value x
comprising [{X,, X5, . . . , Kayy s Xayazs - - - IS SIS NN
{x 1% Koz Pl s XEf:l"df}l’] .Inblock 1465 the process
may be continued.

[0240] FIG. 15A depicts a process 1500 for writing to a data
device. The process 1500 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1505, 1507, 1509, 1511, 1513, and 1515. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The pro-
cess starts with block 1505. In block 1507 a predetermined
rank configuration (d,, d, . . . d,,) is defined, wherein d, is the
number of cells in the i rank. In block 1509, a new multi-
permutation is received and defined by v=[v, v,,...,v,] €S
that fits the predetermined rank configuration. In block 1511
the analog levels of cells of arank n in v are retained. In block
1513 the cells of rank i in v for I=n-1,n-2 . . ., 1 such that the
analog levels of cells in a rank i are programmed to all be
higher than the analog levels of the cells of rank i+1 in v by at
least a minimum rank differentiation. In block 1515 the pro-
cess may be continued.

VI. RANK-MODULATION REWRITING CODES

[0241] Various embodiments disclosed herein construct
rank modulation codes that achieve a rate approaching two on
each write. One embodiment takes advantage of the recently
discovered polar codes which were recently used in the con-
struction of WOM codes. See, for example, D. Burshtein and
A. Strugatski, “Polar write once memory codes,” in Proceed-
ings of the 2012 IEEE International Symposium on Informa-
tion Theory, ISIT2012, Cambridge, Mass., USA, July 2012,
pp. 1982-1986.

[0242] A. Definitions of the Rewrite Model

[0243] The features of the rank-modulation scheme come
from the fact that it avoids the discretization of the cell levels.
However, in order to design coding schemes, a discrete model
for the rewriting is very helpful. In addition, as demonstrated
in the example in Section I, there is a need for a certain gap
between the levels of cells in different rankings. Furthermore,
remember that the cells can only store a limited amount of
charge. Therefore, a limited number of ranks can be repre-
sented within a set of cells. We denote the number of “virtual
levels” that every cell can represent by q. The levels are virtual
in the sense that they do not correspond to a discretization of
the cell level, but to the resolution of the charge detection and
the power of the noise that might affect the relative levels of
the cells. The q virtual levels allow the analysis and compari-
son of different rewriting methods. If the memory has N cells
then we denote ¢c=(c,, C,, . . ., C), where ¢, {0, 1, ..., q-1},
to be the cell-state vector.

[0244] In recent work, the data was encoded by permuta-
tions, that is, only a single cell in each rank. See, for example,
A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank
modulation for flash memories,” IEEE Trans. on Inform.
Theory, vol. 55, no. 6, pp. 2659-2673, June 2009. Here we
allow more than one cell in each rank, where the number of
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cells in each rank is predetermined, and we call it the multi-
plicity of the rank. The generalized ranking now becomes a
permutation of a multiset of the ranks, which we define to be
a multipermutation. Assume there are m ranks, the multiplic-
ity of the i-th rank is denoted by z,, and in case that all
multiplicities are equal, we denote this number by z. Remem-
ber that when considering the discrete model, we allow to
place two cells with the same rank in the same discrete level,
since we don’t need a gap in order to distinguish their rank or
to prevent errors.
[0245] Since there are m ranks in our multipermutations
and the multiplicity of the i-th rank, 1=i=m, is z,, we have
that N=2,_,"z,. We let P,, be the set of all N cells multiper-
mutations 0=0(1), 0(2), . . ., o(N)) with m ranks. That is, for
1=j=N, 0G)EL1, ..., m}. For 1=i=m, 07 '(i) is the set of all
cells with rank i, i.e., o7'(i)={jlo(j)=i}. We call the vector
7={z,,2,, .. ., 7,,+a multiplicity vector. The set of all multi-
permutations of m ranks with multiplicity vector z is denoted
by P, .. Hence, T(G(l) o(2),...,0(N)EP,, . ifand only if
for l<1<m lo~'(i)|=z,. In case that 7=z, for all 1=i=m, we
denotethesetP,, - 51mply byP,, o and we Wlll follow the same
analogy in the other definitions in the paper which include the
multiplicity vector z.
[0246] Given a cell-state vector c=(c, C,, . . ., C;) and a
multiplicity vector z=(Z,,Z,, - - . , Z,,), the multipermutation
o, (0(1) a(2),...,0(N))is derived as follows. First, let1i,,
, 1y be an order ofthe cells such that¢; =c, = ... =c
Then thecellsiy, .. .1, gettherank1,the cells i Lopts e esdopas,
get the rank 2 and so on. More ngorously, for l<1<m, the
cellsi,,, 1,,, +1,...,1,, gettherank i, where m,~ l+ZZ ~'z,and
M=2,_z,ie. 0(1 J=o(, +1)= .. 70(1M) 1. Note that a
given cell-state vector can generate different multipermuta-
tions in case that there is equality between the levels of cells
in adjacent ranks. In this case, we will define the multiper-
mutation to be illegal and denote o, _=F. Given a multiplicity
vector z={7,,2,, . . ., 7,,}, we let Q, be the set of all cell-state
vectors which result with a valid multipermutation, that is,
Q={cc{0,1,...,9-1}"lo,__=F}.
[0247] The other attribute of the model studied previously
is its process of programming. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no.
6, pp- 2659-2673, June 2009. On every rewrite step, a single
cell could be programmed to be only the highest level. There-
fore, if the length of the permutation is N, N different permu-
tations could be written without increasing the top level by
more than one level (including the original permutation). In
this work, however, we introduce a more opportunistic
approach for rewriting with the powerful property that the
number of permutations (or multipermutations) that can be
written without increasing the top level by more than one
level becomes exponential in N.
[0248] The programming method we suggest is designed to
minimize the increase in the cell charge levels. Let ¢ be the
current cell-state, and o, the multipermutation we wish to
write. Fori=2, 3, . . ., m, we increase the level of the cells in
"1(1) to be higher than the highest cellin o, "1(1 1. In
the discrete model, the cells in o, ‘1(1) take the level
max{c,lo,, (G)=-1 }+l. We can see that writing in this
method does not bear a risk of overshooting, since there is no
upper threshold for the cell programming. In addition, it is
straightforward to observe that the method in fact minimizes
the increase in the levels of the cells, and specifically the level
of the highest cell.
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[0249] The initial state of all the cells is the all-zero vector,
0. The goal is to reuse the memory for T successive rewrites
without incurring an erasure operation. We consider only the
case where the encoder knows and the decoder does not know
the previous state of the memory. The encoder and decoder
can use the same code for every cycle, and there are no
decoding errors (zero-error case). For the cell states ¢ and ¢',

we denote c=c'if and only if ¢,=c',, forall i=1,2,...,N. We
are now ready to define the rewriting codes.
[0250] Definition 1. An (N,q,T.D,z=(z,, 7, . . ., Z,,)) rank-

modulation rewriting code is a coding scheme € (f, g) com-
prising of N g-level cells and a pair of encoding function fand
decoding functions g. Let I={1, . . . D} be the set of input
information symbols. The encoding function f:1xQ,—Q,, and
the decoding function g: Q_—I satisfy the following con-
straints:

[0251] 1) For any d€1 and cE€Q,, =f(d.c).

[0252] 2) For any d€1 and c€Q,, g(f(d,c))=d.

[0253] 3)Forany c,, c,&Q,,if 0, =0, then g(c,)=g(c,).
[0254] 4) The codTe € (f.g) supports any sequence of T

writes (d;, . .., dpI".

The instantaneous rate of the code is R ,,,=(1/N)log, log,D
and the sum-rateis & ,,=TR .

[0255] One goal in the design of rank-modulation rewriting
codes is to maximize the sum-rate. For that, we first try to
maximize the number of writes and then maximize the instan-
taneous rate on each write. This is achieved carefully in a way
that the maximum level on each write increases with high
probability by one level. Another goal we will draw our
attention to in the design of such codes is low complexity of
the encoding and decoding functions. The design of codes
with high rate and low complexities will be the topic of the
next chapter, where we explain the construction of our rank-
modulation rewriting codes.

[0256] B. Description of the Construction

[0257] Our point of departure in constructing rank-modu-
lation rewriting codes is to design such codes while the
increase on each write of the maximum level is no greater than
one. That is, given a rank-modulation rewriting code € (f,g),
for every d=l and c¢€Q,, if ¢'=f (d,c), then max{c',}-
max,{c,} =1. Animportant observation to notice here is that if
there exists i such that o_,(i)-o, (i)>1, then the value
max,{c';}-max,{c,} might be greater than 1. Consider, for
example, the case where m=4, z=1 and ¢=(1,2,3,4). Here, if
0..(3)-0,..(3)=2, then cell 3 must be the lowest cell in ¢', and
max,{c,}-max,{c',}=2.

[0258] To avoid such scenarios we choose to constraint the
value of o, (i) to be atleast o__(i)-1. That is, in case the rank
of'a cell decreases, it cannot decrease by more than one rank.
Hence, the cells in the first rank in ¢' can only be the ones from
the first or second rank of c, i.e. o, 1(l) is a subset of
GC,Z_I(l)UO 1(2). Similarly, the cells in the second rank of
¢' can only be the ones from the first, second, or third rank of
¢, which are not already assigned to the first rank of c'.
Mathematically speaking, we note that

0. @) {o.  (DUo, . 2)Vo. '3} o. 7 (D).
and in general, for i=1, . . . , m-1, given the selection of
Gc,,z"l(l), Gc,,z"l(2), ey Gc,,z"l(i—l), the set Gc,;"l(i) satisfies
O DUy ™ 0T DU o0 )
[0259] Motivated by this observation, the value of ¢'=f (d,
C) is encoded by a sequence of functions, each making a

subset choice according to a different part of the input data d.
Assume the input data d is partitioned into m-1 parts and let
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(d;,d,,...,d,,_,) bethe data parts associated with each rank,
where rank m doesn’t represent any information. The first
function determines the cells from o, ,Z"l (HUo, ,Z"l (2) which
are assigned to be the set o, Z‘l(l) as a function of the input
data d,. Thus we can write, Gc,,z"l(l):f1 (dl,(Jc,Z"l(l)U(Jc,Z"1
(2)), for some function ;. Similarly, fori=2,3, ..., m-1, there
exists a function f; such that

O DA Umi ™ o T DU on T O
[0260] The decoderwill operate in a similar way which will
be explained in the sequel as part of the construction details.

[0261] Assume thatthe multiplicities of all the ranks are the
same, so z,= . .. =Z,,=Z. Then, for each i=1, ..., m-1

U ™o, 1O Ue o, (D} =22
Hence, in the encoding function f;, if we consider the cells in
the set {U,_, "o, ~'(HIMU,_," " o...7'(j)} as binary cells of
value zero and all other cells of value one, then we can only
program the zero cells to be one. Therefore, the key point in
designing these encoding functions is to observe the similar-
ity to the binary write-once memory (WOM) problem.
[0262] A write-once memory comprises of a number of
“write once” cells, where each cell is initially in state “0” and
can be irreversibly programmed to state “1”. Rivest and
Shamir demonstrated that it is possible to rewrite such a
write-once memory multiple times, using coding techniques,
called WOM codes. See, for example, R. L. Rivest and A.
Shamir, “How to reuse a “write-once” memory,” Inform. and
Control, vol. 55, pp. 1-19,1982. Back to the problem of
encoding a single rank, we can think of {szlioc ,Z"l(j)
MU, "o, 71 (§)} as cells that were not written on the first
write of a two-write WOM code, while all other cells were
already written as value one on the first write.
[0263] However, there is an important difference between
the problem of encoding a second write in a two-write WOM
code and our problem of encoding a single rank. While in a
two-write WOM code there is no significance to the number
of cells that are written on the second write, in our codes we
seek to write such that exactly z, of the cells will remain in
level zero. If we have a WOM code that writes a constant
number of cells in the second write, we could use that code to
write more than twice, since we know the number of cells
which were not programmed after the second write, and we
could keep using the same code (with different parameters)
for the subsequent writes. So in fact, a WOM code that might
be suitable for our problem should be a code which allows
more than two writes to the memory. Since we are interested
in WOM codes with high rates, it is natural to consider the
recently proposed polar WOM codes. Polar WOM codes
were introduced by Burshtein and Strugatski, and they are the
first WOM codes that allow to write more than twice with
sum-rate which asymptotically approaches the sum-capacity,
log(t+1). See, for example, D. Burshtein and A. Strugatski,
“Polar write once memory codes,” in Proceedings of the 2012
IEEE International Symposium on Information Theory,
18172012, Cambridge, Mass., USA, July 2012, pp. 1982-
1986. The special property that allows high number of writes
in polar WOM codes, is that on each write, the distribution of
the number of written cells is close to binomial. Thus, for
large N, the number of programmed cells on each write is
concentrated and can be bounded with some specified value
with high probability.
[0264] We use this property of polar WOM codes for our
construction in a slightly different manner. Instead of looking
at the concentration property as bounding the maximal num-
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ber of programmed cells, we use it to bound the deviation of
the number of non-programmed cells from the constant num-
ber we wish to write, z,. Now, we know that with high prob-
ability, the number of non-programmed cells will be close to
7. Once we have this property, we know that in most cases,
after using the polar WOM codes, flipping a small number of
cells will result in a binary word with exactly z, zeros.
[0265] So our technique is to flip a small number of cells in
order to get a word with the desired weight, and store the
indices of the flipped cells in some additional redundancy
cells. We will later show that we can choose the number of
redundancy cells such that with high probability they will be
sufficient to accommodate the storage of all flipped cells,
while the asymptotic rate of the code will not be affected.
[0266] While the number of redundancy cells can be made
small, we still keep them as part of the cells in the multiper-
mutation. That is, we still want to have a predefined number of
cells in each rank. We do this in the following manner. In rank
i, for each index of a flipped cell we want to store, we assign
n' redundancy cells, where half of them are in rank i, and the
other half in rank i+1.

[0267] Let us now describe the construction formally. To
simplify the notation and representation of the construction
we dropped all floors and ceilings, so some of the values are
not necessarily integers as required. This may encounter a
small lost in the rate of the code, however this lost will be
minor and thus can be neglected.

[0268] First we state a useful assumption in our construc-
tion for the existence of WOM codes with the properties we
described above.

[0269] Assumption 1. For any O<p<1 and 0<E<p/2, there
exists a binary WOM code € ,,, with encoding function f,,,
and decoding function g, such that given a cell-state vector
¢ of N cells and weight w(c)=(1-p)N, it is possible to write a
binary vector d of (p-3)N bits, for § arbitrarily small, such
that the updated cell-state vector ¢'=f, | (c, d) satisfies:

[0270] 1) (1-p/2-E)N=w(c)=(1-p/2+E)N.

[0271] 2)g, (cH=d.

[0272] 3)c=c"

[0273] Theencoder f, (d) can have a small probability that

the conditions doesn’t meet, in which case we say that the
encoding fails.

[0274] In Section VI. C, we describe how to construct
WOM codes, based on polar codes, that satisfy the conditions
of € , < in Assumption 1. See, for example, D. Burshtein and
A. Strugatski, “Polar write once memory codes,” in Proceed-
ings of the 2012 IEEE International Symposium on Informa-
tion Theory, ISIT2012, Cambridge, Mass., USA, July 2012,
pp. 1982-1986. However, while these polar WOM codes are
good for our construction, they suffer a small probability of
encoding failure, i.e., they don’t work in the worst case for
any sequence of writes. In this section, for the simplicity of
the presentation, we do not consider the case of this encoding
failure but will sketch the necessary modifications to adjust
these codes to our construction in VI. D. We are now ready to
present our construction.

[0275] Construction 1. Let m, z, N be positive integers such
that N=mz. Let p=27/N, 0<€<p/2, and € ,, . is the code from
Assumption 1 with encoding function f, , and decoding func-
tion g, _. Let N'=N mENn'(the value of n' will be explained
later). The first N cells are called the information cells and are
denoted by c=(c,, . . ., ¢5). The last =m&ENnD' cells are called
the redundancy cells and are partitioned into m&EN vectors py ;
for 1=k=m-1,1=j=€EN, each of n' bits. We assume that
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there is a function h:{1, 2, ...,N}—{0,1}"'which receives an
integer between zero and N and returns a balanced vector of
length n'. h can be implemented, where in both cases log
N<n'<2 log N. See, for example, The Art of Computer Pro-
gramming Volume 4, Fascicle 3. Addison Wesley, 2005 and D.
E. Knuth, “Efficient balanced codes,” IEEFE Trans. on Inform.
Theory, vol. 32, no. 1, pp. 51-53, 1986. We also assume that
this function has an inverse function h™":Im(h)—={1, 2, . ..,
N}.
[0276] An (N'.q,T,D,Z) rank-modulation rewriting code
¢ is defined according to the following encoding function f
and decoding function g. The number of messages on each
write is D=2 and each message will be given as
m-1 binary vectors, each of length 27—-3N bits. The number of
rewrites satisfies T=q-m+1 and Z=N'/m=z+ENn'.
[0277] On the encoding and decoding functions, on each
write we have the following assumptions:
[0278] 1) The information cells vector ¢ and the redun-
dancy cells vector r are multipermutations with m consecu-
tive levels such that the number of cells in each level is the
same. We let 1., be the minimum cell level and 1,,,,,, be the
maximum level (note that 1, -1, . =m-1).
[0279] 2)Welet o, the multipermutation derived from the
information cells Vector For 1=i=m, let S=o, ‘1(1) (note
that IS,1=z).
[0280] 3) There are EN(m-1) auxiliary variables, called
index variables and are denoted by 1. for 1=k=m-1,
1=j=€N. These index variables will be stored in the redun-
dancy cells and they will indicate the information cells that
their levels was intentionally changed during the encoding
process.
[0281] Encoding Function f(c, p, d)=(c',p'): Let ¢ be the
current information cells vector, p=(p; ;, . - . , D) be the
current redundancy cells vector, and d=(d,, ..., d,,_,) be the
information vector, where each d,. is a vector of (p—0)N=2z-
ON bits. The new updated information cells vector ¢'=(c, . ..
, C) is determined as follows. Let S,, be the set S, =S,.
[0282] Encoding of the k-th rank, 1=k=m-1:
[0283] 1) Let V,=(vi,, . . ., vzx)E{0,1}" be the vector
defined as follows: v, =0 if and only if i€S",US, .
[0284] 2)Letu,=f, (v, d;). (Note that u, satisfies

[0285] a) (1-p2-E)N=w(u)=(1-p/2+E)N'

[0286] D) g, (u)=d,

[0287] c¢)v,=u,)
[0288] 3)Letw,=w(u,)-(1-p/2)N(Iw,/=EN), and leti,, ..
-5 1jy, be thefirst Iw, ] indices in S',(US,{JF1 whose value in u,, is
equal to (sign(w;)+1)/2. The vector u';, is defined to be u'y,
-:l —u,, for 1=j=Iw,| and for all other indices u", /=, , (note
that W(u »W=(1-p/2)N). Set the indices I, ~for 1=j=Iw,| and
for Iw l+1=j=€N, [, ~0.
[0289] 4)Let Sk* {ilu', =0} and 8", ~(S"US,,., \S.*. For
every iES*,, set ¢' =L, +k.
Finally, for every 1ESm , set (¢')=1,,..+1
[0290] The new redundancy cells vector p=(p', ;, . . .,
P'n.en) is determined as follows to store the (m—1)En indices.
For 1=k=m-1, I=j=€EN, let

Doy tk) LR (I ).

[0291] Finally, for 1=j=&np',, p,, +1

[0292] Decoding Function g(c, p)=d": Letc=c,, ..., c,) be
the information cells vector and p=(p, ;, - . . , P,..») be the
redundancy cells vectors. The information vector d'=(d',, . . .

,d',,_,)is decoded as follows.
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[0293] Firsttheindices I, ; for 1=k=m-1, 1=j=EN, are
decoded to be 1, =h™"(p; ~(1,,,,,+k-1) l)

min

[0294] Decoding of the k-th rank, 1 =k=m-1:

[0295] 1) Let 0'=(ug, - - . . uzA)E{0,1}" be the vector
defined to be {', =0 if and only if iES,.

[0296] 2) The vector Ui, defined as follows. For all
1 <J €N, if I, =0 then G, " l_ﬁk,lkj and for all other indices
1 uk 14]‘l ki

[0297] 3. (d'=g, (D).

[0298] Itis possible to use the proposed rewrite codes with

a different trade-off between the rate and the number of
writes. In every write, the rewrite codes increase the value of
the highest level among the cells by a single level, and allow
arate of 2 bits/cell. Instead, the codes can be used such that the
value of the highest cell increases by ¢ levels in each write,
with a rate of (c+1)log 2(c+1)—-c log 2(c) bits/cell. To do that,
we need to replace the set S_{k+1} in steps 1,3 and 4 of the
encoding of the k-th rank, with the union of the sets S_{k+1},
S_{k+2}, ..., S_{k+c}. We prove the correctness of Con-
struction 1 in the next lemmas. We note that on the first write
all the cells are in level zero and thus any multipermutation of
m consecutive levels between 0 and m~-1 such that the number
of cells in each level is z will be written in the information
cells. We also assume that the redundancy cells will be written
in a similar way to keep the multipermutation property of
these cells. This will be addressed in the next lemma.

[0299] Lemma 1. For t=1, . . ., T, after the t-th write, the

redundancy cells vector is a multipermutation of m&ENn' cells

with €Nn' cells in each of the m consecutive levels: 1, ~t-1,
1

=t+m-2. Furthermore, for 1 km, 1jEN, half of the

* Y Tmax,t
cells in p,, are in level 1, +k-1 and the other half in level
1 Ak mod m).
[0300] Proof. Onthe first write, there is no restriction on the

index variables and thus we can simply write the redundancy
cells in a way that they will satisfy this property. For all
subsequent writes, this property is easily verified for all
redundancy cells vectors since the output of the function
h(I, ;) is a balanced binary vector. Note that one purpose of the
redundancy cells vectors are p,,, 1, . . . , P,,,, en» 1S to keep all the
redundancy cells as a multipermutation with the same num-
ber of cells in each level. On the first write each of these En
vectors is written as a vector where n'/2 cells have the value
zeros and the other n'/2 cells have the value m-1. On each
following write, each of these cells is incremented by one
level which preserves the balanced multipermutation prop-
erty of all the redundancy cells.

[0301] Itis verifiable that the decoded value of every index
variable is the same as the one stored during the encoding
function. we note here that the index variables could be stored
more efficiently, however this will not be significant in the
rate analysis of the code. Hence, we tried to keep the redun-
dancy part of the code as simple as possible.

[0302] Next, we prove similar properties for the informa-
tion cells.

[0303] Next, we prove similar properties for the informa-
tion cells.

[0304] Lemma 2. Assume the information cells vector ¢ is
a multipermutation with m consecutive levels, between and
l,,andl =l . +m-1 such that the number of cells in each
level is z. Then, for any information vector d=(d,, ...,d,,_;)
the resulting updated information cells ¢' from (c', p")=f (c,p,
d) satisfies this property as well between the levels1,,,,,+1 and
Laxtl.
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[0305] Proof. For every 1=k=m-1, w(v,)=(1-p)N and
w(u',)=(1-p/2)N. Hence, |S*,1=Np/2=z and so exactly z cells
are programmed to level 1,,,+k. Furthermore, IS', 1=z and
thus exactly z cells are programmed to level 1,,, +1. This
proves that the information cells vector forms a multipermu-
tation of m levels between1,,+1 and 1, +1 and the number
of cells in each level is z.

[0306] Lemma 3. On each write the following holds g(f
(c.p.d))=d
[0307] Proof. Fork=1, ..., m-1, in the encoding function,

the cells which were programmed to have the k-th rank are the
ones having value zero according to the vector u',. Similarly,
the vector 0", was defined to have the value zero if and only if
the corresponding cell is in level k. Therefore, we have that
0',=u';. Since the index variables are correctly decoded by the
redundancy cells, we also have that i,=u,. Finally, we get that

d ,k:gp,s(ﬁk):gp,s(uk):dlw

and together we conclude that g(f (c,p,d))=d.

[0308] Theorem 1. The code € from Construction 1 is an
(N',q,T,D,Z) rank-modulation rewriting code, where N'=N,
D=2@3m=1 T—g_m4+1, and Z=N'/m

[0309] Proof. It is verifiable that for all (c,p,d), (c,p)=(c,g,
d), and forall (c,,p, ),(c,,P,)EQ, such that o 20, Ferpn), WE
have that g(c,,p, )=g(c,,p,). According to Lemma 3, we have
that g(f (c,p,d))=d. On the first write the maximum level is
m-1 and according to Lemma 1 and Lemma 2, on each
subsequent write the maximum level increases by one level.
Hence, the code supports any sequence of T=q-m+1 writes.

[0310] Inordertocomplete our construction of rank-modu-
lation rewriting codes, we are left with presenting WOM
codes which satisty the conditions of Assumption 1. This will
be the topic of the next section.

C. Polar WOM Codes

[0311] In this section we describe the recently proposed
polar WOM codes and show how they are used for the imple-
mentation of the codes in Assumption 1. Polar WOM codes
were proposed in order to write multiple times over a WOM.
See, for example, D. Burshtein and A. Strugatski, “Polar write
once memory codes,” in Proceedings of the 2012 IEEFE Inter-
national Symposium on Information Theory, ISIT2012, Cam-
bridge, Mass., USA, July 2012, pp. 1982-1986. In the follow-
ing, we briefly describe the construction of polar WOM codes
in order to show the modifications we introduce in these codes
to satisfy the conditions of Assumption 1 and to achieve high
sum-rate.

[0312] We first start with a short overview on polar codes
and their usage to lossy source coding as they serve the basis
to the construction of polar WOM codes. For more details, see
D. Burshtein and A. Strugatski, “Polar write once memory
codes,” in Proceedings of the 2012 IEEFE International Sym-
posium on Information Theory, ISIT2012, Cambridge, Mass.,
USA, July 2012, pp. 1982-1986. Polar codes were first intro-
duced by Arikan and were proved to achieve the symmetric
capacity of an arbitrary binary-input channel. See, for
example, E. Arikan, “Channel polarization: A method for
constructing capacity achieving codes for symmetric binary-
input memoryless channels,” IEEE Trans. on Inform. Theory,
vol. 55, no. 7, pp. 3051-3073, July 2009. Let
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G,® ” be is its n-th Kronecker product, and N'=2". Assume
the data is transmitted over a memoryless binary-input chan-
nel with transition probability W(yIx). The information mes-
sage n={0,1}" is first encoded to be the vector x=uG,® .
Then x is transmitted over the channel and the channel output
word is y. The main idea of polar codes is to define N sub-
channels

N g 1
WA (. ! L) = Py, ! ) = WZ%I Wiyl u).

where u/, for 0=i<j=N-1, denotes the subvector (u,, . . ., u,).

[0313] LetI(W)denote the symmetric capacity of the chan-
nel W and Z(W,”) be the Bhattacharyya parameter of the
sub-channels W, @, defined by

ZWN =2, eV OG0 IO HID).

It was shown that for N large enough, approximately I(W) of
the sub-channels satisfy that Z(WN(i))<2‘NB for any O<f<l/4.
See, for example, E. Arikan and E. Telatar, “On the rate of
channel polarization,” in Proceedings of the IEEE Interna-
tional Symposiom on Information Theory Workshop (ISIT),
June 2009, pp. 1493-1495 and E. Arikan, “Channel polariza-
tion: A method for constructing capacity achieving codes for
symmetric binary-input memoryless channels,” IEEE Trans.
on Inform. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.
Accordingly, for a code rate R, a set F is defined, comprising
of the N(1-R) sub-channels with the highest Z(W, %), and
denoted as the frozen set. Then, the information is transmitted
on the remaining NR sub-channels, while the input on the
sub-channels in F is fixed to be some frozen vector u (the
elements of the vector u in the set F). The encoder transmits
the word x=uG,® " and the information u is decoded using
the successive cancellation (SC) scheme and by the informa-
tion of the frozen vector u,. Finally, it was shown that asymp-
totically, if R<I(W), then it is possible to communicate reli-
ably with encoding and decoding complexities of O(N log N).

[0314] Itwas shown how to use polar codes forlossy source
coding. In this case, the frozen set F is defined by
F={i{o, ..., N-1}:207)=1-25,23, m

where 6]\;2’]\’6 /(2N).

[0315] See, for example, S. B. Korada and R. Urbanke,
“Polar codes are optimal for lossy source coding,” /EEE
Trans. on Inform. Theory,vol. 56,n0. 4, pp. 1751-1768, April
2010. The encoder compresses the source vector y by the
following SC scheme. For i=0, 1, . .., N-1, let u,~u, if i€EF.
Otherwise, let

[0 wepLy /() + D)
= .
Lowepl /(LY +1),
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-continued

where

A i)

19 = 19, ity = 2 : )
N T WO i = 1)

[0316] The decoder, in turn, let x(y)=uG,&®” be the
approximating source codeword. It has been shown that for
any compression rate in the rate distortion region (where the
distortion is denoted by D), x(y) satisfies Ed(x(y),y)/N=D+
0(2‘NB ) for any 0<f<'2 and N sufficiently large. See, for
example, S. B. Korada and R. Urbanke, “Polar codes are
optimal for lossy source coding,” IEEE Trans. on Inform.
Theory, vol. 56, no. 4, pp. 1751-1768, April 2010. The result
on the average case was further improved to show that Id(x
(¥),y)YN=DI can be made arbitrary small with probability
approaching 1 for N large enough.

[0317] These results allowed the construction of multiple
writes WOM codes. See, for example, D. Burshtein and A.
Strugatski, “Polar write once memory codes,” in Proceedings
of the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986. Let T be number of writes to the WOM. For each
write cycle, 0=t=T, let 0=&,= % be an estimate of the frac-
tion of unprogrammed cells that will be written on this write,
where €,=0 and €,~'. In addition, let

&
a,~ ' (1-€,).

Note that the values of &,, €,, . . . , €, come from the
expression of the capacity region of WOM, given by

c~{(R,,.... RIR <me),R,<1-€)H
€. ..., Rp <arHET ), R <ary,
[0318] where 0=€,,...,E, =

[0319] and H denotes the binary entropy function}. See, for
example, F.-W. Fu and A. J. Han Vinck, “On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph,” IEEE Trans.
on Inform. Theory, vol. 45, no. 1, pp. 308-313, January 1999
and C. D. Heegard, “On the capacity of permanent memory,”
IEEFE Trans. on Inform. Theory, vol. IT-31, no. 1, pp. 34-42,
January 1985.

[0320] For the t-th write, 1=t=T, a test channel is consid-
ered with binary input X and an output (S, V), where S and V
are binary variables as well. The probability transition func-
tion of the t-th channel is defined by,

PS8, V)= (s, M| X =x) = fs, xDV),

where
a((l-g) if s=0,b=0,
b @18 if s=0,b=1,
Fo b=y 14 ) irs=lp=o
0 if s=1,b=1.
[0321] For the t-th test channel, a polar code is designed

with block length N with a frozen set as in (1). The polar code

is used for lossy source coding, with rate
R=a, H(E)-E, @

where 9, is arbitrarily small for N sufficiently large.

19
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[0322] The t-th encoder uses a common randomness
source, also called dither, denoted by g,, sampled from an N
dimensional uniformly distributed random binary vector, and
known both to the encoder and to the decoder. Let s, repre-
sents the cell-state vector before encoding on the t-th write,
and let v,=s+g,. Finally, let y=(s,,,v,)) and y =(y,, ¥», - - - ,
Y-

[0323] The encoder compresses the vector y, using the t-th
polar code with u, =, where @, is the information message
on the t-th write. The encoder decompresses the resulting
vector u, into x,=u,G,®” and sets §,=x,+g, to be the new
cell-state vector.

[0324] The decoder first calculates x,=$,+g,, and then esti-
mates &t:(x(G2® ) -, Where (z) denotes the elements of
the vector z in the set F,. A few slight modifications for the
construction have been described, for the sake of the proof.
See, for example, D. Burshtein and A. Strugatski, “Polar write
once memory codes,” in Proceedings of the 2012 IEEFE Inter-
national Symposium on Information Theory, ISIT2012, Cam-
bridge, Mass., USA, July 2012, pp. 1982-1986. The follow-
ing theorem summarizes the results of the polar WOM codes.
[0325] Theorem 2. Consider an arbitrary information
sequence ., ..., o withratesR,, ..., R that are inside the
capacity region C; of the binary WOM. For any 0<f<'% and
N sufficiently large, the polar WOM code described above
can be used to write this sequence reliably over the WOM w.p.

at least 1-2™" in encoding and decoding complexities O(N
log N).
[0326] The Theorem is based on the fact that in every write,

the WOM property is held, and in addition, the number of
written cells in bounded. We bring this result in the following
Lemma, that we then use in order to prove Assumption 1. See,
for example, D. Burshtein and A. Strugatski, “Polar write
once memory codes,” in Proceedings of the 2012 IEEFE Inter-
national Symposium on Information Theory, ISIT2012, Cam-
bridge, Mass., USA, July 2012, pp. 1982-1986.

[0327] Lemma 4. Consider a polar code designed for the
t-th test channel. The code has rate R, defined in (2), a frozen
set of sub-channels F,, and some frozen vector v, which is
uniformly distributed over all IF,| dimensional binary vectors.
The code is used to encode a random vector (s, v) drawn by
1.i.d. sampling from the distribution P(s,v)=P (s,vIx=0)/2+P
(s,vIx=1)/2 using the SC encoder. Denote by x the encoded
codeword. Then for any >0, 0<d<%% and N sufficiently large,
the following holds w.p. 1-2-™ ,

[0328] 1. {k:s,=0 and x,Dv,=1}I<(E,t,_;+O)N,
[0329] 2. {k:s,=1 and x,Pv,=1}=0.
[0330] Based on this Lemma, we propose the following

construction for the code € ,, - of Assumption 1. Assume that
a polar WOM code is applied with T=2 and €,=1-p, that is,
o,=p and €,=V%. Furthermore, assume that (1-p)N cells are
being written in the first write. Connecting the notations of
Assumption 1 to those of the polar WOM code, note that c=s
and ¢'=x@®v®s. Now, € , ={f g, } is set to be the encod-
ing and decoding function of the second write of the polar
WOM code. In the following [Lemma we prove that this code
has the properties of Assumption 1.

[0331] Lemma 5. The code €, described above satisfies
the three properties of Assumption 1 w.p. at least 1-2¥,
[0332] Proof: First, by Lemma 4, the rate of the code is p-9,
as stated in Assumption 1. Next, note that the second property
(the correctness of the decoded value) follows directly from
the construction of the WOM code. The third property, c=c',
follows from the second property of Lemma 4.
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[0333] For the first property of Assumption 1, we write the
first property of Lemma 4 in the language of Assumption 1,
and get that for any €>0, w.p. 1-27"s,
w(e)-w(e)<(p2+E)N,
In addition, by the proof of Lemma 4 we can also verify that,
w(c)-w(e)>(p/2-E)N,

and the property is met, completing the proof

5 Analysis of the Construction

[0334] After we showed how to use polar WOM codes in
our construction, we are now left with analyzing the sum-rate
of Construction 1.

[0335] By Theorem 1 and remembering that N=mz and
n'=log N=log(mZ), we get that the instantaneous rate of the
code is given by

Rinse = (1/N")log,D 3
B (2z-S0N)m-1)
- N +mzNn'
., m= 1 z-96zm/2 1
- m z 1+ smn’

2" g ey — L
m (1=om/2) 1 + emlog(mz)

[0336] Note that by Assumption 1, d is a constant, which
does not depend on the value of N. However, p is also a
constant in this assumption, and since Construction 1 uses
p=2/m, d can be a function of m as well. Therefore, we can
choose for example =2/m? in order to let the expression dm/2
vanish when m is large enough. Similarly, € can be also taken
to be a function of m. However, it cannot be a function of z,
and therefore (3) shows that when z is large, unfortunately we
getthat R, approaches zero. In order to solve this difficulty,
we extend the result in [4, Lemma 1] for the case that Eis a
function of N.

[0337] Lemma 6. For any

p-1

e>N72Z |,

0<p<!%and N sufficiently large, the properties of Assumption
1 hold w.p. at least 1-27¥

[0338] Proof: The case of constant E is proven in section V1.
C. The proof of this case is based on on the typical distortion
of polar lossy source codes. See, for example, D. Burshtein
and A. Strugatski, “Polar write once memory codes,” inProc-
eedings of the 2012 IEEE International Symposium on Infor-
mation Theory, ISIT2012, Cambridge, Mass., USA, July
2012, pp. 1982-1986. The proof of this Lemma is based on an
extension of this result, and therefore, in the following, we
presents the definitions used for describing the typical distor-
tion result.

[0339] Similar to the notation employed in other works,
define E-strong typical sequences x, y, &x’'xy” with respect
to the distribution p(x,y) on xxy, and denote it by A *(N)(X,
Y), as follows. See, for example, T. Cover and J. Thomas,
Elements of Information Theory, 2" ed. New York: Wiley,
2006, pp. 325-326. Let C(a,blx,y) denote the number of
occurrences of the symbols a, b in y. Then x,yEA *™ (X,Y)
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if the following two conditions hold. First, for all a, b xxy with
p(a, b)>0, [(C(a,blx,y)/N-p(a,b)I<E. Second, for all a,b xxy
with p(a,b)=0, C(a,bIx,y)=0.

[0340] Inourcase, x(1)=uG,® ”, and since G,® " has a full
rank, each vector u corresponds to exactly one vector x(u). We
say that u, yEA*™MU,Y) if x(u), yEA *(X,Y) with
respect to the probability distribution p(x, y)=W(ylx)/2. Let
Q(A,*™) be the probability that x(n), yEA *™(X,Y). In [4,
Lemma 1], it is shown that Assumption 1 holds if x(u), y
A,*® (X,Y). Therefore, in order to complete the proof of
this Lemma, we need to show that for any

AL
e>2N7,

QA *™)>1-2Y,

[0341] Define a value p' such that 0<f'<f. By the proof of
[4, Theorem 1], it follows that

O #1022,

Taking
[0342]

7

Bl
e>2N"72,

we get:

O #0012 M g an

and therefore, for N sufficiently large, the assumption holds
w.p. at least
12,

[0343] Notice that taking large € decreases & ,,,. There-
fore, we choose the smallest € that meets the conditions of
Lemma 6 for any 0<f<V%2, meaning

yz-1
2

e=N"7 =1/N".

In some embodiments, € may be even smaller, depending on
an acceptable trade-off between R ,,., and the probability of
encoding failure. The properties of Construction 1 are now
described.

[0344] Theorem 3. We note that the decoding can be done
with complexity O(N log N), by performing the decoding of
the k ranks in parallel. For T=q-m+1, consider an arbitrary
information sequence a.,, . . ., ey withrates & ,, <2. For any
0<p<¥2 and q, m and z sufficiently large, the rank modulation
rewriting code in Construction 1 can be ysed to write this
information sequence w.p. at least 1-T2™"", in encoding and
decoding complexities O(mN log N).

[0345] Proof: Setting €=1/N'* and =2/m?, and remem-
bering that n'<2 log N, we get that

1

Ry >2-(1=1/m? ———— =
inst > 2+ ( /m) 1+ 2gnlogzm)
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-continued
1
2l -1fmP—— =
1+ 277 1A m3 4 og(zm)

L

. - 2 —_—
2-d=1/m V4 + 2m3 4 og(zm)

[0346] Therefore, R, ., can take any value below 2 for
large enough m and z, if z/m> is large enough as well. The
probability of writing failure is achieved by the union bound.
Bach time {, _ is applied, the probability of encoding failure is
atmost 27 . T, is applied m-1 times in each operation of the
rank-modulation encoding, and therefore, for large enough N,
the rank-modulation encoding is successful w.p. at least 1-2~
~ . Since the rank-modulation encoding is applied T times,
the probability of successful write of the whole information
sequence is at least 1-T27".

[0347] We prove the encoding and decoding complexities.
By Theorem 2, the complexities of f,  and g, are both
O(NlogN). In each rank, we also apply hor h™*, which can be
performed in logarithmic time in N. See, for example, The Art
of computer Programming volume 4, Fascicle 3. Addison
Wesley, 2005 pp. 5-6 and D. E. Knuth, “Efficient balanced
codes,” IEEE Trans. On Inform. Theory, vol. 32, no 1, pp.
51-53, 1986. The functions h and h™* are applied at most EN
times on each rank, and therefore they don’t affect the com-
plexity. Finally, since f, ,, and g, , are applied for each rank,
the encoding and decoding complexities are O(mN log N).
[0348] In the rare event of an encoding error, the encoder
can take one of two strategies. One option is to use a different
dither value. See, for example, D. Burshtein and A. Stru-
gatski, “Polar write once memory codes,” in Proceedings of
the 2012 IEEE International Symposium on Information
Theory, ISIT2012, Cambridge, Mass., USA, July 2012, pp.
1982-1986. In this case the decoder can realize the correct
dither value, either by direct communication (by using extra
storage), or by switching to the next dither value upon detec-
tion (e.g., using CRC) a decoding failure.

[0349] Ifthe methods for taking a different dither value are
too expensive in practice, the encoder can take a different
strategy. We bring here the idea of this strategy, without a
formal description and analysis. In case of encoding error, the
encoder can recalculate the vector v, in Step 1, of the encod-
ing function of Construction 1. In the new vector v, v, =0 if
and only if i€S',US,,,. This also involves setting ¢'=l,,,,+
k+1 in Step 4 of the decoding for all ranks 1=k=m-1, and
thus reduce the value of T by 1 (in fact, we do not have to
increase the level of the cells with ranks below the one that
failed, and perhaps take advantage of this gap in the following
writes, but for the simplicity of the construction we seek to
keep all the ranks to be in m consecutive levels). However,
since the event of encoding error is rare, the expected value of
T will not be affected by much if q is large enough compared
to N. In the case of repeated errors, a different subset os size
2z of §', US,, | US,,, could be taken each time until exhaus-
tion. If that wouldn’t be enough, S, , ; could be added with the
cost of an extra write, and so on until a successful encoding
occurs.

[0350] FIG.15B depicts a process 1520 for operating a data
device. The process 1520 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1525, 1527, 1529, 1531, 1533, 1535, 1537, 1539, and
1541. Although illustrated as discrete blocks, various blocks
may be divided into additional blocks, combined into fewer

21
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blocks, or eliminated, depending on the particular implemen-
tation. The process starts with block 1525. In block 1527 a
new data set for a rank of a plurality of ranks is received to
store in the memory device wherein the memory device com-
prises a plurality of cells. In block 1529 a current state of
candidate cells is read within the plurality of cells wherein
candidate cells are used to store the new data set. In block
1531 a binary representation of the plurality of cells is created
and used to store the new data set. In block 1533 a binary
representation of the plurality of cells is used to store the new
data set. In block 1535 a WOM code is used to combine the
binary representation with the new data set to create a binary
WOM vector. In block 1537 the binary WOM vector is modi-
fied to equal quantities of 1’s and 0’s within the candidate
cells creating a new data vector. In block 1539 the new data
vector is written to the candidate cells. In block 1541 the
process may be continued. In some embodiments the WOM is
a Polar WOM. In further embodiments the cost of writing is
defined as a maximum level of the plurality of cells after
writing the new data vector minus a maximum level of the
candidate cells before writing the new data vector. In some
embodiments, the cost is one. In further embodiments the
method further comprises reading the new data vector from
the candidate cells, modifying the new data vector to recreate
the binary WOM vector and using a WOM code on the binary
WOM vector to separate the binary representation from the
data set.

[0351] FIG. 15C depicts aprocess 1545 for operating a data
device. The process 1545 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1547, 1549, 1551, 1553, 1555, and 1557. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The pro-
cess starts with block 1547. In block 1549 a new data set m is
received for a rank of a plurality of ranks to store in the
memory device wherein the memory device comprises a plu-
rality of cells. In block 1551 a current state of candidate cells
is read within the plurality of cells wherein candidate cells are
used to store the new data set. In block 1553 a new multi-
permutation is determined and is to be written to the candidate
cells representing the received data set m. In block 1555 the
new multi-permutation is written to memory with a predeter-
mined cost wherein the new multi-permutation is determined
in accordance with the predetermined cost. In block 1557 the
process may be continued.

[0352] FIG. 15D depicts a process 1560 for operating a data
device. The process 1560 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1562, 1564, 1566, 1568, 1570, 1572, 1574, 1576,
1578, and 1580. Although illustrated as discrete blocks, vari-
ous blocks may be divided into additional blocks, combined
into fewer blocks, or eliminated, depending on the particular
implementation. The process starts with block 1562. In block
1564 a data value is received comprising a plurality of data
sets wherein each data set is a set of values representing a rank
in a plurality of ranks. In block 1566 a new data set for a rank
of a plurality of ranks is received to store in the memory
device wherein the memory device comprises a plurality of
cells. In block 1568 a current state of candidate cells is read
within the plurality of cells wherein candidate cells are used
to store the new data set. In block 1570 a binary representation
of the plurality of cells is created and used to store the new
data set. In block 1572 a binary representation of the plurality
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of cells is created an used to store the new data set. In block
1574 a WOM code is used to combine the binary representa-
tion with the new data set to create a binary WOM vector. In
block 1576 the binary WOM vector is modified to equal
quantities of 1’s and 0’s within the candidate cells creating a
new data vector. In block 1578 the new data vector is written
to the candidate cells. In block 1580, if a new data vector has
been written for each rank of the plurality of ranks the process
may continue with block 1582. If all of the data vectors have
not been written, then blocks 1566-1578 may be repeated
until all the new data vectors have been written.

[0353] FIG. 15E depicts a process 1584 for operating a data
device. The process 1560 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1586-1599. Although illustrated as discrete blocks,
various blocks may be divided into additional blocks, com-
bined into fewer blocks, or eliminated, depending on the
particular implementation. The process 1560 may include
one or more operations, actions, or functions as illustrated by
one or more of the blocks. The process starts with block 1586.
Inblock 1588 a plurality of cells are read and a multi-permu-
tation stored in the plurality of cells is determined. In block
1590 a group of cells are identified in the plurality of cells,
contained within each rank of a plurality of ranks. In block
1592 a new data vector is read from the rank. In block 1594
the new data vector is modified to recreate a binary WOM
vector. In block 1596 a WOM code is used on the binary
WOM vector to separate a binary representation from a data
set. Inblock 1598 if a WOM code has been used on each rank
the process may continue to block 1599. If a WOM code has
not been used on each rank the blocks of 1592 through 1596
may be repeated until a WOM code has been used on each
rank.

V1. EXAMPLE EMBODIMENTS

[0354] FIG. 16 is an illustration of one embodiment of a
data device constructed in accordance with the present dis-
closure. FIG. 16 shows a memory 1602 that is accessed by a
memory controller 1604 that communicates with a host
device 1606, which may all be operatively or communica-
tively coupled to each other. The memory 1602 is used for
storing data that is represented in accordance with a minimum
push up, multi-cell or multi-permutation scheme. The
memory may be implemented, for example, as a Flash
memory having multilevel cells. The memory 1602 and
memory controller 1604 together comprise a data storage
device 1608 that may be external to the host device or may be
integrated with the host device into a single component or
system. For example, the data storage device 1608 may com-
prise a Flash memory device (sometimes referred to as a
“thumb drive”) that communicates with a host computer 1606
via a USB connection, or the data storage device may com-
prise a solid state drive (SSD) that stores data for a host
computer system. Alternatively or additionally, the data stor-
age device may be integrated with a suitable host device to
comprise a single system or component with memory
employing a minimum push up, a multi-cell or a multi-per-
mutation scheme, such as a smart phone, network router, MP3
player, or the like.

[0355] The memory controller 1604 operates under control
of a microcontroller 1610, which manages communications
with the memory 1602 via a memory interface 1612 and
manages communications with the host device via a host
interface 1614. Thus, the memory controller supervises data
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transfers from the host 1606 to the memory 1602 and from the
memory 1602 to the host 1606. The memory controller 1604
also includes a data buffer 1616 in which data values may be
temporarily stored for transmission over the data channel
controller 1617 between the memory 1602 and the host 1606.
The memory controller also includes an Error Correcting
code (ECC) block 1618 in which data for the ECC is main-
tained. For example, the ECC block 1618 may comprise data
and program code to perform error correction operations for
a minimum push up, a multi-cell or a multi-permutation
scheme. Such error correction operations are described, for
example, in the U.S. Pat. No. 8,225,180 entitled “Error Cor-
recting Codes for Rank Modulation” by Anxiao Jiang et al.
issued Jul. 17, 2012. The ECC block 1618 may contain
parameters for the error correction code to be used for the
memory 1602, such as programmed operations for translating
between received symbols and error-corrected symbols, or
the ECC block may contain lookup tables for codewords or
other data, or the like. The memory controller 1604 performs
the operations described above for decoding data and for
encoding data.

[0356] The operations described above for operating a data
storage device, for reading data from a device, for program-
ming a data storage device, and encoding and decoding, can
be carried out by the operations depicted in FIGS. 6, 8A, 8B,
14 and 15 which can be performed by the microcontroller
1610 and associated components of the data storage device
1608. For example, in an implementation of the rank modu-
lation coding scheme in a USB thumb drive, all the compo-
nents of the data storage device 1608 depicted in FIG. 16 are
contained within the USB thumb drive.

[0357] The processing components such as the controller
1604 and microcontroller 1610 may be implemented in the
form of control logic in software or hardware or a combina-
tion of both, and may comprise processors that execute soft-
ware program instructions from program memory, or as firm-
ware, or the like. The host device 1606 may comprise a
computer apparatus. A computer apparatus also may carry out
the operations of FIGS. 6, 8A, 8B, 14 and 15. FIG. 17 is a
block diagram of a computer apparatus 1700 sufficient to
perform as a host device and sufficient to perform the opera-
tions of FIGS. 6, 8A, 8B, 14 and 15.

[0358] FIG. 17 is a block diagram of a computer system
1700 that may incorporate embodiments of the present dis-
closure and perform the operations described herein. The
computer system 1700 may include one or more processors
1705, a system bus 1710, storage subsystem 1715 that
includes a memory subsystem 1720 and a file storage sub-
system 1725, user interface output devices 1730, user inter-
face input devices 1735, a communications subsystem 1740,
and the like.

[0359] In various embodiments, the computer system 1700
may include computer components such as the one or more
processors 1705. The file storage subsystem 1725 can include
a variety of memory storage devices, such as a read only
memory (ROM) 1745 and random access memory (RAM)
1750 in the memory subsystem 1720, and direct access stor-
age devices such as disk drives. As noted, the direct access
storage device may comprise a rank modulation data storage
device that operates as described herein.

[0360] The user interface output devices 1730 can com-
prise a variety of devices including flat panel displays, touch-
screens, indicator lights, audio devices, force feedback
devices, and the like. The user interface input devices 1735
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can comprise a variety of devices including a computer
mouse, trackball, trackpad, joystick, wireless remote, draw-
ing tablet, voice command system, eye tracking system, and
the like. The user interface input devices 1735 may allow a
user to select objects, icons, text and the like that appear on the
user interface output devices 1730 via a command such as a
click of a button or the like.

[0361] Embodiments of the communication subsystem
1740 typically include an Ethernet card, amodem (telephone,
satellite, cable, ISDN), (asynchronous) digital subscriber line
(DSL) unit, FireWire (IEEE 1394) interface, USB interface,
and the like. For example, the communications subsystem
1740 may be coupled to communications networks and other
external systems 1755 (e.g., a network such as a LAN or the
Internet), to a FireWire bus, or the like. In other embodiments,
the communications subsystem 1740 may be physically inte-
grated on the motherboard of the computer system 1700, may
be a software program, such as soft DSL, or the like.

[0362] The RAM 1750 and the file storage subsystem 1725
are examples of tangible non-transitory media configured to
store data such as error correction code parameters, code-
words, and program instructions to perform the operations
described herein when executed by the one or more proces-
sors, including executable computer code, human readable
code, or the like. Other types of tangible non-transitory media
include program product media such as floppy disks, remov-
able hard disks, optical storage media such as CDs, DVDs,
and bar code media, semiconductor memories such as flash
memories, read-only-memories (ROMs), battery-backed
volatile memories, networked storage devices, and the like.
The file storage subsystem 1725 includes reader subsystems
that can transfer data from the program product media to the
storage subsystem 1715 for operation and execution by the
processors 1705.

[0363] The computer system 1700 may also include soft-
ware that enables communications over a network (e.g., the
communications network 1755) such as the DNS, TCP/IP,
UDP/IP, and HTTP/HTTPS protocols, and the like. In other
embodiments, other communications software and transfer
protocols may also be used, for example IPX, or the like.
[0364] Many other hardware and software configurations
are suitable for use with the disclosed embodiments. For
example, the computer system 1700 may be a desktop, por-
table, rack-mounted, or tablet configuration. Additionally, the
computer system 1700 may be a series of networked comput-
ers. Further, a variety of microprocessors are contemplated
and are suitable for the one or more processors 1705, such as
PENTIUM™ microprocessors from Intel Corporation of
Santa Clara, Calif., USA; OPTERON™ or ATHLON XP™
microprocessors from Advanced Micro Devices, Inc. of
Sunnyvale, Calif., USA; and the like. Further, a variety of
operating systems are contemplated and are suitable, such as
WINDOWS®, WINDOWS XP®, WINDOWS VISTA®, or
the like from Microsoft Corporation of Redmond, Wash.,
USA, SOLARIS® from Sun Microsystems, Inc. of Santa
Clara, Calif., USA, various Linux and UNIX distributions,
and the like. In still other embodiments, the techniques
described above may be implemented upon a chip or an
auxiliary processing board (e.g., a programmable logic
device or graphics processor unit).

[0365] The embodiments described herein can be imple-
mented in the form of control logic in software or hardware or
a combination of both. The control logic may be stored in an
information storage medium as a plurality of instructions
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adapted to direct an information-processing device to per-
form the methods or portions thereof disclosed in described
herein. Other ways and/or methods to implement the embodi-
ments are possible.

[0366] The minimum push up, multi-cell and multi-permu-
tation schemes described herein can be implemented in a
variety of systems for encoding and decoding data for trans-
mission and storage. That is, codewords are received from a
source over an information channel according to a minimum
push up, a multi-cell or a multi-permutation scheme and are
decoded into their corresponding data values and provided to
a destination, such as a memory or a processor, and data
values for storage or transmission are received from a source
over an information channel and are encoded into a minimum
push up, multi-cell or multi-permutation scheme.

[0367] The operations of encoding and decoding data
according to a minimum push up, multi-cell or multi-permu-
tation scheme can be illustrated as in FIG. 18, which shows
data flow in a data device 1802 that operates according to the
minimum push up, multi-cell or multi-permutation schemes
described herein. In FIG. 18, the device includes a Data
Modulation (DM) controller 1804 that stores and retrieves
information values 1806 using one of a minimum push up,
multi-cell or a multi-permutation scheme. The DM controller
1804 includes an encoder and decoder 1808 for encoding data
values into codewords and decoding codewords into data
values. The DM controller encodes data values and provides
codewords to the source/destination block 1810, and decodes
codewords from the source/destination and provides corre-
sponding data values. The two-way nature of the data flow is
indicated by the double-ended arrows labeled “data values”
and “codewords”. The DM controller includes interfaces
through which the DM controller receives and provides the
data values and the information values (codewords).

[0368] The information values 1806 comprise the means
for physically representing data comprising the data values
and codewords. For example, the information values 1806
may represent charge levels of memory cells, such that mul-
tiple cells are configured to operate as a virtual cell in which
charge levels of the cells determine a permutation of the
minimum push up, multi-cell or multi-permutation schemes.
Data values are received and encoded to permutations of a
minimum push up, multi-cell or multi-permutation scheme
and charge levels of cells are adjusted accordingly, and code-
words are determined according to cell charge levels, from
which a corresponding data value is determined. Alterna-
tively, the information values 1806 may represent features of
a transmitted signal, such as signal frequency, magnitude, or
duration, such that the cells or bins are defined by the signal
features and determine a permutation of the minimum push
up, multi-cell or multi-permutation schemes. For example,
rank ordering of detected cell frequency changes over time
can determine a permutation, wherein the highest signal fre-
quency denotes the highest cell level. Other schemes for
physical representation of the cells may be used.

[0369] For information values 1806 in the case of cell
charge levels, the source/destination 1810 comprises memory
cells in which n memory cells provide n cell values whose
charge levels define a a minimum push up, multi-cell or
multi-permutation scheme. For storing a codeword, the
memory cells receive an encoded codeword and comprise a
destination, and for reading a codeword, the memory cells
provide a codeword for decoding and comprise a source. In
the case of data transmission, the source/destination 1810
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may comprise a transmitter/receiver that processes a signal
with signal features such as frequency, magnitude, or duration
that define cells or bins such that the signal features determine
a permutation. That is, signal components comprising signal
frequency, magnitude, or duration may be controlled and
modulated by the transmitter such that a highest signal fre-
quency component or greatest magnitude component or
greatest time component corresponds to a highest cell level,
followed by signal component values that correspond to other
cell values and thereby define a permutation of the minimum
push up, multi-cell or multi-permutation schemes. When the
source/destination 1810 receives a codeword from the con-
troller 1804, the source/destination comprises a transmitter of
the device 1802 for sending an encoded signal. When the
source/destination provides a codeword to the controller 1804
from a received signal, the source/destination comprises a
receiver of the device for receiving an encoded signal. Signal
components of the transmitted signal may be suitably modu-
lated or otherwise transformed to define minimum push up,
multi-cell or multi-permutation schemes, in view of the
description herein.

VII. CONCLUSION

[0370] The present disclosure describes various examples
that may be embodied as an apparatus, systems, methods, or
a combinations thereof. In some examples, a programming
method is described that may substantially reduce rewriting
cost for rank modulation, and studied rewrite codes for a
worst-case constraint on the cost. Some presented codes may
be optimal full-assignment codes, although additional code
constructions are contemplated of general code length, non-
full assignment codes and average-case cost constraint.
[0371] Some examples describe a flash cell structure
(multi-cell) that may enable a high number of updates
between block erasures. Various update codes that are based
on permutations of relative levels are also described.

[0372] The present disclosure is not to be limited in terms of
the particular embodiments described in this application,
which are intended as illustrations of various aspects. Many
modifications and variations can be made without departing
from its spirit and scope. Functionally equivalent methods
and apparatuses within the scope of the disclosure, in addition
to those enumerated herein are possible in view of the fore-
going descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, apparatus,
articles of manufacture, and/or systems, which can, of course,
vary. It is also to be understood that the terminology used
herein is for the purpose of describing particular embodi-
ments only, and is not intended to be limiting.

[0373] With respect to the use of substantially any plural
and/or singular terms herein, such terms can be translated
from the plural to the singular and/or from the singular to the
plural as is appropriate to the context and/or application. The
various singular/plural permutations may be expressly set
forth herein for sake of clarity.

[0374] In general, terms used herein, and especially in the
appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “including”
should be interpreted as “including but not limited to,” the
term “having” should be interpreted as “having at least,” the
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term “includes” should be interpreted as “includes but is not
limited to,” etc.). If a specific number of an introduced claim
recitation is intended, such an intent will be explicitly recited
in the claim, and in the absence of such recitation no such
intent is present. For example, as an aid to understanding, the
following appended claims may contain usage of the intro-
ductory phrases “at least one” and “one or more” to introduce
claim recitations. However, the use of such phrases should not
be construed to imply that the introduction of a claim recita-
tion by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to embodi-
ments containing only one such recitation, even when the
same claim includes the introductory phrases “one or more”

[Tt}

or “at least one” and indefinite articles such as “a” or “an”
(e.g., “a” and/or “an” should be interpreted to mean “at least
one” or “one or more”); the same holds true for the use of
definite articles used to introduce claim recitations. In addi-
tion, even if a specific number of an introduced claim recita-
tion is explicitly recited, such recitation should be interpreted
to mean at least the recited number (e.g., the bare recitation of
“two recitations,” without other modifiers, means at least two
recitations, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense as would be understood for the conven-
tion (e.g., “a system having at least one of A, B, and C”” would
include but not be limited to systems that have A alone, B
alone, C alone, A and B together, A and C together, B and C
together, and/or A, B, and C together, etc.). In those instances
where a convention analogous to “at least one of A, B, or C,
etc” is used, in general such a construction is intended in the
sense as would be understood for the convention (e.g., “a
system having at least one of A, B, or C”” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). Virtually any disjunctive word
and/or phrase presenting two or more alternative terms,
whether in the description, claims, or drawings, should be
understood to contemplate the possibilities of including one
of the terms, either of the terms, or both terms. For example,
the phrase “A or B” will be understood to include the possi-
bilities of “A” or “B” or “A and B.”

[0375] Inaddition, where features or aspects of the disclo-
sure are described in terms of Markush groups, the disclosure
is also thereby described in terms of any individual member
or subgroup of members of the Markush group.

[0376] For any and all purposes, such as in terms of pro-
viding a written description, all ranges disclosed herein also
encompass any and all possible subranges and combinations
of subranges thereof. Any listed range can be easily recog-
nized as sufficiently describing and enabling the same range
being broken down into at least equal halves, thirds, quarters,
fifths, tenths, etc. As a non-limiting example, each range
discussed herein can be readily broken down into a lower
third, middle third and upper third, etc. All language such as
“up to,” “at least,” “greater than,” “less than,” and the like
include the number recited and refer to ranges which can be
subsequently broken down into subranges as discussed
above. A range includes each individual member. Thus, for
example, a group having 1-3 cells refers to groups having 1, 2,
or 3 cells. Similarly, a group having 1-5 cells refers to groups
having 1, 2, 3, 4, or 5 cells, and so forth.

[0377] While various aspects and embodiments have been
disclosed herein, other aspects and embodiments are pos-
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sible. The various aspects and embodiments disclosed herein
are for purposes of illustration and are not intended to be
limiting, with the true scope and spirit being indicated by the
following claims.

We claim:

1. A method of operating a memory device, the method
comprising:

receiving a new data set for a rank of a plurality of ranks to

be stored in the memory device wherein the memory
device comprises a plurality of cells;

reading a current state of candidate cells within the plural-

ity of cells wherein candidate cells are used to store the
new data set;

creating a binary representation of the plurality of cells

used to store the new data set;
using a WOM code to combine the binary representation
with the new data set to create a binary WOM vector;

modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new data
vector;

writing the new data vector to the candidate cells.

2. A method as in claim 1, wherein the WOM is a Polar
WOM.

3. A method as in claim 1, wherein a cost of writing is
defined as a maximum level of the plurality of cells after
writing the new data vector minus a maximum level of the
candidate cells before writing the new data vector.

4. A method as in claim 3, wherein the cost=1.

5. A method as in claim 1, wherein the method further
comprises:

reading the new data vector from the candidate cells;

modifying the new data vector to recreate the binary WOM

vector;

using a WOM code on the binary WOM vector to separate

the binary representation from the data set.

6. A method as in claim 5, wherein the WOM is a Polar
WOM.

7. A computer method of operating a memory device, the
method comprising:

receiving a new data set m for a rank to store in the memory

device wherein the memory device comprises a plurality
of cells;

reading a current state of the plurality of cells within the

plurality of cells are arranged according to a rank modu-
lation scheme and the plurality of cells are used to store
the new data set;

determine a new multi-permutation to be written to the

plurality of cells representing the received data set m
determined in accordance with a predetermined cost;
write the new multi-permutation to memory.

8. A computer method of operating a memory device, the
method comprising:

receiving a data value comprising a plurality of data sets

wherein each data set is a set of values representing a

rank in a plurality of ranks and repeating for the data sets

in the data value, operations comprising:

receiving a new data set for a rank of the plurality of
ranks to be stored in the memory device wherein the
memory device comprises a plurality of cells;

reading a current state of candidate cells within the plu-
rality of cells wherein candidate cells are used to store
the new data set;

creating a binary representation of the plurality of cells
used to store the new data set;
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using a WOM code to combine the binary representation
with the new data set to create a binary WOM vector;

modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new
data vector;

writing the new data vector to the candidate cells.

9. A method as in claim 8, wherein the WOM is a Polar
WOM.

10. A computer method of operating a memory device, the
method comprising:

reading a plurality of cells and determining a multi-permu-

tation stored in the plurality of cells;

identifying a group of cells in the plurality of cells, con-

tained within each rank of a plurality of ranks;

for each rank, performing the steps of:

reading a new data vector from the rank;

modifying the new data vector to recreate a binary WOM
vector;

using a WOM code on the binary WOM vector to sepa-
rate a binary representation from a data set.

11. A method as in claim 10, wherein the WOM is a Polar
WOM.

12. A memory controller comprising:

an interface that receives a new data set for a rank of a

plurality of ranks to be stored in a memory comprising a
plurality of cells;

a processor configured to perform operations of:

reading a current state of candidate cells within the plu-
rality of cells wherein candidate cells are used to store
the new data set;

creating a binary representation of the plurality of cells
used to store the new data set;

using a WOM code to combine the binary representation
with the new data set to create a binary WOM vector;

modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new
data vector;

writing the new data vector to the candidate cells.

13. A memory controller as in claim 12, wherein the WOM
is a Polar WOM.

14. A memory controller as in claim 12, wherein a cost of
writing is defined as a maximum level of the plurality of cells
after writing the new data vector minus a maximum level of
the candidate cells before writing the new data vector.

15. A memory controller as in claim 14, wherein the
cost=1.

16. A memory controller as in claim 12, wherein the pro-
cessor is configured to perform operations further compris-
ing:

reading the new data vector from the candidate cells;

modifying the new data vector to recreate the binary WOM

vector;

using a WOM code on the binary WOM vector to separate

the binary representation from the data set.

17. A memory controller as in claim 16, wherein the WOM
is a Polar WOM.

18. A memory controller comprising:

an interface that receives a new data set m for a rank to be

stored in a memory device wherein the memory device
comprises a plurality of cells;
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a processor configured to perform operations of:

reading a current state of the plurality of cells within the
plurality of cells are arranged according to a rank
modulation scheme and the plurality of cells are used
to store the new data set;

determine a new multi-permutation to be written to the
plurality of cells representing the received data set m
determined in accordance with a predetermined cost;

write the new multi-permutation to memory.
19. A memory controller comprising:
an interface that receives a data value comprising a plural-
ity of data sets wherein each data set is a set of values
representing a rank in a plurality of ranks;
a processor configured to perform operations repeated for
the data sets in the data value, the operations comprising:
receiving a new data set for a rank of the plurality of
ranks to be stored in the memory device wherein the
memory device comprises a plurality of cells;

reading a current state of candidate cells within the plu-
rality of cells wherein candidate cells are used to store
the new data set;

creating a binary representation of the plurality of cells
used to store the new data set;

using a WOM code to combine the binary representation
with the new data set to create a binary WOM vector;

modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new
data vector;

writing the new data vector to the candidate cells.

20. A memory controller as in claim 19, wherein the WOM

is a Polar WOM.

21. A memory controller comprising:

an interface that provides access to a plurality of cells in a
memory device;

a processor that accesses the plurality of cells through the
interface and reads the plurality of cells and performs
operations comprising determining a multi-permutation
stored in the plurality of cells, and identifying a group of
cells in the plurality of cells contained within each rank
of a plurality of ranks and, for each rank, performing the
operations of:
reading a new data vector from the rank;
modifying the new data vector to recreate a binary WOM

vector;
using a WOM code on the binary WOM vector to sepa-
rate a binary representation from a data set.

22. A memory controller as in claim 21, wherein the WOM

is a Polar WOM.
23. A data device comprising:
a memory configured to store data values:
a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:
receiving a new data set for a rank of a plurality of ranks
to be stored in the memory device wherein the
memory device comprises a plurality of cells;

reading a current state of candidate cells within the plu-
rality of cells wherein candidate cells are used to store
the new data set;

creating a binary representation of the plurality of cells
used to store the new data set;

using a WOM code to combine the binary representation
with the new data set to create a binary WOM vector;
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modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new
data vector;

writing the new data vector to the candidate cells.

24. A data device as in claim 23, wherein the WOM is a
Polar WOM.

25. A data device as in claim 23, wherein a cost of writing
is defined as a maximum level of the plurality of cells after
writing the new data vector minus a maximum level of the
candidate cells before writing the new data vector.

26. A data device as in claim 25, wherein the cost=1.

27. A data device as in claim 23, wherein the method
further comprises:

reading the new data vector from the candidate cells;

modifying the new data vector to recreate the binary WOM
vector;

using a WOM code on the binary WOM vector to separate
the binary representation from the data set.

28. A data device as in claim 27, wherein the WOM is a

Polar WOM.
29. A data device comprising:
a memory configured to store data values:
a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:
receiving a new data set m for a rank to store in the
memory device wherein the memory device com-
prises a plurality of cells;

reading a current state of the plurality of cells within the
plurality of cells are arranged according to a rank
modulation scheme and the plurality of cells are used
to store the new data set;

determine a new multi-permutation to be written to the
plurality of cells representing the received data set m
determined in accordance with a predetermined cost;

write the new multi-permutation to memory.
30. A data device comprising:
a memory configured to store data values:
a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:
receiving a data value comprising a plurality of data sets
wherein each data set is a set of values representing a
rank in a plurality of ranks and repeating for the data
sets in the data value, operations comprising:

receiving a new data set for a rank of the plurality of
ranks to be stored in the memory device wherein the
memory device comprises a plurality of cells;

reading a current state of candidate cells within the plu-
rality of cells wherein candidate cells are used to store
the new data set;

creating a binary representation of the plurality of cells
used to store the new data set;

using a WOM code to combine the binary representation
with the new data set to create a binary WOM vector;

modifying the binary WOM vector to equal quantities of
1’s and 0’s within the candidate cells creating a new
data vector;

writing the new data vector to the candidate cells.

31. A data device as in claim 30, wherein the WOM is a
Polar WOM.

32. A data device comprising:

reading a plurality of cells and determining a multi-permu-
tation stored in the plurality of cells;
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identifying a group of cells in the plurality of cells, con-
tained within each rank of a plurality of ranks;
for each rank, performing the steps of:
reading a new data vector from the rank;
modifying the new data vector to recreate a binary WOM
vector;
using a WOM code on the binary WOM vector to sepa-
rate a binary representation from a data set.
33. A data device as in claim 32, wherein the WOM is a
Polar WOM.



